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A B S T R A C T   

Healthy aging is the prime goal of aging research and interventions. Healthy aging or not can be quantified by 
biological aging rates estimated by aging clocks. Generation and accumulation of large scale high-dimensional 
biological data together with maturation of artificial intelligence among other machine learning techniques, 
have enabled and spurred the rapid development of various aging rate estimators (aging clocks). Here we review 
the data sources and compare the algorithms of recent human aging clocks, and the applications of these clocks 
in both researches and daily life. We envision that not only more and multiscale data on cross-sectional data will 
add momentum to the aging clock development, new longitudinal and interventional data will further raise the 
aging clock development to the next level to be trained by true biological age such as morbidity and mortality 
age.   

1. Introduction 

With the rapid increase of the aging population all over the world, 
longer lifespan but higher susceptibility to diseases becomes the major 
challenge to healthy aging. Currently most aging studies are based on 
lifespan rather than aging itself. While lifespan is one of the gold stan-
dards in aging studies, and lifespan is a product of aging and is affected 
by aging rates, there is a difference between biological and chronolog-
ical lifespan. Biological lifespan is also called healthspan, that is the time 
of life without major morbidity (Crimmins, 2015). For example, a final 
disease-ridden or bed-restricted 20 years of lifespan should be deducted 
from a person’s lifespan to be his/her healthspan. Aging rate can at least 
partially predict lifespan, and more importantly it can quantify the 
differences between the biological and chronological lifespan, especially 
when the models are trained on biological age. In practice, this can also 
accelerate the evaluation of aging interventions. Instead of waiting for 
the lifespan to finish to conclude the effects, aging rate can be derived 
instantly at any time point of life. Not all individuals age at the same 
rate. Recently systems level quantitative aging rate models, also known 

as “aging clocks”, have been introduced to biological age, and the dif-
ference between biological and chronological age (or the delta) is used 
to quantify aging rate. Accurately quantifying aging rate is not only 
important for evaluating the efficacy of aging interventions, but will also 
shed light on the aging process itself, instead of lifespan and the 
fundamental mechanisms of heterogeneity of aging across different 
individuals. 

Long before the omics era, researchers have been seeking to quantify 
aging rate by directly measuring a biological (physiological) age, for 
example, Borkan et al. transformed 24 age-related physical parameters 
into biological age score (Borkan and Norris, 1980); Nakamura et al. 
proposed a principal component analysis based method for biological 
age quantification from 11 physiological variables filtered by factor 
analysis (Nakamura et al., 1988). Now with the rapid development of 
high-dimensional data generation techniques, here we review recent 
aging rate studies utilizing these data. We focus on aging rate estimators 
based on human data, classify them by data sources, discuss the algo-
rithmic considerations, and finally, summarize the applications of aging 
rate quantification. 
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2. Data sources of aging rate 

2.1. DNA methylome 

DNA methylation clocks is the most widely used aging rate quanti-
fication method. The first DNA methylation array-based age predictor 
was developed by Bocklandt et al. in 2011. In this study they used linear 
regression with two CpG sites using saliva sample from 34 twin pairs 
between 21 and 55 years to predict age, and obtained MAE (mean ab-
solute error from chronological age) of 5.2 years (Bocklandt et al., 
2011). But the notion of aging rate (or age acceleration) was not 
explicitly raised and discussed until 2013, when two most recognized 
array-based aging rate estimators are developed by Hannum et al. 
(Hannum et al., 2013) and Horvath (Horvath, 2013). Hannum et al. built 
an elastic net model with 71 CpGs on whole blood DNA methylation 
array data from 656 individuals aged 19–101, and achieved root mean 
square error (RMSE) of 3.9 years in training set and 4.9 years in test set 
(Hannum et al., 2013). Horvath built a multi-tissue elastic net age pre-
dictor with 353 CpGs using about 8,000 sample from 51 healthy tissues 
and cell types, and achieved median absolute error (MedAE) of 2.9 years 
in training set and 3.6 years in test set (Horvath, 2013). 

Other DNA methylation array based aging rate estimators have been 
developed over the years. A class of these clocks used a panel of pre- 
defined age-related DNA methylation sites as a start point for model 
building: Based on 575 blood DNA methylation profiles from 0 to 78 
years, Weidner et al. preselected 102 age-related CpG sites, and used a 
recursive feature elimination procedure to select a 5-sites predictor, and 
then validated a 3-sites model (two sites were excluded due to primer 
design) with MAE of 5.4 years using pyrosequencing (Weidner et al., 
2014). In their follow-up study, they updated the 3 sites model for array 
data and built a new model of 99 CpG sites out of the preselected 
age-related CpG sites (Lin et al., 2016). Yang et al. set up a mitotic clock 
score by selecting promoter CpGs of Polycomb group target genes which 
were unmethylated in fetal tissue (Yang et al., 2016). Galkin et al. also 
trained a neural network model on DNA methylation array data and the 
predictor assigned higher age to people with ovarian cancer, irritable 
bowel diseases, and multiple sclerosis (Galkin et al., 2020). 

Another class of clocks predicts morbidity or mortality risk rather 
than chronological age. Zhang et al. provided a mortality risk score 
based on 10 CpGs selected by least absolute shrinkage and selection 
operator (LASSO) regression out of 58 CpGs associated with all-cause 
mortality confirmed in a validation panel, and the discrete version of 
the mortality risk score (count of aberrant methylation at 10 CpGs) 
exhibited strong association with all-cause, CVD and cancer mortality 
(Zhang et al., 2017). Aging clock predictions could be included in a 
survival model as a risk factor, such as done by Levine et al. and Lu et al. 
They used a two-step procedure for aging rate estimation: first, they 
built a phenotypic age on clinical data by a Cox proportional elastic net 
model; then they train a linear regression model to predict this pheno-
typic age termed “PhenoAge”, resulting in a model including 513 CpGs 
(Levine et al., 2018). In addition, Liu et al. also provided a new 
meta-clock based on 14 sub-clocks selected by elastic net Cox regression 
out of 85 sub-clocks, which they demonstrated to have better perfor-
mance for mortality prediction than single clocks (Liu et al., 2020). Lu 
et al. also proposed a two-step aging rate estimating procedure: first, 
they defined DNA methylation surrogates for 88 plasma protein vari-
ables and smoking pack; then they used the predicted (surrogate) plasma 
protein level, smoking, age and sex to predict time-to-death via elastic 
net Cox regression which selected 7 plasma proteins, and hence a model 
of 1030 CpGs was built to generate “GrimAge”, and they found that the 
surrogate for self-reported smoking condition predicted lifespan better 
than the self-reported values (Lu et al., 2019). 

Other efforts aimed at more accurate aging rate estimators either in 
specific tissue cell types, or with larger sample size. Horvath proposed a 
clock for ex vivo studies because the original one was suboptimal for cell 
types such as fibroblasts (Horvath et al., 2018). A muscle-specific 

epigenetic clock containing 200 CpGs was built from 682 muscle sam-
ples with MedAE of 4.6 years (Voisin et al., 2020). Zhang et al. increased 
the training sample size from 355 to 12,710 and found that with the 
improvement of age predictor, the association between aging rate and 
mortality decreased, which indicated that a perfect age predictor might 
not reflect biological age (Zhang et al., 2019). 

On the underlying mechanism of DNA methylation based aging rate, 
currently two aspects have been explored: transcriptome and GWAS 
associations for DNA methylation age acceleration. In a comparative 
study, Liu et al. found transcriptome changes shared by multiple DNA 
methylation aging clocks are related to metabolism, immunity, and 
autophagy functions (Liu et al., 2020). GWAS studies for DNA methyl-
ation age acceleration identified tissue-specific loci, including 16p13.3 
(near MLST8) and 2p22.1 (inside DHX57) in cerebellum (Lu et al., 
2016), 17q11.2 (harbors cis-expression quantitative trait locus for 
EFCAB5) in five brain regions, 1p36.12 in prefrontal cortex (Lu et al., 
2017), and eight loci (including one locus on chromosome 5 co-locates 
with TERT) in blood (Lu et al., 2018). Recently, a hierarchical organi-
zation model including neuroendocrine, immune and circadian system 
is hypothesized as a theoretical control model for DNA methylation 
clocks (Lehmann et al., 2020). Horvath and Raj also discussed biological 
functions related to DNA methylation in a recent review (Horvath and 
Raj, 2018). 

In summary, all DNA methylation based aging rate estimators use 
high-throughput DNA methylation data, typically Illumina arrays, and 
are trained to predict chorological age or aging related risk factors such 
as mortality by linear regression model. The aging rate, or aging accel-
eration/deceleration is then calculated as the difference between pre-
dicted age and chronological age. 

2.2. Transcriptome 

Similar to DNA methylation aging rate estimator, gene expression 
data, either measured by array or high-throughput sequecing, have been 
used to predict age and then calculate aging rate. Peters et al. performed 
a ridge regression on whole-blood gene expression array data in several 
cohorts (14,983 individuals), and obtained a model with MAE of 7.8 
years (Peters et al., 2015). Fleischer et al. trained an chronological age 
predictor on 133 human dermal fibroblasts (aged 1–94 years) RNA-seq 
data by linear discriminant analysis (LDA) and resulted in a MedAE of 
4.0 years (Fleischer et al., 2018). Mamoshina et al. tested several models 
(with neural network as the best model) on human muscle trascriptome 
data for chronological age prediction and obtained an MAE of 6.24 years 
on the test set (Mamoshina et al., 2018b). We also predicted age with 
peripheral blood mononuclear cell (PBMC) ribo-minus RNA-seq data 
using partial least squares regression (PLSR) which had a MAE of 5.68 
years (Xia et al., 2020a). Huan et al. reported a microRNA age predictor 
using elastic net regression and the delta age was associated with mor-
tality and diseases (Huan et al., 2018). 

The aging rate estimation in transcriptome goes beyond age pre-
diction and residuals in several cases: Sood et al. proposed a healthy 
aging gene score by median sum of the rank of 150 preselected aging 
related genes in a cohort, and this score is associated with cognitive 
impairment (Sood et al., 2015). However this score is not comparable 
among different cohorts because it is a relative rank of an individual in a 
specific cohort. Furman and colleagues used inflammasome gene mod-
ules expression level to stratify older individuals into high and low 
group, and the high group was associated with mortality (Furman et al., 
2017). Rhinn and Abeliovich defined a delta-age via weighted mean of 
linear regression residuals of age-related genes using microarray data-
sets from human prefrontal cortex tissue (1904 samples), without 
functional outcome association, and but by GWAS analysis they found 
two SNPs at TMEM106B and GRN, respectively, as determinants of 
delta-age with genome-wide significance (Rhinn and Abeliovich, 2017). 
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2.3. Proteome 

N-linked glycans analyzed by ultra performance liquid chromatog-
raphy (UPLC) were used for age prediction by linear regression, and 
resulted in a model composed of 3 glycans with an MAE of 9.7 years and 
residuals associated with physiological parameters (Krǐstić et al., 2014). 
Lehallier et al. fitted a LASSO model for age prediction using SomaScan 
assay derived proteomic measurements with 12 subsets of proteins in 
total, and the best model containing 491 SOMAmers resulted in MAE of 
2.44 years in test set, and the residuals were associated with aero-
bic-exercise (Lehallier et al., 2020). Similarly, Sathyan et al. used 
SomaScan assay in 1,025 participants aged 65–95 and found elastic net 
model derived proteomic age predicted all-cause mortality better than 
chronological age and the frailty index (Sathyan et al., 2020). 

2.4. Metabolome 

Urine nuclear magnetic resonance (NMR) spectroscopy measured 59 
metabolites from 4068 Caucasian subjects were used to construct a 
linear regression model for age prediction which resulted in the RMSE of 
11.19 for men and 10.37 for women, and the score was associated with 
age-related clinical phenotypes and predictive for survival in a 13-year 
follow-up period (Hertel et al., 2016). Robinson et al. measured me-
tabolites in both urine and serum samples from 2,238 participants aged 
19–65 years using NMR spectroscopy and ultra-performance liquid 
chromatography–mass spectrometry (UPLC-MS) platforms, and age ac-
celeration estimated from elastic net age prediction was associated with 
high alcohol intake, obesity, depression and diabetes (Robinson et al., 
2020). 

2.5. Metagenome 

Although gut microbiome could affect the rate of aging via various 
mechanism in model animals (Heintz and Mair, 2014), the study in 
human cohort between the two is preliminary. A deep neural network 
model was built on human gut microbiome data in 10 publicly available 
datasets (1,165 individuals aged between 20–90) to predict chronolog-
ical age. Compared to elastic net, random forest or gradient boosting, 
deep neural network performed best with MAE of 10.6 years in cross 
validation and 5.91 years in an independent dataset validation. More-
over, patients with T1D exhibit age acceleration according to the 

microbiome clock (Galkin et al., 2020b). 

2.6. Multi-omics 

Alpert et al. carried out a longitudinal study of 135 healthy in-
dividuals over 9 years via cellular phenotyping, cytokine-stimulation 
assays and whole-blood gene-expression, proposed a trajectory score 
(named immune aging, IMM-AGE) based on flow cytometry or mass 
cytometry (CyTOF) data, followed by an approximation with expression 
data, and found this score could describe a person’s immune status 
better than chronological age and predict all-cause mortality (Alpert 
et al., 2019). Ahadi et al. profiled plasma proteomes, metabolomes, 
PBMC transcriptomes, serum targeted cytokine assays, nasal and gut 
microbiomes, PBMC exome sequencing, and 51 clinical laboratory tests 
on 106 healthy individuals aged from 29 to 75, and compared their 
association with age. In the multi-omics data from longitudinal subset of 
the cohort (43 individuals), they defined four ageotypes, which were 
basically four super-families of pathways associated with aging, and no 
association of ageotypes with BMI, age, insulin sensitive status or other 
health status, perhaps due to small sample size (Ahadi et al., 2020). 

2.7. Bioimages 

Besides omics, images are another source of high-dimensional data 
which has the potential for high-throughput screening, phenotyping and 
aging rate estimation. PhotoAgeClock is developed to predict chrono-
logical age with neural network and 8414 images of eye corners with an 
MAE of 2.3 years with no health association investigated (Bobrov et al., 
2018). Our group published the first 3D facial image-based age predictor 
in 2015 which has a MAE of 6 years (Chen et al., 2015a), and compared 
to other aging clocks, it is non-invasive and economic, thus allowing 
rapid and large-scale data collection. Thus, we extended the facial age 
prediction to a new AI based model by collecting 3D facial images from a 
cohort of ~5,000 Han Chinese, together with baseline information. The 
non-linear convolutional neural network age predictor achieved an error 
between chronological/perceived age and predicted age of only 
±2.79/2.90 years, and found the heterogeneity aging rate peaked at 
middle age. By simultaneously profiling the transcriptomes of peripheral 
blood mononuclear cells using ribo-minus RNA-seq of 280 individuals, 
we identified transcriptomic changes and cell types associated with 
facial aging rates, and further using causal inference uncovered the 

Fig. 1. Data sources of aging rate estimators.  
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Table 1 
Summary of aging rate estimators.  

Data source Study Category Target Sources Platform Algorithm Evaluation Metrics* (in 
years) 

DNA 
methylome 

(Bocklandt 
et al., 2011). 

Prediction Age Saliva Illumina array Linear – MAE = 5.2 

(Hannum et al., 
2013) Prediction Age Blood Illumina array Linear 

Advanced aging rate in 
tumor 

RMSE =
3.88− 4.9 

(Horvath, 
2013) 

Prediction Age 
51 tissues and 
cell types 

Illumina array Linear 
Age acceleration in 20 
cancer types 

MedAE =
2.9− 3.6 

(Weidner et al., 
2014) 

Prediction Age Blood 
Illumina array and 
bisulfite 
pyrosequencing 

Linear 

Association with alcohol 
assumption and number 
of children; age 
acceleration in aplastic 
anemia and dyskeratosis 
congenita 

MAE =
3.4–5.4 

(Lin et al., 
2016) 

Prediction Age Blood Illumina array Linear 
Association with life 
expectancy 

MedAE = 3.45 

(Yang et al., 
2016) Score – Blood Illumina array 

Average DNA 
methylation 
level 

Accelerated in cancer 
and pre-cancerous 
lesions 

– 

(Galkin et al., 
2020). Prediction Age Blood Illumina array Non-linear 

Accelerated in cancer 
and immune disease MedAE = 2.77 

(Zhang et al., 
2017) 

Score – Blood Illumina array 
Count or 
continuous risk 
score 

Association with all- 
cause mortality 

– 

(Levine et al., 
2018) 

Prediction Phenotypic 
age 

Blood Illumina array Linear Association with 
mortality and morbidity 

– 

(Liu et al., 
2020) 

Prediction All-cause 
mortality 

Blood Illumina array Linear 
Association with 
mortality, positive in 
cancer 

– 

(Lu et al., 
2019) Prediction Lifespan Blood Illumina array Linear 

Association with 
mortality and morbidity – 

(Horvath et al., 
2018) 

Prediction Age 4 cells, blood 
and saliva 

Illumina array Linear Age acceleration in 
HGPS 

MedAE =
1− 6.3 

(Voisin et al., 
2020) 

Prediction Age Muscle Illumina array Linear – MedAE = 4.6 

(Zhang et al., 
2019) Prediction Age Blood Illumina array Linear 

Association with 
mortality – 

Transcriptome 

(Peters et al., 
2015) Prediction Age Blood 

Illumina and 
Affymetrix expression 
array 

Linear 
Association with 6 
health parameters MAE = 7.8 

(Fleischer 
et al., 2018) 

Prediction Age Dermal 
fibroblasts 

RNA-seq Non-linear Age acceleration in 
HGPS 

MedAE = 4.0 

(Mamoshina 
et al., 2018b) Prediction Age Muscle 

Expression microarray, 
and RNA-seq Non-linear – MAE = 6.24 

(Huan et al., 
2018) Prediction Age Blood TaqMan miRNA assay Linear 

Associated with all- 
cause mortality, CHD, 
hypertension, blood 
pressure, and glucose 
levels 

PCC =
0.65− 0.70 

(Sood et al., 
2015) Score – Muscle 

Affymetrix expression 
array 

Median sum of 
rank 

Associated with better 
renal function, 
longevity, and cognitive 
impairment 

– 

(Furman et al., 
2017) 

Score – Blood 
Illumina and 
Affymetrix expression 
array 

Stratification by 
upper or lower 
quartiles 

Association with 
elevated oxidative 
stress, hypertension and 
arterial stiffness 

– 

(Rhinn and 
Abeliovich, 
2017) 

Score – Cerebral cortex 
Affymetrix expression 
array 

Weighted mean 
of linear 
regression 
residuals 

– – 

Proteome (Krištić et al., 
2014) 

Prediction Age Plasma UPLC Linear Association with 12 
health parameters 

MAE = 9.7  

(Lehallier 
et al., 2020) Prediction Age Plasma SomaScan assay Linear 

Association with 
aerobic-exercised 
training 

MAE =
1.84− 2.44  

(Sathyan et al., 
2020) Prediction Age Plasma SomaScan assay Non-linear 

Association with all- 
cause mortality PCC = 0.8 

Metabolome (Hertel et al., 
2016) 

Prediction Age Urine NMR Linear 
Association with all- 
cause mortality, and 
clinical phenotypes 

RMSE = 11.19 
for men; 
RMSE = 10.37 
for women  

(Robinson 
et al., 2020) Prediction Age 

Urine and 
serum NMR and UPLC-MS Linear 

Association with 
overweight/obesity, 

MAE =
3.71− 6.49 

(continued on next page) 
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mRNAs in the blood transcriptome that potentially mediate lifestyles 
impact on aging rate, such as smoking is accelerate aging rate through 
changes elevated inflammatory cytokine expression (Xia et al., 2020a). 
Neuroimaging data, such as brain structural magnetic resonance imag-
ing (MRI) data and computed tomography (CT), are other commonly 
evaluated sources for biological age prediction (Cole et al., 2017), which 
was comprehensively reviewed and discussed elsewhere (Cole and 
Franke, 2017; Elliott, 2020). 

2.8. Others 

Other than high dimensional data, clinical blood test data is tested 
for aging rate quantification because of the low cost and invasiveness. 
Zhavoronkov’s lab build a chronological age predictor by neural 
network with basic blood test data, which attained an MAE of 5.55 years 
(Putin et al., 2016). Later on, they extend this to cross ethnic populations 
with 5.94 years as the lowest MAE in all population, and samples pre-
dicted older than chronological ages showed an increase in mortality 
hazard ratio significantly (Mamoshina et al., 2018a). Then in 2019 they 
used a similar model and found accelerated aging in smokers 
(Mamoshina et al., 2019). Psycho-social questionnaires data were also 
used to predict both chronological and perceived age to investigate 
psychological aging, and the delta are both associated with mortality 
rate, with perceived age delta as a more significant risk factor (Zha-
voronkov et al., 2020). Although many DNN based clocks predict 
chronological ages, some of them were not used to calculate aging rate 
based on the predictions or evaluate the derived aging rate with health 
parameters or disease conditions (Bobrov et al., 2018; Putin et al., 

2016). On the other hand, some DNN works that did associate with 
health conditions were not trained on high dimensional omics data 
(Mamoshina et al., 2019, 2018a; Zhavoronkov et al., 2020). 

In summary, the aging rate has been estimated across the human 

Table 1 (continued ) 

Data source Study Category Target Sources Platform Algorithm Evaluation Metrics* (in 
years) 

diabetes, heavy alcohol 
use and depression 

Metagenome (Galkin et al., 
2020b) 

Prediction Age Stool Whole genome 
sequencing 

Non-linear Age acceleration in type 
I diabetes 

MAE = 5.91 

Multi-omics 

(Alpert et al., 
2019) Score – Blood 

Flow cytometry, 
CyTOF, Affymetrix 
expression array 

Non-linear 
Association with all- 
cause mortality – 

(Ahadi et al., 
2020) 

Score – 
PBMC, serum, 
nasal and stool 

SWATH-MS, 
untargeted LC–MS, 62- 
plex Luminex, 16S 
rRNA sequencing, and 
exome sequencing 

Linear 

No association with BMI, 
age, or insulin 
resistance/sensitive 
status 

– 

Imaging** (Bobrov et al., 
2018) 

Prediction Age eye corner 
images 

professional cameras 
or mobile devices 

Non-linear – MAE = 2.30  

(Xia et al., 
2020a) Prediction 

Age and 
perceived 
age 

3D facial 
images and 
PBMC 

3DMD and ribo-minus 
RNA-seq Non-linear 

Association with health 
parameters (n>20) and 
lifestyles 

MAE = 2.8 for 
age; MAE =
2.9 for 
perceived age 

Others 
(Putin et al., 
2016) 

Prediction Age Blood Clinical test Non-linear – MAE = 5.55  

(Mamoshina 
et al., 2018a) 

Prediction Age Blood Clinical test Non-linear Associated with hazard 
ratio 

MAE = 5.94  

(Mamoshina 
et al., 2019) Prediction Age Blood Clinical test Non-linear 

Age acceleration in 
smokers MAE = 5.72  

(Zhavoronkov 
et al., 2020) 

Prediction 
Age and 
perceived 
age 

Psycho-social 
questionnaires 

– Non-linear 
Predictive of all-cause 
mortality risk 

MAE = 6.70 
for age; MAE 
= 7.32 for 
perceived age 

Abbreviations: BLUP: best linear unbiased prediction; CHD: coronary heart disease; CNN: convolutional neural network; CyTOF: mass cytometry; DFS: Deep Feature 
Selection Models; DNN: deep neural network; HGPS: Hutchinson-Gilford progeria syndrome; KNNk: nearest neighbors; LASSO: least absolute shrinkage and selection 
operator; LC–MS: liquid chromatography mass spectrometry; LDA: linear discriminant analysis; MAE: mean absolute error; MedAE: median absolute error; NMR: 
nuclear magnetic resonance; PCC: Pearson’s correlation coefficient; PLSR: partial least squares regression; RF: random forest; RMSE: root mean square error; SVM: 
support vector machines; SWATH-MS: sequential window acquisition of all theoretical fragment ion spectra mass spectrometry; UPLC: ultra-performance liquid 
chromatography; UPLC-M: Sultra-performance liquid chromatography–mass spectrometry. 

* Metrics are only listed for prediction-based models to measure the accuracy of chronological age prediction. For studies reported more than one metrics, the best 
metric is listed in the table. Note that many works listed here contained more than a single model and validated on several datasets. If no MAD or MedAE or RMSE is 
reported in the original work, PCC is listed. 

** Neuroimaging based aging rate estimators are not included in this summary table because they are reviewed elsewhere (Cole and Franke, 2017; Elliott, 2020). 

Fig. 2. Model based aging rate predictors.  
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body (Fig. 1, Table 1), with the majority on peripheral blood due to the 
low invasiveness of blood extraction. Images including facial images 
could further lower the expense of aging rate estimation. 

3. Algorithmic considerations for aging rate estimation 

3.1. Categories of aging rate estimator 

Among the various aging rate estimators enumerated above (as 
summarized in Table 1), the algorithm behind each calculator can be 
classified into two large categories: machine learning model based 
(Fig. 2) or arbitrary score based. 

Through conventional machine learning methods or deep learning AI 
methods linear or non-linear models are trained on various omics data to 
predict chronological or biological age. The difference between the 
model predicted age and chronological age, or AgeDiff, is then used as 
aging rate to evaluate an individual’s status of aging (normal, acceler-
ated or decelerated). The aging rates have been shown to be associated 
with health, morbidity and mortality, and potentially modifiable by 
lifestyles, medication and other interventions. 

Machine learning model based estimators are conventionally built 
through the following steps: 1) a large dataset from a single data source, 
either omics or images, is collected together with chronological age 
information; 2) a machine learning algorithm is trained to predict 
chronological age with error rate reported; 3) the difference between 
predicted chronological age and the real chronological age, or the re-
siduals, are calculated as the estimation of aging rate; 4) if possible, 
aging related physical parameters or diseases are checked for association 
with aging rate to validate whether the predicted age can reflect bio-
logical age. 

A chronological age trained model if done perfectly without error is 
useless (unless for forensic purposes), because these predictors rely on 
the errors to access aging rate. Yet, it is hard to tease out which part of 
the deviation of the predicted and actual chronological age is truly due 
to the individual’s clock difference, which part is due to the prediction 
error, thus only the outliers significantly deviate beyond the prediction 
error range can be reliably determined as true biological age deviation 
from the chronological age. On the other hand, training a model on 
biological age such as perceived age or morbidity partly overcomes such 
a model error confounding factor, making deviations truly biologically 
relevant when errors are minimized. Perceived age is one of the estab-
lished measurements of biological age of the face. The AI model trained 
on perceived age demonstrates that AI learns the human age-perceiving 
process, hence avoids using prediction errors as surrogates for the rate of 
aging, and making aging rate determined AI determined perceived age 
more associated with lifestyle and health parameters than AI determined 
chronological age (Xia et al., 2020a). Health, morbidity and mortality 
risks are in fact the best biological ages to train the aging rate predictors. 
However, perhaps due to the lack of largescale longitudinal data, only 
very few models are thus developed, such as “PhenoAge” (Levine et al., 
2018) and “GrimAge” (Lu et al., 2019). Most often, when available, they 
are used as a supportive evidence in evaluating the difference between 
predicted and actual chronological age. 

Machine learning algorithms used for prediction can be further 
classified into linear and non-linear models. Most, if not all, DNA 
methylation age predictors are linear models with a slight difference in 
coefficient regularization methods (elastic net, ridge or LASSO), as 
reviewed by Galkin et al. (Galkin et al., 2020a). While linear model is 
still popular in other data types, non-linear models, for example SVM, 
KNN and random forest, have been tested for age prediction. Deep 
learning methods are also used for omics data, but convolutional neural 
network is designed for images and hence used more for image data 
compare to other types of data (Fig. 2). 

Score based aging rate estimators so far followed no common pro-
cedures, and are often arbitrarily designed, based on relative rank in a 
cohort, or their linear or non-linear trend with age or aging (Table 1). In 

fact, perceived age of the face can be regarded as age scored by human 
perception. 

3.2. Confounding factor correction 

Aging rate, by its definition, is not expected to be correlated with 
chronological age, because theoretically at each age stage there can be 
individuals aging faster or slower than average. However, among all 
aging rate estimation methods, including arbitrary scoring (such as 
perceived age), there is actually general negative association between 
age acceleration and chronological age, which can lead to spurious 
disease and health parameters associations (El Khoury et al., 2019; 
Marioni et al., 2019). Hence the correction of aging rate by chronolog-
ical age at the definition step was adopted in several studies (Hertel 
et al., 2016; Lu et al., 2019; Xia et al., 2020a). Other studies include age 
as a covariate in evaluation step (Levine et al., 2018; Peters et al., 2015). 
Other confounding factors such as sex, race, body mass index, and cell 
composition were also adjusted in different studies depending on the 
hypotheses (Huan et al., 2018; Zhang et al., 2019). 

3.3. Evaluation and benchmarking 

The evaluation for aging rate estimator is based on health or aging- 
related diseases associated parameters. While most estimators showed 
the association between estimated aging rate and health parameters, the 
general and independent benchmark work is still needed. Such evalua-
tions has already been done for DNA methylation based aging rate es-
timators - Maddock and colleagues compared Horvath’s, Hannum’s, 
PhenoAge and GrimAge aging acceleration using three physical and two 
cognitive measurements (Maddock et al., 2020). They concluded that 
the second-generation estimators based on mortality outperformed the 
first generation based on chronological age. Later on McCrory et al. 
examined the same four aging rate estimators on 9 health related clinical 
outcomes and concluded that aging rate estimated by GrimAge was 
associated with 8/9 phenotypes and hence the best one among those 
four (McCrory et al., 2020). Such benchmarking work is lacking for 
other data type derived aging rate estimators. The main reason might be 
the acquisition of the implementation of other algorithms are not as 
convenient as those four estimators, and the cross-study normalization is 
not as easy as DNA methylation, which is intrinsically normalized to 
0 and 100 %. 

3.4. Cross data type correlation 

Several studies found aging rate from different data sources have low 
correlation, for example the correlation between transcriptome and 
DNA methylation aging rate is 0.1− 0.33 in Peters’ study (Peters et al., 
2015), and low correlation between telomere, epigenetic clock, and 
biomarker-composite aging rate estimators (Belsky et al., 2018), which 
the authors attribute to separate aging aspects captured by different 
measurements (Belsky et al., 2018; Robinson et al., 2020). However, but 
this can be confounded by the technical errors of the models, because the 
majority of the predictions are within the mean error range of different 
models, and the lack of correlation among technical errors of different 
models are expected. In fact, we found only beyond the mean error 
range, by examining outliers of predicted chronological ages, there are 
significant coherency among age predicted from facial morphology and 
blood transcriptomes (Xia et al., 2020a). Additionally, a truly indepen-
dent and comprehensive evaluation of cross data type correlation 
spanning multiple data types is still lacking. 

4. Applications of aging rate 

4.1. Guide daily lifestyles 

Common bad lifestyles like smoking (Yoshida et al., 2020), drinking 
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(Di Credico et al., 2020) and high BMI (Bhaskaran et al., 2018) have 
been shown to affect health. Walters et al. found the aging rate of the 
small airway epithelium was accelerated by smoking (Walters et al., 
2014). We have found that not only lifestyles like smoking, drinking, 
intake of yogurt pose effects on facial aging rate, but also their potential 
molecular mediators in the blood (Xia et al., 2020a). For instance, we 
inferred through causal inference test, cytokine semaphorin 6B is one of 
the major mediators of smoking and alcohol drinking to increase the rate 
of aging, and yogurt negatively regulates the rate of aging through an 
epigenetic modifier encoded by ZZZ3 (Xia et al., 2020a). 

Overall, numerous studies have found common bad lifestyles indeed 
accelerate aging and healthy lifestyles decelerated aging. Such findings 
can instruct and motivate people to slow the aging process in daily life, 
and reduce the risk of aging-related diseases. 

4.2. Predict mortality and diseases 

In general, all-cause mortality is defined as death resulting from 
anything from diseases to accidents. A study used proportional hazards 
models to derive the correlation between aging rate and mortality found 
a 21 % higher mortality risk with a 5-year higher aging rate and part of 
the heterogeneity of aging rate can be explained by genetic factors 
(Marioni et al., 2015). In a longitudinal study, researchers found a 
higher aging rate determined by Hannum’s clock in cancer patients 
(alive or dead) compared to cancer-free individuals, and that partici-
pants with higher aging rate are accompanied by a higher risk of cancer 
and mortality (Zheng et al., 2016). The study suggests aging rate could 
assist the early cancer detection. Likewise, a study in the Germany 
ESTHER cohort of 1863 old people also revealed a relationship between 
aging rate and all-cause mortality and cancer mortality. They found that 
the accelerated aging rate defined by the Horvath’s clock has hazard 
ratios of 1.23 and 1.22 per 5 years for all-cause and cancer mortality, 
respectively, after adjusting some confounding factors (Perna et al., 
2016). Christiansen et al. found a 35 % higher risk of mortality for each 
5-year increase in aging rate by studying the Danish Twin Registry using 
the Horvath DNA methylation clock. Between identical twins the one 
with higher DNA methylation age difference even showed a 
more-than-double risk of mortality, which suggests different lifestyles 
might have shaped their personalized epigenomes (Christiansen et al., 
2016). 

Correlations between numerous health conditions and epigenetic 
clock acceleration have been thoroughly reviewed in 2018 (Horvath and 
Raj, 2018). Recently, researchers evaluated the association between 
aging acceleration and combat PTSD based on GrimAge clock (Lu et al., 
2019) and found that males with combat PTSD showed significantly 
higher aging rate than controls (Yang et al., 2020). Similar epigenetic 
aging acceleration was observed in pediatric brain tumors and varied 
among tumor subtypes (Kling et al., 2020), and in young women with 
poor ovarian response through epigenetic age estimation of white blood 
cells (Hanson et al., 2020). Another intriguing finding is colorectal 
cancer high risk group displays aging rate deceleration compared to the 
low risk samples evaluated by the PhenoAge model (Wang et al., 2020). 
Fibroblast from Hutchinson Gilford Progeria Syndrome patients showed 
increased aging rate based on a new skin&blood clock (Horvath et al., 
2018). Moreover, some metabolic and inflammatory biomarkers like 
LDL, TC, TG and HDL, CRP also showed positive or negative correlation 
with aging rate acceleration computed by Horvath or Hannum method 
(Irvin et al., 2018), or by 3D facial image clocks(Chen et al., 2015b) (Xia 
et al., 2020b) which might indicate potential associations between these 
markers and aging/aging associated diseases progression. 

4.3. Commercial and clinical applications of aging rate 

Although most biomedical researches are far away from the clinic, 
delayed or reversed aging, synonymous to decreasing the rate of aging, 
is very close to clinical applications. One start-up in this field is Insilico 

Medicine founded in 2014. It has established a subsidiary “Deep 
Longevity”, which has built clocks based on deep learning to predict 
biological age, such as a deep learning model of chronological age from 
blood chemistry (Mamoshina et al., 2019) and psychological survey 
(Zhavoronkov et al., 2020) and gut microbiome (Galkin et al., 2020b). 
As a business model, Deep Longevity provides services like predicting 
biological age and comprehensive reports to clinics, insurance com-
panies, preventive medicine organizations and research institutions. 
PEARL (Participatory Evaluation of Aging with Rapamycin for 
Longevity) of the AgelessRX company provides biological age evaluation 
by the Horvath clock to test aging intervention effectiveness. Horvath 
and Gregory Fahy also evaluated the human aging rate by epigenetic 
clocks before and after a small clinical trial of a drug combination (Fahy 
et al., 2019). Many clinics and companies have started utilizing aging 
clocks, and numerous people hope to monitor their daily aging status. 
We can expect a trend that aging-related medical tools like aging clocks 
to popularize among the ever-growing aging populations. 

4.4. Evaluating common geroprotective interventions 

Numerous researches of common anti-aging interventions have been 
proposed continuously, including calorie restriction (CR), amino acids 
restriction. Countless studies of CR have been published to show positive 
effects on healthy aging and lifespan (Most et al., 2017; Vermeij et al., 
2016). However, protein intake has duality on healthy aging. Decrease 
of protein intake may cause frailty like muscle loss, while some studies 
illustrate low-protein diet may correlate with longer lifespan. Restric-
tion of branched-chain amino acids (BCAAs) like leucine, isoleucine and 
valine can alleviate frailty and extend the lifespan in male mice. Low 
protein intake also associated with decreased mortality (Levine et al., 
2014). Dietary interventions as an environmental factor could 
re-modulate epigenetic patterns (Gensous et al., 2019), such as DNA 
methylation alterations in mammals (Lardenoije et al., 2015), and pre-
vent the increase of aging related increase in histone deacetylase 2 ac-
tivity (Chouliaras et al., 2013). 

Aging clocks have been applied to these models to quantitatively 
evaluate the effect of aging interventions. For examples, Rhesus mon-
keys exposed to 30 % calorie restriction showed 7 years younger of 
epigenetic age (Maegawa et al., 2017); A younger epigenetic pattern was 
also observed in mice liver with calorie restriction (Wang et al., 2017); 
Male C57BL/6 mice with CR revealed on average a 20 % lower age 
estimation than their chronological age (Petkovich et al., 2017). How-
ever, similar studies in human are still lacking. Moreover, dynamic 
monitoring the rate of aging has not been done even for animal models, 
although it is important for finding and defining the effective or optimal 
time window for interventions. 

4.5. Evaluating the anti-aging therapies 

As rejuvenating strategies and therapies have been constantly 
emerging, the most direct quantitative method to evaluate them is to 
access age or aging rate after treatments. Fahy and Horvath collaborated 
using four epigenetic clocks to evaluate the effect of a drug combination 
for thymus regeneration (recombinant human growth fact, dehydro-
epiandrosterone (DHEA) and metformin). The mean change in the rate 
of aging of the 4 clocks after 12 months is around -2.5 years (Fahy et al., 
2019). As the tissue specificity of aging and variations among genome, 
epigenome, transcriptome and proteome of one individual, only utiliz-
ing DNA methylation clocks may be not complete and fully accurate. 
More aging clocks based on different hallmarks and in different tissues 
should be used to guarantee the robustness. 

5. Outlook 

Although machine learning based aging rate estimators are fairly 
easy to generalize to all data types, there are still many limitations of 
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these clocks. Some obviously lack accuracy to prevent their scientific or 
clinical usage. Some are not biologically associated with health status. 
Most of them are trained on chronological age instead of biological age, 
thus paradoxically depend on model error to predict the rate of aging. 
Some are not mechanistically interpretable. For example, there is little 
overlap in CpGs among DNA methylation clocks (Galkin et al., 2020a). 
Whether this is due to technical bias, biological specificity or mere 
redundancy needs to be addressed in the future for a better under-
standing of the molecular mechanisms of the clock. The ideal clocks will 
be of both high accuracy and interpretability (Fig. 3), and are predictive 
of aging related health status, health span, morbidity and mortality. We 
expect with the growth of multi-omic technology and data - especially 
longitudinal and interventional data with clinical outcomes, more and 
more true biological age trained models will be available in the future, to 
replace the error-dependent chronological age predictors. With these 
true biological age clocks, one can then thoroughly compare the bio-
logical and functional mechanisms driving the convergence and diver-
gence of the clocks, and design interventions to slow or even rewind 
individual or multiple clocks in different tissues at different levels. 

A schematic plot based on the general features of the aging clocks 
summarized in this review. Biological interpretability varies among 
different data sources: Omics-derived and linear models are more likely 
to be understood by human experts while prediction accuracy favors 
deep learning models enabled by huge datasets, such as imaging data. 
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