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Abstract

Motivation: Sequencing-based 3D genome mapping technologies can identify loops formed by interactions be-
tween regulatory elements hundreds of kilobases apart. Existing loop-calling tools are mostly restricted to a single
data type, with accuracy dependent on a predefined resolution contact matrix or called peaks, and can have prohibi-
tive hardware costs.

Results: Here, we introduce cLoops (‘see loops’) to address these limitations. cLoops is based on the clustering algo-
rithm cDBSCAN that directly analyzes the paired-end tags (PETs) to find candidate loops and uses a permuted local
background to estimate statistical significance. These two data-type-independent processes enable loops to be reli-
ably identified for both sharp and broad peak data, including but not limited to ChIA-PET, Hi-C, HiChIP and Trac-
looping data. Loops identified by cLoops showed much less distance-dependent bias and higher enrichment relative
to local regions than existing tools. Altogether, cLoops improves accuracy of detecting of 3D-genomic loops from
sequencing data, is versatile, flexible, efficient, and has modest hardware requirements.

Availability and implementation: cLoops with documentation and example data are freely available at: https://
github.com/YaqiangCao/cLoops.

Contact: jdhan@picb.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Three-dimensional genomic interactions are essential for genome or-
ganization which provides vital biological function. A loop is classified
as two genomic loci that are linearly distant but have a significantly
higher contact frequency than random noise (Yu and Ren, 2017).
CTCF (Handoko et al., 2011; Splinter et al., 2006) and cohesin (Kagey
et al., 2010; Rao et al., 2017) are thought to anchor most of loops on
chromatins which could help enhancers find their target promoters
(Dowen et al., 2014), and YY1 is considered responsible for many
enhancer-promoter loops (Weintraub et al., 2017). Identification of
loops, especially enhancer-promoter loops, may reveal direct transcrip-
tional regulatory roles of distal regulatory elements.

Loops can be identified at near-kilobase resolution (Yu and Ren,
2017). With the development of high-resolution chromosome con-
formation capture (3C) derived high-throughput sequencing meth-
ods, it is possible to identify loops genome-wide (Dekker, 2016).
ChIA-PET (Fullwood et al., 2009; Tang et al., 2015) identifies high-

resolution interactions between regulatory elements using target
antibodies. Hi-C (Lieberman-Aiden et al., 2009; Rao et al., 2014)
maps all possible genomic interactions in an unbiased manner. With
deep sequencing [i.e. 6.5 billion total paired-end tags (PETs)], in situ
Hi-C can achieve 1 kb level resolution (Rao et al., 2014), which ena-
bles high-resolution detection of loops. Meanwhile, HiChIP
(Mumbach et al., 2016) which combines the advantages of ChIP
and in situ Hi-C, uses fewer input cells than ChIA-PET and attains
higher signal-to-background enrichment than in situ Hi-C, could
provide high-resolution data for loop calling. A new method to iden-
tify short- and long-range interactions called Trac-looping (Lai
et al., 2018) was developed recently that uses transposon linkers
prior to fragmentation and ligation, capturing the interactions be-
tween open chromatin regions. Each different technology generates
huge datasets and has major computational demands, creating a
need for efficient and versatile analysis tools.

Finding long-range loops from 3D genomic interaction data is a
computational task equivalent to finding peaks from ChIP-seq data,
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becoming a basic analysis step prior to biological interpretation. Due
to data-type specific technology derived biases and different resolu-
tions, many loop-calling tools have been designed. With Hi-C, no al-
gorithm is yet considered to be a golden standard (Forcato et al.,
2017). Recently developed loop-calling tools for ChIA-PET data such
as Mango (Phanstiel et al., 2015) and MICC (He et al., 2015)—imple-
mented in ChIA-PET2 (Li et al., 2016)—often start with peak calling,
then use exhaustive combinations of peaks to find candidate loops,
including modeling the relation between PETs and distances, and the
peaks’ size and depth, which altogether increases data processing
time. Importantly, uncertainty in analysis arises when modeling the
PETs and distance relations, as different fitting functions and parame-
ters can lead to different loop identification. There is also a problem
of bias if the interacting loci forming loops may exist outside of peak
regions, which would bias the background used in significance estima-
tions. Correspondingly, we have noticed these tools fail to call loops
accurately for data containing broad peaks, such as H3K4me1 ChIA-
PET data. The hardware requirements for loop calling from Hi-C
data present another major limitation. For example, the major Hi-C
loop-calling tool HiCCUPS from Juicer (Durand et al., 2016) requires
NVIDIA graphics processing units (GPUs) which are not widely
equipped on average servers, and the central processing unit (CPU)-
version of Juicer may ignore distant interactions (Supplementary Fig.
S1A). Due to huge PET numbers, loop-calling tools for Hi-C usually
have high RAM usage, according to estimates in a Hi-C tools com-
parative study, contact matrix-based tools like Fit-Hi-C (Ay et al.,
2014) and GOTHiC (Mifsud et al., 2017) require more than 512 GB
of RAM for a 5 kb resolution contact matrix (Forcato et al., 2017),
making loop calling on a 1 kb high-resolution contact matrix from
deep sequencing impossible. Currently, to our knowledge, there is
only one targeted loop-calling tool for HiChIP data, hichipper
(Lareau and Aryee, 2018). The basic loop-calling procedure of hichip-
per is very similar to Mango and ChIA-PET2; it first uses MACS
(Zhang et al., 2008) to call peaks from the HiChIP data with custom
background models and then identify loops depends on Mango. The
method for calling loops from Trac-looping data is the same as in
hichipper, thus the biases can also be inherited from those in Mango.

To avoid biases, present in the existing loop-calling tools and to pro-
vide a low-computational-cost and universal solution for 3D-genome
mapping data we developed a new tool: cLoops (‘see loops’). cLoops is
a versatile loop-calling tool for multiple types of 3D-genome mapping
data. It uses an unbiased clustering algorithm to find candidate loops,
coupled with a permutated local background method for estimation of
a candidate loop’s statistical significance. We show the advantages of
cLoops over existing state-of-the-art loop-calling tools by comparisons
with ChIA-PET, Hi-C, HiChIP and Trac-looping data. Briefly, (i)
cLoops is easy to use, having only two essential input parameters, for
which we provided predetermined default values for ChIA-PET, Hi-C,
HiChIP and Trac-looping data. (ii) cLoops can run efficiently on per-
sonal computers (PCs) and accurately identify loops for both sharp-
peak and broad-peak data. (iii) Compared to other tools, performance
was distinguished by cLoops’ uniquely identified loops that showed
more easily distinguishable signals within their neighboring regions,
cLoops identified more distant loops from Hi-C and HiChIP data and
showed higher overlap with ChIA-PET loops without any specific set-
ting for calling distant loops. (iv) cLoops’ reliability was not affected by
sequencing depth, with equivalent performance in both deep and unsat-
urated HiChIP sequencing data. (v) cLoops is not tied to any particular
experimental method, therefore, is applicable to 3D-genome mapping
data generated by future experimental methods, as long as there are
data with enriched interactions detectable on an interaction heatmap.

2 Materials and methods

2.1 Public data used
Public datasets used were summarized in Supplementary Table S1.

2.2 Data pre-processing
Raw FASTQ files of ChIA-PET data were pre-processed to mapped
de-duplicated intra-chromosomal PETs by Mango (Phanstiel et al.,

2015). ChIA-PET2 pipeline was used to call loops with ChIA-PET2
(Li et al., 2016). Raw FASTQ files of merged cohesin HiChIP data
were pre-processed to PETs by HiCUP (v0.5.4) (Wingett et al.,
2015). Raw FASTQ files of HiC data and two cohesin HiChIP repli-
cates data were pre-processed by HiC-Pro (v2.10.0) (Servant et al.,
2015). BEDPE files of resting CD4þ Trac-looping data mapped to
hg19 were obtained from Gene Expression Omnibus and replicates
were merged. All raw data except Trac-looping were mapped to
genome version hg38. To avoid bugs in some tools like Mango, only
intra-chromosomal PETs in chr1-22 and chrX were used to call
loops. Pre-processing specifically required by some tools were
addressed in Supplementary Methods.

2.3 Aggregate peak analysis for loops comparison
To show the enrichment of global mean profiles of all called loops
with their nearby regions for the Hi-C and HiChIP data, Juicer ag-
gregate peak analysis (APA) (Durand et al., 2016) (with parameters
–n 0 –w 5 –r 5000 –u or –n 0 –w 5 –r 10000 –u) was used to get the
view of centerNormedAPA and Peak to Mean (P2M) score (indicat-
ing the enrichment of loops compared to nearby regions) was used.
Here, –n 0 was used to analyze all loops without filtering out loops
that are close to the diagonal line of the input contact matrix. For
ChIA-PET data, -n was set to 0, 10, 20 and 30 (default), respective-
ly, for comparison. When performing APA for Trac-looping loops,
1 kb resolution was used for both Trac-looping and Hi-C data. The
centerNormedAPA heatmaps output by Juicer APA were used for
genome-wide visualized comparison. In a centerNormedAPA heat-
map, loops are positioned at the heatmap center, which indicates the
loops enrichment comparing to nearby regions. Higher interacting
regions not in the center of heatmap may indicate poor global qual-
ity for loops called. We obtained centerNormedAPA matrix from
gw/enhancement.txt of Juicer APA’s output. We mainly used P2M
score as global quality indicator of loops due to following reasons:
(i) According to Juicer (Durand et al., 2016) documentation, the def-
inition of P2M score is the ratio of the central pixel to the mean of
the remaining pixels, which indicates the enrichment of interactions
in loop regions against nearby background. We also compared Peak
to Lower Left (P2LL) score (P2LL score was suggested by Juicer
APA guide) and its related ZscoreLL, which is the ratio of the cen-
tral pixel to the mean of pixels in the lower-left corner. (ii) If there
are too many loops fed to Juicer APA, for example, 748, 786
GM12878 Hi-C loops output by GOTHiC, Juicer APA will crash
without generating gw/measures.txt file which record global P2LL
score and other indicators. Meanwhile, there is always a file named
‘enhancement.txt’ recording P2M score for every loop when feeding
loops to Juicer APA one chromosome at a time.

2.4 Cumulative aggregate peak analysis
The cumulative aggregate peak analysis (CAPA) was carried out
according to Mango (Phanstiel et al., 2015) to evaluate loops quality
called from ChIA-PET data using Hi-C. Briefly, to generate CAPA
plots, we ranked loops by P-values or false discovery rate (FDR) and
calculated a recommend P2LL aggregate peaks analysis score by the
command of APA in Juicer (Durand et al., 2016) in a cumulative
process adding 100 ChIA-PET loops at a time when more than 1000
loops are present, or else 20 at a time.

2.5 Visualization of example loops
Juicebox (Durand et al., 2016) was used to show loops in 5 kb reso-
lution. WashU Epigenome Browser (Li et al., 2019) was used to
closely inspect PETs distribution around loops without resolution
limit.

2.6 Input and output of cLoops
cLoops takes BEDPE format mapped PET data generated by prepro-
cessing software like HiC-Pro (Servant et al., 2015) as input and
generates a tab-delimited loop file that contains all potential loops
(with more PETs than required minPts) and its significance, with
significant loops marked 1. Converted loop file for visualization in
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WashU Epigenome Browser (Li et al., 2019) or Juicebox (Durand
et al., 2016) could also be generated if certain parameters are given.

3 Results

3.1 cDBSCAN algorithm
DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) (Ester et al., 1996) is one of the most widely used unsuper-
vised clustering algorithms. DBSCAN contains two key parameters:
eps defines the distance within which two points are classified as
neighbors and minPts defines the smallest number of points required
in a cluster. It has been introduced for ChIA-PET by taking all PETs
as 2D points, and identifying significant clusters in 2D space as po-
tential loops (Chepelev et al., 2012). The density-based principle,
tolerance of noise and unsupervised auto-determination of the num-
ber of clusters, theoretically make DBSCAN very suitable for finding
candidate loops from 3D genomic interaction data. However,
the original DBSCAN algorithm runs very slowly for ChIA-PET and
Hi-C data [with complexity of O(N2) without any optimization for
neighbor search, N is the number of points]. For example, if imple-
mented with the C programming language-based KD-Tree for neigh-
bor search [named kDBSCAN, with complexity of O(Nlog(N)),
Supplementary Methods] on a computer with a 3.2 GHz CPU (see
the detailed configuration of computers used in Supplementary
Information), the average time of five runs for kDBSCAN is about
32 s (eps ¼ 750;minPts ¼ 5) to finish clustering on 99 674 PETs in
the smallest human autosome (chromosome 21) from GM12878
CTCF ChIA-PET data (Supplementary Table S1) and about 1.1 h
(eps ¼ 5000;minPts ¼ 20) for 2 268 476 PETs in chromosome 21
from GM12878 Hi-C data (Supplementary Table S1). Although
DBSCAN has been implemented in TADLib for interaction block
analysis within topological associated domains (TADs) (Wang et al.,
2015), so far no tools have implemented it for loop calling, or to de-
termine the loop-calling effectiveness or significance. We thus first
propose a specific improvement to DBSCAN (named cDBSCAN for
cLoops’ DBSCAN) for 2D data, by introducing an indexing method
for noise reduction and neighbor search (see toy example data in
Fig. 1A for illustration of the algorithm).

cDBSCAN also has two key parameters with the same meaning
as those in DBSCAN: eps and minPts. For 3C-based genome-wide
sequencing data like ChIA-PET, HiChIP and Hi-C data, the
Manhattan distance (also known as city block distance) is suitable
for measuring the absolute position difference for two PETs. Unless
specifically mentioned, the distance measurements hereafter refer to
Manhattan distance. For the 2D dataset D X;Yð Þ in the cDBSCAN
algorithm, X and Y can be integer or float values, but for loop call-
ing, they are all both integers corresponding to genomic coordinates.
We mark the minimum X;Y as minX;minY for the 2D space.
cDBSCAN indexes each point Xi; Yið Þ as

Indexi ¼ int
Xi �minX

eps

� �
; int

Yi �minY

eps

� �� �

which means each point is assigned to a square whose side length is
eps (0.2 is used for the toy example) (Fig. 1B) and j marks the index
id of the point id i. For an indexed eps square, if the square together
with its surrounding eight squares contains points fewer than
minPts (five is used for the toy example), then it is defined as a noise
index. We highlight a region in Figure 1B (also used in Fig. 1C and
D) to show how cDBSCAN removes noise. There are two rounds of
index scanning in cDBSCAN to detect noise. The first round finds
all potential noise indexes (marked by a cross in Fig. 1C), and the se-
cond round only searches previously detected noise indexes (cross
marked indexes). If there is a first-round signal index (marked by
checkmarks) in any of its eight neighbors, then it is marked as a sig-
nal index (Fig. 1D orange checkmarks). The highlighted region in
Figure 1D is an example showing an outer index that is not re-
marked is a signal index and a closer index that is re-marked as a
signal index. The idea benefits from k-Nearest Neighbor algo-
rithm—that is, if all neighbors are noise then the index is noise. A
signal index detected in the second-round search is not counted as a

signal index when a noise is corrected back to a signal (Fig. 1D).
This indexing process reduces search space (Fig. 1E). After indexing,
the clustering is performed the same as DBSCAN for the remaining
points but uses the 3eps� 3eps squares for neighbor search.

We first evaluated the performance of cDBSCAN by comparing
to a C coded KD-tree for neighbor search (termed it kDBSCAN as
mentioned above) (Supplementary Methods) using simulated data.
We set 10 000 signal points of 100 clusters and different noise/signal
ratios for the simulation data (Supplementary Methods). cDBSCAN
coded in pure Python gives the exact same result as kDBSCAN
(measured by Adjusted Rand Score (ARS)) (Hubert and Arabie,
1985). ARS measures the similarity between clustering results rang-
ing from �1.0 to 1.0, with 0 indicating random labeling and 1 a per-
fect match. cDBSCAN had improved speed (8–16-fold) with about
twice RAM usage (Supplementary Fig. S1B), without considering
the inefficiency of Python compared to C in simulation data
(Fig. 1F). We also validated the speed increase on real GM12878
CTCF ChIA-PET data and found a �8–1000-fold increases
(Fig. 1G) with acceptable RAM usage increase (Supplementary Fig.
S1C). Comparing to kDBSCAN O Nlog Nð Þ

� �
complexity,

cDBSCAN is approximate O Nð Þ complexity in most ideal situation,
which is further validated by running cDBSCAN for the PETs in
chromosome 1 for CTCF ChIA-PET (Fig. 1H), GM12878 Hi-C
(Fig. 1I), GM12878 cohesin HiChIP (Fig. 1J) and the Trac-looping
data (Fig. 1K) as the run time increases nearly linearly when the
number of PETs increases.

3.2 Overview of cLoops
Based on cDBSCAN we built cLoops (see loops) as a two-step loop-
calling algorithm. cLoops is a light-weight tool coded in pure
Python with dependence on only a few commonly used and well-
maintained packages such as scipy, numpy, pandas, joblib and sea-
born, some additional scripts in cLoops for data format conversion
that required by some users, require other tools such as juicer tools,
bedtools, bgzip and tabix. The first step takes mapped PET data in
BEDPE format rather than contact matrix and uses cDBSCAN to
find candidate loops, without binning PETs into a specific assigned
resolution contact matrix (as usually occurs with Hi-C loop-calling
tools such as Fit-Hi-C) or identifying peaks from PETs which are
then used to find significant combinations (as needed by common
ChIA-PET loop-calling tools such as Mango), enabling precise de-
tection of loop boundaries from mapped PETs. In the second step,
candidate loops’ significance are estimated by comparing their num-
ber of PETs to respective permuted local backgrounds (PLBs). The
overview of data processing steps of cLoops is demonstrated in
Supplementary Figure S1D. We show the algorithmic details of
cLoops using GM12878 CTCF ChIA-PET data as follows.

First, each intra-chromosomal PET is mapped to a 2D space by
taking the middle coordinate of the left-end tag as the X-coordinate,
and the middle coordinate of the right-end tag as Y-coordinate into
Xi;Yið Þ where i indicates the PET id (Fig. 2A). All PETs are therefore

clustered by cDBSCAN. After clustering, each cluster can be marked
as Xk;min;Xk;max

� �
; Yk;min;Yk;max

� �� �
, where k is the cluster id, Xk;min

is the left boundary of left anchor (Xk;min equals x1in Fig. 2A), Xk;max

is the right boundary of left anchor (Xk;max equals x2 in Fig. 2A),
Yk;min is the left boundary of right anchor (Yk;min equals y1 in
Fig. 2A), Yk;max is the right boundary of left anchor (Yk;max equals y2

in Fig. 2A). A model-based distance cutoff was used to filter out po-
tential self-ligated PETs (Fig. 2B). If there are fewer PETs in the inter-
ligation clusters than minPts, such clusters are removed. The remain-
ing inter-ligation clusters are treated as candidate loops which then
have their significance estimated against the local background.

The key parameters used in cLoops are those used to run
cDBSCAN, eps and minPts. minPts determines the least number of
PETs required for a loop, and eps defines the distance for two PETs
to be neighbors and this setting is more data dependent. Multiple
eps and minPts can be assigned to cLoops to run cDBSCAN cluster-
ing multiple times to find merged consensus candidate loops.
Empirically determined parameters were used for ChIA-PET [sharp
peak, human genome with around 15 million cis-PETs: eps ¼ (500,
1000, 2000), minPts¼5; broad peak, human genome with around
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15 million cis-PETs: eps ¼ (1000, 2000, 5000), minPts¼5], HiChIP
[human genome with > 100 million cis-PETs: eps ¼ (2500, 5000,
7500, 10 000), minPts ¼ (30, 20)] and Hi-C (human genome with
> 200 million cis-PETs) and Trac-looping data [eps ¼ (500, 1000,
2000, 5000), minPts¼5]. In principle, eps could be estimated to the
average anchor size of potential loops. Besides, a dataset with low
sequencing depth may need large eps to connect scattered PETs.
minPts is more related to sequencing depth, as it determines the min-
imal number of PETs required to support a potential loop. User may

try some parameters depending on our pre-set ones, such as keeping
the eps same, while changing the minPts according to the ratio of
target dataset’s number of cis-PETs to our example dataset’s.

3.3 PLB for estimating significance of candidate loops
For the second step, to test the significance of a candidate loop over the
nearby genomic background, a PLB is used (Fig. 2C). Linearly closer
anchors in the genome have higher probabilities to capture more PETs

A B

C

F

H I J K

G

D E

Fig. 1. The cDBSCAN algorithm. (A) A toy example of the simulated test data, mainly three clusters, centered at (�1, �1), (1, �1) and (1, 1) with std ¼ 0:2, a total of 60 signal

points and 60 noise points. Noise is generated randomly and marked as gray points. (B) Indexing result, each point is attached to a square with side length of eps, which equals

to std here, the numbers in the squares indicate the number of points indexed in that square. The highlighted region is used to represent detected noise. (C) An example of first

round of noise removal, the region is highlighted in B. For an eps square, scan the nearby eight squares, if the total number of nearby points is less than required minPts which

is five here, then the index square is marked as noise. A noise index is marked by a cross, while a signal index is marked by a checkmark. (D) Second round of noise removal

for the same region in C, for a noise index detected in C, if one of its neighbor square indexes is a signal index, then it is re-marked to a signal index. Examples are marked by

orange checkmarks. The highlighted region is an example and an outer index that is not re-marked as signal index. (E) An example of indexed eps square after noise removal.

(F) Comparison of running CPU time at different noise/signal ratio based on 10 repeats for the simulation data. Left y-axis marks the bars for running time ratios; right y-axis

marks the lines for ARS. The two ARS are exactly the same. (G) Comparison of running CPU time using real GM12878 CTCF ChIA-PET data (GSM1872886) for each

chromosome based on five repeats, with eps ¼ 750 and minPts ¼ 5. Error bars denote standard deviations. (H–K) Re-sampling to bootstrap run time of cDBSCAN and

kDBSCAN for GM12878 CTCF ChIA-PET chr1 (H), GM12878 Hi-C chr1 (I), GM12878 cohesin HiChIP chr1 (J) and resting CD4þ cell Trac-looping chr1 data (K). The

parameters to run cDBSCAN and PETs numbers were annotated in the figures, except for Trac-looping, all cis-PETs in chr1 were used and for Trac-looping only the PETs

with distance > 2 kb were used. All plots were based on four runs for each re-sampling ratio
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linking them due to experimental ligation bias in both ChIA-PET and
Hi-C (Paulsen et al., 2014), which needs to be modeled and corrected
in loop significance tests. We designed this PLB to save the effort of
correcting PET distance bias. For each candidate loop (red peaks),
PLBs are defined as all combinations of their upstream and down-
stream windows (light blue peaks, one upstream and one downstream
PLB plotted for the left/right anchor, in cLoops 5 moving windows per
side are used to obtain 100 permuted background regions) with the
same length as the loop anchors (Fig. 2C). The shifting size
for the moving windows is the mean length of these two anchors.
Thus, the mean distance of all permutated windows is exactly the same
as the candidate loop. Based on the PLB, the commonly used hypergeo-
metric test, Poisson test and binomial test were used together to deter-
mine a candidate loop’s statistical significance, a loop is marked
significant only if it passes all three statistical tests to increase precision;
however, all potential loops clustered from the clustering and filtering
step will be output to the result file only with the significant column
marked as 0, and users can customize their own cutoffs to obtain loops
that meet specific analysis requirements. The details of the mathematic-
al model and cutoff are described in Supplementary Methods.

For cLoops-called loops, due to the density-based clustering
method and removal of suspected self-ligation PETs based on dis-
tance distributions, PET numbers are actually independent of loop

distances. For example, in the CTCF ChIA-PET data, the Pearson
correlation coefficient is �0.0237 between PETs numbers and dis-
tances between anchors (Fig. 2D). The P-values derived using differ-
ent statistical tests are also independent of loop distances (Fig. 2E).

3.4 cLoops application to ChIA-PET data
We compared cLoops with three peak-calling based loop-calling
tool, ChiaSig (Paulsen et al., 2014), ChIA-PET2 (Li et al., 2016) and
Mango (Phanstiel et al., 2015) (Supplementary Table S2) using mul-
tiple ChIA-PET datasets (Supplementary Table S1). These three
ChIA-PET tools were selected because they are the most frequently
used. Running time of these tools is shown in Supplementary Table
S3. cLoops is designed with parallel computing, while other tools
were not, however, even when cLoops was run with only one CPU it
was still much faster than ChiaSig and ChIA-PET2 on the
GM12878 CTCF and RAD21 ChIA-PET, the HeLa CTCF ChIA-
PET data and K562 H3K4me1 ChIA-PET data (Supplementary
Table S3).

Heatmaps and global quality of loops were visualized with mean
profile heatmaps of loops (centerNormedAPA heatmaps) and the
mean P2M scores, respectively (see Section 2). The
centerNormedAPA heatmaps were generated by Juicer APA. In a

A B

C

E

D

Fig. 2. Overview of cLoops. (A) To carry out clustering, each PET is mapped to 2D space as its middle coordinate of left PET mapped to x-axis and right mapped to y-axis. (B)

Distance distribution for GM12878 CTCF ChIA-PET PETs in classified inter-ligation and self-ligation clusters. (C) Permutated local background for estimating candidate loops

statistical significance. For two anchors of a candidate loop, all combinations of their upstream and downstream five moving windows with size of anchors and step size of the

mean length of these two anchors are used as background. The mean distance for all combinations is exactly the same as the interacting loop region. (D) Hexbin plot of detected

PETs and distance between loop anchors for CTCF ChIA-PET data. (E) Hexbin plot of estimated P-values using different methods and the distance between loop anchors for

CTCF ChIA-PET data

670 Y.Cao et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/3/666/5553098 by guest on 24 August 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz651#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz651#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz651#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz651#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz651#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz651#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz651#supplementary-data


centerNormedAPA heatmap, loops are aligned in the center, and a
high contrast ratio compared to the nearby regions indicates good
loop quality. If there are highly interacting regions other than the
center in a centerNormedAPA heatmap, it indicates either that there
are shifts of loop boundaries or global loop quality is not good.

As a quantitative indicator for enrichment of loops compared to
nearby regions, P2M (computed by Juicer APA), is defined as the
ratio of the central pixel to the mean of the remaining pixels
(Durand et al., 2016). In addition to P2M scores, we also show the
global mean P2LL scores (Peak to Lower Left) and the related
ZscoreLL scores (suggested by the Juicer documentation) for com-
parison (Supplementary Fig. S8). A comparison of the loop anchor
size distributions indicated that cLoops can identify loops with a
larger range in anchor size than other peak identification based algo-
rithms, some of which have a predefined anchor size
(Supplementary Fig. S9).

In general, cLoops and Mango outperformed ChiaSig and ChIA-
PET2 for all tested ChIA-PET data as indicated by the mean profile
heatmaps and the mean P2M scores for ChIA-PET data containing
sharp peaks (e.g. CTCF and RAD21) (Supplementary Fig. S2). We
noticed that Mango, ChiaSig and ChIA-PET did not work well with
histone modification ChIA-PET data, such as with K562 H3K27ac
and H3K4me1 datasets. Mango, ChiaSig and ChIA-PET2 identified
limited loop numbers, and the loops’ quality was worse compared
to cLoops’, as evaluated both by mean profile heatmaps of loops
and the mean P2M scores (Fig. 3A, Supplementary Figs S2 and S3B).
The CAPA designed by Mango to evaluate quality of loops called
from ChIA-PET data through Hi-C data was used to further com-
pare performance. CAPA validated advantages of cLoops and
Mango over ChiaSig and ChIA-PET2 (Supplementary Fig. S3A) in
enriching for Hi-C interacting signals for ChIA-PET data containing
broad peaks (Fig. 3B), and similar performances of cLoops and
Mango for ChIA-PET data containing sharp peaks (Supplementary
Fig. S3B). Worse performance is partially due to using narrow peak
calling model of MACS (Zhang et al., 2008) as default. We showed
two randomly selected unique loops called by cLoops from
H3K4me1 ChIA-PET data (Fig. 3C) and H3K27ac ChIA-PET data
(Fig. 3D) as examples to illustrate cLoops’ ability to detect reliable
loops that could be observed from the visualization of raw PETs
which are missed by other tools. Moreover, Mango estimated P-val-
ues showed higher dependence on anchors’ distance, showing higher
significance for closer anchors, which suggests insufficient correc-
tion for the experimental bias (Supplementary Fig. S3C).

3.5 cLoops application to Hi-C data
We compared cLoops with five Hi-C loop-calling tools recently
evaluated in a tool-performance comparison study (Forcato et al.,
2017), namely diffHic (Lun and Smyth, 2015), Fit-Hi-C (Ay et al.,
2014), GOTHiC (Mifsud et al., 2017), GPU-version HiCCUPS
(Durand et al., 2016) and HOMER (Heinz et al., 2010)
(Supplementary Table S2), using the high-resolution deep sequenc-
ing data from GM12878 and K562 Hi-C data (Supplementary
Table S1). CPU-version HiCCUPS was not included in the compari-
son because it ignores distant loops detection to achieve acceptable
speed which makes it inherently worse than corresponding GPU ver-
sion (Supplementary Fig. S1A). In the meantime, cLoops does not re-
quire a specific setting for calling loops as it already takes the
distance into consideration by using local background for signifi-
cance evaluation. To compare performance on the same hardware
system, we run all programs in same PC system (Supplementary
Information) with equivalent pre-processing using HiC-Pro. We did
not compare HIPPIE (Hwang et al., 2015) for following reasons: (i)
HIPPIE requires Sun Grid Engine system but to compare tools based
on equivalent systems we could only access a PC system with GPUs.
(ii) HIPPIE require its own pre-processing pipeline which uses STAR
(Dobin et al., 2013) for mapping. (iii) HIPPIE did not show unique
advantages for calling loops in the comparison study (Forcato et al.,
2017). Parameters and loops selections were mostly set according to
those used in a previous comparison study (Forcato et al., 2017)
(Supplementary Table S2). Raw FASTQ data was first processed by
HiC-Pro and the required input files for each tool were converted

from HiC-Pro output files (Supplementary Methods). The runtimes
of these tools are available in Supplementary Table S4.

For both GM12878 and K562 Hi-C data, a region on chromo-
some 21 (36 000–39 500 kb) contained six obvious, conserved, vis-
ibly salient loops in the 5 kb resolution heatmaps (5 kb resolution
was chosen for visualization in Juicebox to get clear view of loops
and 5 kb is the default high-resolution setting for a .hic file visual-
ized in Juicebox), designated as ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’ (note that there
are actually two loops at the ‘e’ region if further zoomed-in)
(Supplementary Fig. S10A and B). We compared loops detected by
different tools in this example region for both Hi-C and following
HiChIP data. Generally, cLoops and HiCCUPS outperformed other
tools in detecting most of the visible loops and not reporting prob-
able false-positives located near the heatmap diagonal for both
GM12878 and K562 data (Supplementary Fig. S10A and B,
Supplementary Fig. S5A). More examples of visible loop compari-
sons are shown in Supplementary Figure S6. The mean loop profile
heatmaps and mean P2M scores indicated that the majority of loops
detected by diffHic, Fit-Hi-C, GOTHiC and HOMER are located
very near to the diagonal line and have no enriched interaction sig-
nals compared to nearby regions. The distribution of distances be-
tween loop anchors also supported this conclusion, as HOMER and
GOTHiC tended to identify closer loops which represented distance
dependency (Supplementary Fig. S4E). The mean profile heatmaps
showed cLoops had higher enrichment of interacting signals of loops
compared to nearby regions (Supplementary Fig. S10A and B,
Supplementary Fig. S5A). We manually marked visually reliable
loops spotted on human chr21 (Supplementary Tables S7 and S8),
used them as true positives to plot precision-recall curve for all the
tools, and found that cLoops also achieved better performance than
other tools (Supplementary Fig. S4G and H).

For independent confirmation, the higher overlap of cLoops and
HiCCUPS called GM12878 Hi-C loops with cLoops called or Mango
called CTCF and RAD21 ChIA-PET loops (Supplementary Fig. 4A
and B) and cLoops called or HiCCUPS called HiChIP loops
(Supplementary Fig. S4C) supported the robustness of performance of
cLoops and HiCCUPS over other tools. That is, higher mean density
of CTCF, RAD21 and SMC3 ChIP-seq binding signals on anchors
called by cLoops and HiCCUPS strongly supported their higher ac-
curacy and comparatively better performance. Moreover, we also
observed two distinct advantages of cLoops compared to all other
tools: (i) for called loops, the PET numbers were less dependent on
distance between anchors (Supplementary Fig. S4D) and (ii) cLoops
can better detect more distant loops (Supplementary Fig. S4E).

HiCCUPS is mainly based on comparing observed values to
expected values for every pixel (where pixel size depends on the pre-
defined resolution for contact matrix), and then, determining the sig-
nificance for the pixel using a modified Benjamini-Hochberg FDR
control procedure (so called ‘k-chunking’), with additional filters for
local neighborhoods. Then, the loops are clustered from significant
pixels. The concept of the HiCCUPS algorithm is quite different from
cLoops; the setting of Hi-C specific ‘k-chunking’ and the additional
filters may limit HiCCUPS to few types of 3D-genomic data, and the
time-consuming pixel level computing is also limited to an inside
loops distance cutoff (�2 MB), while cLoops does not. Overall,
cLoops’ loops were better supported by ChIA-PET and HiChIP data
overlap in GM12878 and showed less bias against distant loops.

3.6 cLoops application to deep-sequencing HiChIP data
Although Fit-Hi-C and Mango were used for calling loops in their ori-
ginal HiChIP method paper (Mumbach et al., 2016), only HiCCUPS
called loops using merged PETs from biological and technical replicates
were provided as Supplementary Data, so we first compared cLoops to
HiCCUPS using the merged GM12878 cohesin HiChIP data.

cLoops obtained similar numbers of loops as HiCCUPS for the
GM12878 cohesin HiChIP data on the example chromosome 21 re-
gion mentioned above in the Hi-C comparisons (Supplementary Fig.
S10), where cLoops detected all six visible loops (Supplementary
Fig. S11A). HiCCUPS did not detect loop ‘f’ despite detecting the ‘f’
loop in Hi-C data (Supplementary Fig. S11A). The mean loops pro-
file heatmaps indicated HiCCUPS may detect more loops close to
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the heatmap diagonal line (Supplementary Fig. S11B and C). We
validated this by showing distance between anchors for all loops
(Supplementary Fig. S11F), unique loops’ mean profile heatmap for
cLoops and HiCCUPS (Supplementary Fig. S11G) and distance be-
tween anchors for unique loops (Supplementary Fig. S11I), which al-
together showed cLoops can detect more distant loops and loops
called by cLoops had higher signal enrichment. Furthermore, loops

called by cLoops are better supported by both ChIA-PET loops and
Hi-C loops for all called loops (Supplementary Fig. S11E and
Supplementary Fig. S7A), and for the unique loops (Supplementary
Fig. S11H and Supplementary Fig. S7B). Moreover, the loop
anchors called by cLoops have higher CTCF, RAD21 and SMC3
ChIP-seq tag densities than those of HiCCUPS (Supplementary Fig.
S11D).
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Fig. 3. cLoops applied to ChIA-PET data and comparison with other tools. (A) centerNormedAPA heatmaps from Juicer (Durand et al., 2016) APA were shown for loops

obtained by cLoops from K562 POLR2A, H3K27ac and H3K4me1 ChIA-PET data. The number of loops and P2M score from whole genome-wide analysis were annotated at

head of each dataset heatmap. The P2M score is the mean of all P2M values, which indicate the enrichment of loops compared to nearby regions. In the Juicer APA analysis, n

was set to 30 (default parameter) to analyze loops with anchor distance � 150 kb. More comparisons for distance filtered loops are shown in Supplementary Figure S2. (B)

CAPA for evaluating the qualities of loops called from ChIA-PET data using Hi-C data. Higher scores mean the loops are better supported by Hi-C (APA score > 1.0). (C, D)

Example of unique loops detected by cLoops for H3K4me1 (C) and H3K27ac (D) ChIA-PET data, labeled p values in figure are the maximal Bonferroni corrected p values

from poisson, binomial and hypergeometric test for the loops
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3.7 cLoops application with low-depth sequencing

HiChIP data
With the capture enrichment process, HiChIP could in principle re-
veal enriched loops with under-sequenced PETs compared to Hi-C.
Therefore, we wondered whether cLoops’ performance is still rela-
tively good in this situation. We compared cLoops with the Hi-C
loop-calling tools compared above and hichipper (Lareau and
Aryee, 2018) (Supplementary Table S2) using the two technical

replicates of biological replicate one from the cohesin GM12878
HiChIP data. Running time of these tools was shown in
Supplementary Table S5. Even use only one CPU, cLoops was faster
than HOMER, hichipper, Fit-Hi-C and GOTHiC.

The performances of each tool were assessed in a similar way as
for Hi-C data above. For the low-depth sequenced HiChIP data, in
summary, (i) cLoops, HiCCUPS, HOMER and hichipper can obtain
similar visible loops as shown in the example region (Supplementary

A B

C D

E F

G

Fig. 4. cLoops applied to Trac-looping data compared to the Trac-looping-methods. (A) Mean profile heatmaps of all loops called cLoops and the Trac-looping-method.

Mapped PETs of Trac-looping data for the resting CD4 cell in BEDPE files and the Trac-looping-methods called were obtained from GSE87253. (B) Distribution of distances

between loop anchors for all loops. (C) Mean profile heatmaps of unique loops called by cLoops and the Trac-looping-methods. (D) Distribution of distances between loop

anchors for unique loops. (E) Randomly selected examples for cLoops and Trac-looping-methods called loops. (F) APA for evaluating the qualities of loops called from Trac-

looping data using Hi-C data. The P2LL (peak to lower left, suggested by Juicer) was used to show enrichment of Hi-C signal on Trac-looping loop regions. (G) Mean Trac-

looping PETs densities on loop anchors
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Fig. S12A), detecting majority of the four example loops (‘a’, ‘b’, ‘c’,
‘d’) on the heatmaps for both replicates, and not detecting artificial
interaction signals close to diagonal line. Also, the mean profile
heatmaps for all loops from all four tools showed enrichment over
nearby regions, while loops from diffHic and GOTHiC showed ob-
vious patterns close to the diagonal line (Supplementary Fig. S12B)
Loops called by cLoops, HiCCUPS and HOMER were consistent
with CTCF ChIA-PET loops (Supplementary Fig. S7C), RAD21
ChIA-PET loops (Supplementary Fig. S7D) and Hi-C loops
(Supplementary Fig. S7E), as measured by the Jaccard index. (iii)
The detected PET numbers in loops called by cLoops and HiCCUPS
are far less dependent on distance between anchors than in loops
called by other tools (Supplementary Fig. S7F). The distance depend-
ence is especially high for HOMER, hichipper and Fit-Hi-C. (iv)
cLoops, HiCCUPS and Fit-Hi-C could detect more distant loops
compared to others (Supplementary Fig. S7G). Notably, cLoops
does not need additional control parameters like –L and –U in Fit-
Hi-C to detect distant loops. (v) HiCCUPS and cLoops had the high-
est Jaccard Index of overlapping loops between technical replicates,
except for GOTHiC, as it appeared to call too many loops (e.g. in
the example region GOTHiC called loops at nearly all positions),
whereas hichipper showed the lowest Jaccard Index, indicating the
peak-based strategy might be biased by errors in peak calling
(Supplementary Fig. S7H). (vi) The anchors of loops detected by
cLoops, HOMER and hichipper are better supported by the CTCF,
RAD21 and SMC3 ChIP-seq data (Supplementary Fig. S7I). Due to
the first pre-customized peak-calling step of hichipper, the higher en-
richment of ChIP signal on hichipper anchors is expected by design.
(vii) Again, cLoops does not need GPU like HiCCUPS.

3.8 cLoops application to trac-looping data
We further demonstrated the generality of cLoops for calling accur-
ate loops using the recently published Trac-looping data (Lai et al.,
2018). The advantages of cLoops over the Trac-looping-methods
are shown by the following: (i) Globally, loops called by cLoops
were more enriched for the Trac-looping PETs compared to nearby
regions (Fig. 4A). (ii) cLoops detected much more distant loops
(Fig. 4B). (iii) The loops uniquely detected by cLoops were much
more enriched for interacting signals (Fig. 4C) and most of the
uniquely detected loops of cLoops are more distant (Fig. 4D). A ran-
domly selected example shows three distant loops uniquely detected
by cLoops as linking the significant interactions between promoters
while the Trac-looping-methods detected a very close loop nearby
(Fig. 4E). (iv) Hi-C signals on the Trac-looping loops also
show higher enrichment of cLoops called loops compared to the
Trac-looping-methods (Fig. 4F). Even though there was no peak-
calling step in cLoops, the PETs density on cLoops called loop
anchors were as high as that of the Trac-looping-methods (Fig. 4G).

4 Discussion

In summary, we report cLoops as a new loop-calling tool based on
an improved clustering algorithm, cDBSCAN and PLB. We first
showed the cDBSCAN clustering algorithm drastically improved
speed on both simulated data and real CTCF ChIA-PET data com-
pared to the original DBSCAN algorithm. From multiple re-
sampling 3D genomic data, cDBSCAN shows near O(N) algorith-
mic complexity in current data scale. cLoops determines the signifi-
cance of loop calling by a permuted, instead of model-based, local
background. These two features make cLoops applicable to ChIA-
PET, HiChIP, Hi-C and Trac-looping data, other 3C-based chroma-
tin interaction data, and yet-to-be-developed 3D mapping
technologies.

One limitation for the comparison carried in this study and maybe
others is that we and others did not have a compiled gold positive
standard and negative standard loops for all available data to conclude
which tool is truly the best in loop calling, considering the accuracy
and false discovery rate as the direct evidence, more experimentally
verified or properly generated simulation data is needed for the tools
developing community. As current cLoops is coded in python, when

used on ChIA-PET, HiChIP and Trac-looping data, it can be relatively
time-consuming for loop-calling with deeply sequenced Hi-C data
(such as more than 200 million raw PETs used in this study), which
need further algorithm improvement. Although current version of
cLoops is implemented with parallel computing, the running time
could be dramatically reduced by using more CPUs if the RAM is
enough for the servers, re-writing only core parts of cLoops such as
cDBSCAN with lower level programming language (such as Cython
or C) could boost the power of cLoops for deeply sequenced data.
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