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Abstract The investigation of the interplay between
genes, proteins, metabolites and diseases plays a central
role in molecular and cellular biology. Whole genome
sequencing has made it possible to examine the behavior of
all the genes in a genome by high-throughput experimental
techniques and to pinpoint molecular interactions on a
genome-wide scale, which form the backbone of systems
biology. In particular, Bayesian network (BN) is a
powerful tool for the ab-initial identification of causal
and non-causal relationships between biological factors
directly from experimental data. However, scalability is a
crucial issue when we try to apply BNs to infer such
interactions. In this paper, we not only introduce the
Bayesian network formalism and its applications in
systems biology, but also review recent technical devel-
opments for scaling up or speeding up the structural
learning of BNs, which is important for the discovery of
causal knowledge from large-scale biological datasets.
Specifically, we highlight the basic idea, relative pros and
cons of each technique and discuss possible ways to
combine different algorithms towards making BN learning
more accurate and much faster.

Keywords Bayesian networks (BN), large-scale biologi-
cal data

1 Introduction

During the past decade, the fast emergence and develop-
ment of high-throughput experimental techniques has been
an important impetus and distinct hallmark of systems
biology. Different from traditional molecular biology
experimental protocols, these new techniques or

machineries often generate gigabytes or even terabytes of
data, typically covering parts of or even the whole genome
rather than merely involving a single gene or pathway. For
example, microarray experiments are able to measure the
expression of thousands of genes simultaneously. As a
result, by performing microarray experiments at several
planned time points, the expression of all the genes in a
genome can be comprehensively profiled over a develop-
mental process. Such data contains valuable information as
to which genes’ up or down regulation is responsible for a
particular developmental stage, and, how these genes are
dynamically regulated by a set of key transcription factors.
The distinct feature of microarray technique is that it has a
rich-data output, i.e., paralleling a large number of
traditional molecular biology experiments. A handful of
other new, fast emerging high-throughput experimental
techniques are also available to systems biology research-
ers: the RNA deep short-read sequencing technique (RNA-
seq) for more accurate gene expression profiling, the yeast-
two-hybrid (Y2H) and Co-immunoprecipitation followed
by mass spectrometry (Co-IP MS) techniques for protein-
protein interaction screening; the Chromatin Immunopre-
cipitation followed by microarray (ChIP-chip) or deep
sequencing (ChIP-seq) methods for quantifying the
distributions of transcription factors (TFs) and histone-
modifications; the comparative genomic hybridization
arrays (Array-CGH) and single nucleotide polymorphic
allele (SNP) arrays for the identification of DNA copy
number variations and single nucleotide polymorphisms,
just to mention a few. These high-throughput techniques
enable the genome-wide investigation of biological
systems from genomic, proteomic, metabolic, epigenetic
and other perspectives possible. However, it is not
straightforward to extract or derive the detailed biological
knowledge, which is typically embodied as various types
of causal or non-causal interactions between a set of
factors, from the huge volumes and potentially hetero-
geneous types of data. As a result, data mining and
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knowledge discovery algorithms play an important role in
this process, and conversely, the proper interpretation and
analysis of these large-scale biological data sets also poses
many challenging problems for algorithm development.
This interesting crosstalk between systems biology and
machine learning is gradually recognized by many
researches in the two fields.

2 Probabilistic models and Bayesian
networks

There are many data mining and knowledge discovery
algorithms which are designed to extract a certain kind of
regularity from data. In particular, the logic-based
approaches have been widely used since the early
development of artificial intelligence. However, these
methods typically require some rather strong form of a
priori knowledge and are generally vulnerable to the
uncertainties in the data. Unfortunately, in systems biology
problems, people usually do not have much prior knowl-
edge about how the genes and transcription factors being
investigated causally influence each other. To account for
the intrinsic limitations of logic-based methods, probabil-
istic models are more frequently exploited to better
represent the uncertainties in the data (Koller and Fried-
man, 2009). In general, there are two main types of
probabilistic models: discriminative and generative. Dis-
criminative models mainly target at making future
predictions, e.g., dealing with classification or regression
problems; while the principal focus of generative models is
to explain the regularities in the data. In this paper, our aim
is to uncover the relations between various factors in the
huge volume of data generated by high throughput
techniques in systems biology. Therefore, our discussion
is mainly restricted to generative models.
Specifically, there are two major classes of probabilistic

generative models, namely Markov networks (MN, a.k.a.,
Markov random fields) and Bayesian Networks (BN)
(Koller and Friedman, 2009). Both of the two classes of
models have graphical representations, where each node in
a graph corresponds to a factor being investigated, and the
edges in the graph signify the interactions between these
factors. More precisely, it is the absence of edges in these
graphs represents the conditional independency relations
among sets of nodes, thereby encoding the structural
relationships between these factors. Here, that A and B are
conditionally independent of C means that given the third
set of variables (C), the joint probability distribution of two
sets of variables P(A, B|C) can be factorized into the
product of two probability distributions P(A|C)P(B|C), one
for each set of variables. Also, to simplify the presentation,
in the rest of this paper, we denote all the factors being
investigated or all nodes in a graph collectively as a
“domain”. Besides the independency oracles that can be
directly read out from the graph, each graphical model has

a set of parameters for specifying a number of local
probability distributions, which multiplicatively defines an
explicit, joint probability density function of the domain
(which always satisfies these conditional independence
relations by construction). In particular, the local prob-
ability models are the un-normalized functions for positive
Markov networks; however, the local probability functions
for Bayesian networks (which specify the distribution of
each node conditioned on its parents) are always normal-
ized. With this distinction, the joint distribution of a
Bayesian network is always normalized, while an extra
term (called the partition function) has to be introduced to a
Markov network for normalizing the joint distribution.
Partly because of this specific dependency structure, the
edges of Bayesian networks are always directed, and there
is no directed cycle in the graphs to prevent the recurrence
of information flow. As a result, the structure of a Bayesian
network is a directed acyclic graph (DAG), where edges
are directed from parent nodes to their children. Con-
versely, the edges of a Markov network are undirected, and
there is no restriction for the presence of loops.
Based on the causal interpretation of Bayesian networks,

a directed edge can be seen as a causal influence from the
start node to the end node. Therefore, BNs could be used to
represent important causal interactions in systems biology,
such as which transcription factors regulate the expression
level of a downstream gene, and which SNPs are
responsible for a heritable disease. Also note that there
might be some recruiting order for some seemingly non-
causal protein-protein interactions. Therefore, their rela-
tionship can be modeled as a causal interaction. However,
if a Markov network is used for representing the
dependency relations in the domain, there is no way to
model all the important causal information. Due to this
observation, Bayesian networks are widely used as a
modeling and representation language in systems biology.
An example of a Bayesian network structure is illustrated
in Fig. 1, in which the interdependencies between nodes
can be read out from the graph directly.

Fig. 1 The structure of a simple Bayesian network with six
nodes. There is no directed cycle in the graph and it is easy to
derive the dependency relation from the graph, e.g., F depends on
{A, C, E}.
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3 Learning of Bayesian network structures

As we have discussed above, to define a Bayesian network,
one has to specify a directed acyclic graph as well as the
local probability distribution of each node conditioned on
its parents. When this is done, the BN fully determines the
joint probability distribution over all the variables in the
domain. As a result, we can answer various probabilistic
queries (probabilistic inference) about the domain by
conditioning and marginalizing some sets of variables
(Koller and Friedman, 2009). To do this, we do not need to
first write down the joint distribution explicitly and then
perform the computations. In fact, the conditional
independence properties of the distribution as implied by
the graph can be exploited to make the computation much
faster. We will not go through the details of such BN
inference algorithms here, but only briefly mention a few
well-known ones: (1) Belief propagation, which is a
message passing algorithm for performing exact inference
when the skeleton (not considering the direction of edges)
of a BN is a “polytree”, and for performing approximate
inference when the skeleton of a BN contains loops (Pearl,
1988). (2) The junction tree algorithm, which can be used
to perform exact inference for arbitrary BNs (Lauritzen and
Spiegelhalter, 1988). However, the computational com-
plexity can be exponentially high if the diameter of a
junction tree is large. (3) The Gibbs sampling based
inference algorithm, which can be employed to trade off
between the inference accuracy and the computational
complexity by sampling an appropriate number of particles
(Geman and Geman, 1984).
When we have a well-defined BN at hand, these BN

inference algorithms can be used to quantify the
probabilities of various events of interest. However, this is
not of uttermost importance in systems biology investiga-
tion since there are still a large number of unknown
questions in both the qualitative and the structural aspects.
The quantitative modeling of the system will make sense
only if these unknown structural relationships and
dependencies are well resolved. In fact, when the structure
of a BN is known, the parameters of the local conditional
probability distributions (CPDs) for each family (a node
and its parents) can be computed by simply counting
the number of data items in different configurations
(Heckerman, 1999). As a result, the most important
thing in applying BNs to systems biology is to infer
the BN structure from data. With this information,
we can not only answer many qualitative questions,
but also lay the foundation for further quantitative
reasoning.
Briefly, the algorithms for the structural learning of BNs

can be divided into three major classes: constraints-based,
scoring-based and hybrid learning algorithms. In the
following sections, we are going to discuss various issues
about these algorithms.

3.1 Constraints-based learning algorithms

Since a BN encodes a number of conditional independence
relations (by the d-separation criterion), constraints-based
learning algorithms try to recover the BN structure by
performing a number of conditional independence tests on
the training data. Theoretically, this reverse engineering
process is largely based on the faithfulness assumption
(Koller and Friedman, 2009), which states that if and only
if the conditional independence relations implied by the
true BN are satisfied by the training data.
The most prominent examples of constraints-based

learning algorithms are the Inductive Causation (IC)
algorithm (Pearl and Verma, 1991), PC (named by its
inventors P. Spirtes and C. Glymour) algorithm and
variants of the PC algorithm (Spirtes et al., 2001). Briefly,
these algorithms iteratively remove an edge from an
initially fully connected undirected graph if a conditioning
set is found to make a pair of nodes conditionally
independent. The output of this learning stage is the BN
skeletion, i.e., the undirected graph formed by removing
the arrows of the directed edges in a BN. In the second
step, the results of these conditioning tests can be used
again to determine the directions of these edges. The
advantage of PC algorithm over IC algorithm is at the
reduced number of statistical tests by organizing their
ordering properly.
Although the PC algorithm is proved to be consistent in

the asymptotical sense, they are not very appropriate for
the structural learning of BNs from biological data. This is
because real world biological data-sets are often very
noisy, and the conditional independence tests do not
always yield the correct answer based on limited training
data. As a result, some redundant edges might appear in the
DAG while some true edges might be missing. Further-
more, the directions of some edges could be wrong.
Two classes of approaches have been proposed to

improve the performance of PC algorithm. The first one is
to further reduce the number of statistical tests in learning
the BN structure. In a recent work, a divide and conquer
algorithm is proposed to learn BNs based on recursive
vertex set decomposition (Xie and Geng, 2008).
The second class of algorithms improves the accuracy of

the PC algorithm by first learning the skeleton of the BN,
which is essentially an intermediate result of the PC/IC and
the recursive decomposition algorithm. Then, the undir-
ected skeletal graph can be used to constrain the search
space of the scoring-based BN-structural learning algo-
rithms (Tsamardinos et al., 2006). The technical details of
these hybrid approaches will be presented shortly after
introducing the scoring based methods.

3.2 Scoring Bayesian network structures

One of the major problems with statistical tests is that the
results are typically “yes” or “no”. However, real-world
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data sets are often noisy and having a limited number of
cases, in which many statistical tests have no definitive
answer. This problem could be more severe in the
structural learning of BNs since the power of statistical
tests could be further reduced in the context of multiple
tests. A better way to handle the ambiguity with limited
data is to compare many plausible BNs and find the one
that best fit the data. This idea motivates the development
of scoring-based BN learning algorithms (Heckerman
et al., 1995). Unfortunately, it can be shown that for any
dataset, regardless of the direction of edges, fully
connected BNs have the best fitness with any training data.
This is an example of a general problem with many
machine learning algorithms: overfitting. Briefly, this
phenomenon occurs because the model (BN) not only
captures the regularities in the underlying probability
distribution, but also many nuisance factors in this
particular dataset. The latter part deteriorates the general-
ization performance of the model (BN) on other datasets
which are sampled from the same distribution. As a result,
it is desirable to build a model with the best tradeoff in its
fitness to training data and relative low complexity. Ideally,
one can obtain the best BN by first enumerating all
plausible DAGs, learning the parameters of each DAG and
then testing their generalization performance using a cross-
validation procedure. However, it can be shown that the
number of DAGs is super-exponential to the cardinality of
the variable set. Thus, this naïve brute-force approach is
not technically feasible. To design a tractable approach
using the same line of thinking, one has to solve two
problems: (1) How to evaluate the goodness of a BN (i.e.,
its generalization performance) efficiently? and (2) How to
search for the best DAG efficiently? We will address the
two questions in the following paragraphs.
Nowwe discuss the solution to the first question. Briefly,

the goodness of a BN-structure can be defined as its fitness
to the training data minus the model complexity. The first
term is defined as the log likelihood of the data given the
maximum likelihood estimation (MSE) of the parameters
in a BN (which parameterize the local conditional
probability distributions (CPDs) for each node), while
the complexity is signified by the number of parameters
which fully specify the model (Heckerman, 1999). There
are basically three ways to connect the two terms in order
to define a sound scoring function, the Akaike Information
Criterion (AIC) (Akaike, 1974), the Bayesian Information
Criterion (BIC) (Schwarz, 1978) and the minimum
description length (MDL) principle (Grünwald, 2007). It
can be proven that if some particular data coding scheme is
used by the MDL principle, it is equivalent to the BIC
criterion.
Note that both of the BIC/MDL scoring functions are

only consistent in the asymptotical sense, i.e., when there
is infinite number of training data. Consequently, these
scoring functions are not precise in practical scenarios
where the number of training data is limited. In this case,

using the Bayesian’s formula to derive an exact scoring
criterion is better than the approximate scoring functions
above (Heckerman et al., 1995). In fact, the Bayesian
scoring approach has close-form solutions for discrete
(Heckerman et al., 1995) and linear-Gaussian BNs (Geiger
and Heckerman, 1995) when some extra assumptions are
made. Thus, the high computational complexity with this
approach can be fully avoided.

3.3 Bayesian network learning algorithms based on scoring
functions

When the scoring function is specified, the task of learning
the BN structure is reduced to the problem of finding an
optimal Directed Acyclic Graph which maximizes the
function. However, the number of BNs is super-
exponential to the number of variables in the domain. So
naïve exhaustive search is only applicable to only a few
variables. In practice, there are two ways to get around this
problem. The first approach is to employ heuristic search
techniques to find a close to optimal solution without
traversing a huge number of DAGs (Heckerman et al.,
1995). Here, TABU strategy can be used in the greedy
ascend search (Cvijovic and Klinowski, 1995) to partially
alleviate the local optima problem.
Some properties of the scoring function and local search

can be used to speed up the BN structural learning process.
Common BN scoring functions, such as the AIC, BIC/
MDL, Bayesian or the BDe metric, can be decomposed
into terms that only involve one node and its parents
(family). As a result, it can be shown that for each
insertion/deletion/edge reversal operation, the total score
of the DAG can be computed conveniently by only
updating the local score of one or two families. Moreover,
it can be shown that a simply caching technique can be
used to make further speeding up since most score changes
keep invariant after a graph operation (Friedman, 1997).
The above heurist search methods have been very

successful in the structural learning of BNs, but there is no
warrantee as to the precision of the learning results. In
recent years, it has been shown that exact BN structural
learning is even possible for medium-sized datasets, such
as 25 numbers of variables. This intriguing theoretical
advance, again, arises from the fact that the BN scoring
function is decomposable. Briefly, exact BN learning
methods exploit this particular structural property of
scoring functions to design efficient dynamic program-
ming algorithms in order to avoid unnecessary and/or
repeated computations. In a recent work, it has been shown
that the exact maximal scoring network can be constructed
in a relatively simple manner (Silander and Myllymäki,
2006).
There is, however, another class of exact BN structural

learning algorithm which is able to generate more robust
learning results (Koivisto and Sood, 2004; Koivisto,
2006). The basic idea is different from traditional BN
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structural learning algorithms which are formulated as
model selection problems, i.e., to search for the best
scoring DAG. In this new class of algorithms, the structural
learning task is formulated as a Bayesian model averaging
problem, i.e., computing the probability of the presence of
each edge in a BN by averaging over all possible BN
structures. This is also achieved by using a (more
complicated) dynamic programming algorithm (Koivisto
and Sood, 2004; Koivisto, 2006).
To make BN structural learning scalable to large

datasets, some individual algorithmic steps can be sped
up further. First, to compute the AIC, BIC/MDL, Bayesian
or the BDe metric, it is necessary to count the number of
data instances for different configurations of each node’s
family. This is the major computational burden for learning
small or medium-sized networks. To address this problem,
a particular data structure, namely the “ADtree” has been
proposed to speed up this process (Moore and Lee, 1998).
When the number of variables is large, the acyclicity

checking for each graph operation will dominate the
computational time of heuristic search based BN structural
learning. This problem can be mitigated based on the
observation that only a local change takes place after each
graph operation, so that we need not check the validity of a
BN from scratch at each time, but could leverage on
previous results. An efficient algorithm for check the
acyclicity of a graph has been proposed based on this
observation (Giudici and Castelo, 2003).

3.4 Hybrid Bayesian network learning algorithms

Although we have introduced many techniques for
speeding up the scoring-based methods for learning BN
structures, there are still a lot of problems to be solved
when we confront a large number of domain variables.
First, heurist search techniques are prone to get trapped
into poor local minima if a large number of local steps are
needed to traverse between different DAG configurations.
Second, the algorithm has to evaluate more graph
operations before deciding the next move. The increased
number of graph operation and local score evaluation per
operation has severely limited the scalability of scoring
based BN-structure search. To this end, hybrid learning
algorithms (Tsamardinos et al., 2006) have been proposed
to speed up this process by eliminating the search space
using constraint-based learning techniques first.
Specifically, in the first stage of hybrid learning

algorithm, we learn an undirected skeleton of a BN or a
superset of the undirected edges. Then, in the second stage,
we perform the scoring based BN structure learning, but
restrict the scope of heuristic search to be within the
undirected skeleton learnt in the first stage. In this way, the
number of valid graph operation at each local search step is
greatly reduced, which not only speed up the learning
process, but also prevent the search from entering incorrect
spaces.

In fact, as we have discussed above, the first step of the
IC/PC/recursive decomposition algorithm is to learn the
undirected edges (skeleton) of the BN, i.e., the parents/
children set of each node. Therefore, it suffices to use the
intermediate result of these algorithms in the first stage of
hybrid learning. However, the constraints-based learning
algorithms are not good at deciding the direction of edges
and the identified BN skeleton may contain a few false
positive edges. Nevertheless, the scoring-guided structure
search algorithms are able to address these problems well
at the second stage. As a result, if properly designed, the
hybrid learning algorithms can achieve high accuracy with
relative small time cost.
In this class of methods, the MMHC algorithm

(Tsamardinos et al., 2006) proposes a new max-min search
heuristic, which allows the relevant variables entering the
parent/children set more quickly than the PC algorithm.
Similarly, the PCMB algorithm (Peña et al., 2007) also

exploits the max-min heuristic and extends the PC sets
learning to the Markov blankets (the minimum set of
variables which are able to separate the dependency
between a node and the rest of nodes in a BN) learning.
This work also studies the case where the faithfulness
assumption is not satisfied. In a recent work (Fu and
Desmarais, 2008), the authors show that the breadth-first
search strategy used in the PC algorithm is more effective
than the max-min strategy on some datasets. Unfortu-
nately, the Markov Blanket discovery algorithm described
in their paper is not fully correct.
Note that the basic idea of hybrid learning approach

allows the incorporation of general feature selection
methods in the structural discovery of BNs. For example,
the LARS/Lasso algorithm (Efron et al., 2004) can be used
to narrow down the number of edges in the candidate set
for real-valued data. As a direction for future work, it is
interesting to establish the connection between current
statistical tests based Markov blanket set discovery
algorithms and related feature selection algorithms.

3.5 Deriving causal knowledge from BN structures

There are two types of interactions in systems biology,
non-causal and causal. Examples of the first class includes
undirected influences such as protein-protein interactions
in a complex, while the second class covers nearly all
regulatory relations, e.g., the activity of one molecule
influences or decides the activity of the second one. Due to
the importance of resolving the ambiguities of the
directionalities of causal relations in forming biological
hypothesis, BNs have been widely used for knowledge
discovery on systems biology datasets. However, cares
must be taken in making causal explanations as there are
many subtle issues involved. In this paper, we will not
address this issue in great depth, but just mention a few
important points briefly.
Note that different BNs in an equivalence class encode
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the same set of conditional independency semantics. As a
result, we could not distinguish them in light of the training
data without making any a priori assumption (Verma and
Pearl, 1991). Indeed, it can be shown that these BNs have
the same set of skeletons, i.e., they are fully identical
regardless of the directions of edges. However, when our
concern is about causality, there will be ambiguities in
deciding the direction of some of the edges. In fact, if we
define compelled edges to be the ones whose directions are
fixed for all the BNs in an equivalence class, and vice versa
for non-compelled edges, we can only extract causal
information from compelled ones while deferring those
non-compelled edges to an interventional study to resolve
their causality ambiguity (Chickering, 1995).
Things could be better when we have some a priori

knowledge about the domain. If such knowledge is
consistent with that of the compelled edges and it resolves
the directionalities of some of the non-compelled edges,
we can extract more causal information from a BN
structure. That is, the restriction on the directionality of
some non-compelled edges can be propagated on the BN
structure so that the directions of other non-compelled
edges are also fixed. Such causal inferences can be
performed automatically using a set of propagation rules
(Meek, 1995).

3.6 Biological data suitable for Bayesian network analysis

Because BN analysis is essentially to infer conditional
dependency and independency of various events, the more
incidences obtained for the events, the more accurate the
inference will be. Especially when background noise in the
dataset is large, such as for nearly all biological datasets,
the number of data points or incidences needed for
inference will be even larger. This was, in fact, the major
limitation of its application in the previously commonly
used microarray gene expression analyses, where there are
a large number of variables (genes) and often very limited
number of measurements (incidences). However, with
recent development of next-generation deep sequencing
technology, the number of data points measured might not
be a limiting factor. For example, in ChIP-seq experiments,
the scenario is exactly the opposite, where the number of
variables is small (related TF or chromatin modifications),
but the number of measurements is large (> 15 000 genes
or other features measured at a genome-wide level). Thus
ChIP-seq experiments provide an ideal study case to infer
causal relationships between TFs, chromatin modifications
and gene expressions by BN (Yu et al., 2008; van Steensel
et al., 2010). Using such a model, we have inferred that
among 20 different histone methylations, only trimethyla-
tion on lysine 4 of histone H3 (H3K4me3) and
trimethylation on lysine 27 residue of histone H3
(H3K27me3) are directly causal to Pol II binding to gene
promoters, and to downstream gene expressions (Fig. 2a).
We also found that H4K20me3, which is known to be a

mark induced by DNA repair, at the promoter regions can
promote the conversion of H3K27me3 mark to H3K9me3
(Fig. 2b). H3K27me3 is a reversible transcription repres-
sion mark most commonly found in normal stem cells,
whereas H3K9me3 is a rather irreversible heterochromatin
mark more enriched in cancer stem cells. Therefore, such
causal relationship inferred implicates a role of DNA repair
in the conversion of normal stem cell epigenetic signature
to cancer stem cell signature (Yu et al., 2008).

Another advantage of deep-sequencing is that, similar to
SAGE, the intensity measurements are digital and more
comparable between different laboratories. Therefore,
even for RNA-seq experiments measuring gene expression
changes, given the data generated by many laboratories in
the world, data might be accumulated fast enough for
reliable BN analysis. In the meantime, the development of
better variable selection algorithms and knowledge-based
constrained BN inference algorithms will help to reduce
the number of variables and the number of conditional
dependencies to be learned and ultimately making the
genome-wide reconstruction of causal relationships a
practical possibility.

4 Conclusions

In this paper, we have introduced the important role of a
special class of probabilistic model, namely Bayesian
networks, in discovering causal knowledge from large-
scale systems biology data sets. Specifically, we reviewed
state-of-the-art techniques for learning BN structures from
data, including constraints-based, scoring-guided heuristic
search and hybrid learning algorithms, with an emphasis
on the basic idea and practical issues. Moreover, we also
discussed many useful techniques and tricks for scaling up

Fig. 2 Causal relationship inference by Bayesian network
analysis using ChIP-seq data. A: Promoter H3K4me3 is inferred
to stimulate Pol II binding, which in turn activates downstream
gene expression, whereas H3K27me3 is repressive to both Pol II
binding and gene expression. Arrows indicate activation and
barbed lines indicate repression. B: DNA-repair induced
H4K20me3 mark is inferred to help converting the promoter
H3K27me3 mark (a normal stem cell enriched epigenetic
signature) to H3K9me3 mark (a cancer stem cell enriched
epigenetic signature).
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these algorithms to large datasets. Due to space limitation,
not all important algorithms and applications of BNs are
addressed in this review. Other than the common
application of BN learning in gene expression data, it has
recently been applied to infer the dependency or causal
relationships of various chromatin binding factors and
epigenetic modifications (Yu et al., 2008; van Steensel
et al., 2010). However, most of the BN algorithms have not
yet been implemented into ready to use packages. There-
fore, an integrated coherent causality discovery pipeline
would prove to be very useful for a number of important
systems biology applications.
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