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Coordinate-wise monotonic transformations enable privacy-
preserving age estimation with 3D face point cloud
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The human face is a valuable biomarker of aging, but the collection and use of its image raise significant privacy concerns. Here we present
an approach for facial data masking that preserves age-related features using coordinate-wise monotonic transformations. We first develop
a deep learning model that estimates age directly from non-registered face point clouds with high accuracy and generalizability. We show
that the model learns a highly indistinguishable mapping using faces treated with coordinate-wise monotonic transformations, indicating
that the relative positioning of facial information is a low-level biomarker of facial aging. Through visual perception tests and computational
3D face verification experiments, we demonstrate that transformed faces are significantly more difficult to perceive for human but not for
machines, except when only the face shape information is accessible. Qur study leads to a facial data protection guideline that has the
potential to broaden public access to face datasets with minimized privacy risks.
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INTRODUCTION

Facial characteristics are valuable predictors of various health
statuses, such as coronary artery disease (Lin et al., 2020),
obesity (Chanda and Chatterjee, 2021), and syndromes with
distinctive facial phenotypes (Hsieh et al., 2022). With aging
now formally classified as a disease that contributes to multiple
non-communicable diseases (The Lancet Healthy Longevity,
2022; World Health Organization, 2019), efficient monitoring of
age-related changes has become increasingly important. The
human face is a convenient, non-invasive, and effective
biomarker of aging, compared with fundus imaging (Zhu et al.,
2023) or biopsy-based measures such as telomere length
(Vaiserman and Krasnienkov, 2020), methylome (Bell et al.,
2019), proteome (Lehallier et al., 2020), transcriptome (Meyer
and Schumacher, 2021) and microbiome (Galkin et al., 2020).
Over decades, computational models designed to estimate age
using 2D facial images have evolved from machine learning
algorithms based on explicit facial feature extraction (Lanitis et
al., 2004) or implicit aging patterns (Geng et al., 2007) to deep
learning techniques (Rothe et al., 2018; Tan et al., 2019),
enabling automatic and high throughput age estimation.
Advances in 3D body scanning technology (Bartol et al., 2021)
now allow for accurate collection of 3D facial data (Liibbers et al.,
2010), which provides shape boundary independent of pose and
illumination (Mu et al., 2019; Xia et al., 2013) and has been
shown to be more informative than 2D images (Eng et al., 2017;
Ko et al., 2021; Matthews et al., 2018). Most 3D scanners
generate point cloud output through system software (Kersten et
al., 2018); however, the lack of large datasets or suitable deep
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learning architectures for face point cloud data has prevented
direct deep learning on 3D face. Current approaches to age
estimation with 3D facial data involve machine learning on
knowledge-based facial features (Imai and Okami, 2019; Wind-
hageret al., 2019; Xia et al., 2017) or template-registered vectors
(Chen et al., 2015; Matthews et al., 2018), or deep learning on
RGB-D data (Xia et al., 2020). However, these methods are either
limited in predictive power or subject to error-prone preproces-
sing procedures, which constrains their application for industry-
scale use. In 2017, deep learning architectures suitable for point
cloud data format (Guo et al., 2021b; Qi et al., 2017a; Qi et al.,
2017b) began to emerge, and later the attention mechanism
(Vaswani et al., 2017) was introduced to improve performance in
3D tasks (Engel et al., 2021; Guo et al.,, 2021a; Zhao et al.,
2021). To date, there have been limited attempts to apply deep
learning directly to 3D face point cloud data in the field of face
recognition (Zhang et al., 2019) and facial expression detection
(Nguyen et al., 2021), while the applicability of this methodology
for age estimation remains unclear.

Despite the immense value, the human face, as a hard
biometric, is easily accessible and encounters the hurdle of data
security once collected or shared (Nandakumar and Jain, 2009;
Niinuma et al., 2010; Sundararajan et al., 2019). The
occurrence of facial data leakage (Ilia et al., 2015; Liu et al.,
2021) and spoofing (Boulkenafet et al., 2016) events has
prompted intense ethical, security and privacy concerns (Ilia et
al., 2015; Liu et al., 2021; Roussi, 2020; Smith and Miller,
2022). Recent research has also found that individuals with
similar appearances share common genotypes, identifying single
nucleotide polymorphisms associated with facial structures and
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gene-expression changes. This suggests the potential for an
individual’s multiomics to be revealed through their facial
features, linking facial data privacy directly to genetic data
privacy (Joshi et al., 2022), adding more importance to guarding
the privacy of the facial, in particular, 3D facial identity
information. Responding to these concerns, public face datasets
have been decommissioned (e.g., VGGFace (Parkhi et al., 2015))
or fallen under strict restrictions (e.g., datasets maintained by the
Notre Dame Computer Vision Research Lab). These actions
alleviate the danger of facial data misuse while inevitably raising
the threshold for data driven facial research. In addition to policy
constraints, facial data masking techniques have been proposed
from both visual confusion (Kaur and Khanna, 2016; McPher-
son et al., 2016; Yang et al., 2022a) and data encryption (Patel
et al.,, 2015; Shan et al.,, 2020) perspective to enable data
protection. However, most of these techniques are designed for
2D images and indiscriminately eliminate all facial information,
including both ID-dependent and ID-independent features (Patel
et al., 2015). The possibility of decomposing identity-independent
age features was posited but not validated (Xu et al., 2017). One
study developed an algorithm to overlay digital masks on data
subjects’ faces in images, preserving certain facial features
crucial for syndrome diagnosis (Yang et al., 2022b). This hints
at the potential of separating specific facial phenotypes from
identity. Overall, there remains a significant gap between the
widespread accessibility of 3D facial data and the scarcity of 3D
facial data masking techniques, and it is of great interest to
develop facial data masking approaches that not only ensure
privacy but also retain information of interest, such as age-
related features.

In this study, we establish a FPCT-age (Face Point Cloud
Transformer for age estimation) model to learn age estimation on
a dataset of 3D face point clouds, which exhibits high accuracy
and generalizability over a broad age range. We develop an
algorithm called coordinate-wise rank transformation (CRT),
which eliminates the Euclidean magnitudes of vertices and
substantially distorts face shapes. We show that FPCT-age learns
an indistinguishable mapping to age using faces treated with CRT
or other coordinate-wise monotonic transformations (CMTs),
indicating that the relative positioning of facial information (e.g.,
the normal vector and color) encodes age-related facial
phenotypes. Through visual perception tests, we confirm that
perceiving the identity, sex and age of CRT-treated faces is
significantly more difficult. We also establish a minimal 3D face
verification model named FPCT-ID, which, when trained with
face shape data, achieves accurate verification, and can be
invalidated by CRT. Finally, we propose a facial data protection
guideline that has the potential to broaden data access for both
face recognition applications and other face-based applications
with minimized privacy leakage risks.

RESULTS

Direct age estimation using 3D face point clouds and a
measure of model indistinguishability

We collected a dataset of 16,580 three-dimensional human face
point clouds of Han Chinese, using the 3dMDface system
(Liibbers et al., 2010). The dataset spanned 68 years in age
(see Figure S1A in Supporting Information for demographics).
We applied a 10-fold cross-validation approach for model
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training and evaluation (see Figure S1B in Supporting Informa-
tion for age group divisions and Figure S1C in Supporting
Information for sex distribution in the training sets). We applied
simple preprocessing to the raw data (see Materials and Methods)
to generate standard face point clouds containing vertex
coordinates, normal vector components, and RGB color compo-
nents, denoted as the V, N, and C fields, respectively. We
customized the deep learning architecture of point cloud
transformer (PCT) (Guo et al.,, 2021a) to adapt to the input
dimensionality and the regression task. A range of hyperpara-
meters was fine-tuned by grid search (see Materials and Methods)
to fit the subtle characteristics of the human face. Figures S2 and
S3 in Supporting Information illustrate the impact of training
data quantity and point cloud sampling rate on model accuracy,
respectively. We used distributed data parallel across two GPUs to
expedite the training process, which also helped facilitate
convergence (see Figure S4 in Supporting Information). The
resulting model was referred to as the FPCT-age. Figure 1A
provides a visual summary of the workflow. Figure 1B presents
the optimal validation set mean absolute error (MAE) of
individual checkpoints (with each checkpoint defined as a
dictionary storing model parameters at a given epoch), the test
set MAE obtained from the average ensemble specific to each
training set, and the test set MAE from the average ensemble of
all checkpoints (see Materials and Methods). The test set MAE
was consistently lower than the validation set MAE, indicating
the robust generalizability of FPCT-age. The ensemble of all
checkpoints registered a MAE of <2.5 and a Pearson correlation
coefficient (PCC) of 0.970 against chronological age, showcasing
FPCT-age’s superior performance on par with our earlier
convolutional neural network models (Xia et al., 2020). Data
augmentation facilitated FPCT-age in capturing the rotation-
invariance intrinsic to 3D face point clouds, as manifested by the
tight standard deviations in 100 iterations of age estimation,
each applying varied random rotations of test faces (Figure 1C).

In deep learning, different model checkpoints or different model
ensembles are unlikely to generate identical output for the same
input. The reasons include the randomness in model initializa-
tion and optimization, and embedding strategies, e.g., the farthest
point sampling (FPS) steps in FPCT-age’s hidden layers.
Additionally, it has been proposed that the perceived age of a
face with a certain actual age possesses a wide distribution (Chen
et al., 2015; Geng et al., 2014; Xia et al., 2020), which makes
age estimation with facial data inherently non-deterministic.
Therefore, to evaluate the closeness of two age estimation
models, a proper metric was needed. That knowledge distillation
(or model compression) (Gou et al., 2021; Hinton et al., 2015;
Lopez-Paz et al., 2015) requires a student model to mimic the
teacher model’s activation pattern and/or outputs on the same
inputs, and that machine unlearning (Bourtoule et al., 2021;
Guo et al., 2020; Neel et al., 2021) requires a statistical
indistinguishability to minimize performance shrinkage after
data deletion, both implicitly point to the concept that describes
the extent to which two models are indistinguishable in terms of
making inferences. However, in both fields, the primary focus has
been on designing the loss function to guide the training process,
rather than a direct and conclusive measurement based on
inference results. Therefore, here we propose the model indis-
tinguishability (MI) score, to evaluate the similarity in pattern
and magnitude of two sets of real-valued output. Specifically, PCC
and the mean absolute difference (MAD) were calculated using

https://doi.org/10.1007/511427-023-2518-8


https://doi.org/10.1007/s11427-023-2518-8

A Data fields: \Y N c

—

(x,y,z,xn,yn,zn,r,g,b) ®

- _
Linear interpolation Farthest point FPCT-age
to barycentre sampling Age
B 275 o c
Training set rank
—_
2.70 — i 200
: =
265 — e
w e . =1 I 150
<§( 9, 8 150
-
2.60 2 - i 125
3
- g 100
75
2.50 \ = 50 50
I 25
Single checkpoint Ensemble specific to Ensemble of 1 I
optimal validation set MAE training sets all checkpoints 0 | (T 5 LU AT i
test set MAE test set MAE 05 10 15 20 25 30 35 0.00 0.02 0.04 0.06 0.08
Standard deviation Standard deviation/Label age
Evaluation
D E— -
Degree of Indistinguishability JR—
17.59 HEE First order
I Second order
15.04 E=3 Normally distributed random vector
12.51 10.81| 10.82
= 10.01
=
o
>
7.54
5.04
2.45 338
—_—
e 1.02 0.73 0.94 0.93 i~
0.2 =S 00 ——— (.00 e :
0.0 — - _:E
MI Score PCC MAD Covariance

Metrics

Figure 1. Data preprocessing and model performance. A, Overview of the data preprocessing procedures. The raw facial point cloud data, captured by the 3dMDface system, was
initially organized in triangulation and contained over 2 million floating point numbers. To compress the data quantity required to represent a 3D face with sufficient age-related
information, triangle information was linearly interpolated to mass centers and down-sampled by FPS. This reduced the number of floating-point numbers to approximately 0.1
million. The reduced point cloud data then underwent common data augmentation steps (see Materials and Methods) before being used for training the FPCT-age model. B,
Comparison of age estimation accuracy as indicated by MAE. The lowest MAE on the validation set throughout the training process for each training set is shown in the first
column. The second column displays the MAE values on the test set for training set-specific ensembles, which are consistently better than the counterparts in the first column,
indicating favorable generalizability. The third column shows averaging over the nine training set-specific ensembles converged and further decreased test set MAE. C, Rotation-
invariant age estimation. Histogram showcasing the frequency distribution of standard deviations for data subjects’ age estimations (left) and the frequency distribution of the
ratio between data subjects’ age estimation standard deviations and their labeled ages (right). Age estimates were derived using the average ensemble from the first training set. D,
Comparison of indistinguishability metrics. First-order metrics were evaluated using 404,550 pairs of model checkpoints. Second-order metrics were evaluated using 36 pairs of
training set-specific model ensembles. For random array simulations, the random seed was set to 0.
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age estimation residuals (the difference between the estimated
and actual age for each data subject) generated by two
inferences, and the ratio between them was defined as the MI
score. Eq. (1) provides a full formulation of the MI score,

PCC
MAD

nzzzl(xk_ﬂx)(yk_,uy) (1)
‘]ZZ;l(xk_ﬂx)z ZZ:](yk—ﬂy)z Yo o=yl

where k counts from 1 to the total number of sample subjects (n),
xr stands for the estimate of a subject k by model X, and y;, stands
for the estimate by model Y. y, stands for the sample mean of
model X’s estimates, and y,, for model Y.

We calculated the average MI score across all pairwise
combinations of checkpoints to represent a threshold level of
indistinguishability, termed as the first-order MI. All MI scores
were statistically significant with P-values<1x10~> (see Materi-
als and Methods). The pairwise PCC, MAD and covariance values
for these checkpoint combinations were also determined for
comparison. Based on Eq. (2), the MI score for the first-order MI
was 0.29 (the denominator 404,550 corresponds to the

MI score=

binominal coefficient C3,,, which sums up the different ways to
select 2 items out of a total of 900).

First order MI=
) e  Miscore(Checkpoint;, Checkpoint;) (2)

i=0 Luj=i
404550

Subsequently, the second-order MI was defined as the average
MI score among pairs of training set-specific ensembles,
representing a peak level of indistinguishability. The average
MI score was 1.02 (all MI scores had P<1x107>), as derived from
Eq. (3). As a control experiment, the MI score, PCC, MAD and
covariance of two normally distributed random arrays (with
£#=0.0, 6=3.0, to emulate the scale of age estimation residuals) of
equivalent test set size were simulated 100,000 times. These
results are presented in Figure 1D.

Second order MI =
E?: 02?:1+ lMIscore(Ensemble »Ensemble i) (3)
36 ’

The discrepancy between the first and second orders of MI
highlights a reduction in estimate fluctuation beyond accuracy
enhancement by model ensembling. The combined strengths of
PCC (low variance) and MAD (high contrast) validate our MI
score formulation. The MI score provides a more comprehensive
perspective than either PCC or MAD alone, capturing both trend
and magnitude differences.

Coordinate-wise monotonic transformations preserve age-
related 3D facial features

Given the convenience of using non-registered point cloud data,
we explored the sufficiency of different data fields for age
estimation with 3D face point cloud. We trained FPCT-age with
data fields or their combinations with the same model
architecture, adjusting only the input channel. In this approach,
the model was determined only by the input data fields.
Therefore, we used the capital letters of the data fields or their
combinations to denote the type of input and the specific FPCT-
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age models trained on that input.

The MAE values and pairwise MI scores of these data field-
specific models are presented in Figure 2A. As expected,
removing vertices from the facial data greatly undermined the
effectiveness of the N and C models. The MI scores between
models with and without the N field were relatively large, and the
VNC and the VC models had the largest MI score (0.616), falling
between the first and second order MI. The inclusion of the C field
significantly improved model performance, and the MI scores
were relatively low between models with and without the C field,
suggesting a strong complementary role of color information
against normal vector. By contrast, including the N field led to a
smaller improvement, indicating that a portion of the normal
vector information has been implicitly contained in the V field.
This is not unexpected, as on a differentiable surface, normal
vectors can be deduced from coordinates mathematically.

We sought to examine the information complementarity
between the N and C fields using multiple linear regression.
Specifically, we regressed the estimation residuals of the VN and
VC models against that of the VNC model. Table 1 summarizes
the regression statistics, which demonstrates a highly linear
regression without collinearity. The MI score indicated indis-
tinguishability between the VNC model and the linear combina-
tion of the VN and VC models, suggesting little nonlinear
interaction existed between colors and normal vectors.

We then explored the possibility of eliminating geometric
measures and extracting the framework information from the V
field. We hypothesized that as a framework, it would be necessary
to maintain the relative positioning of points but not their
absolute locations. Since the term “relativeness” was ambiguous,
we developed an idea of using coordinate-wise ranks to replace
the original Euclidean distance, such that the order of vertices in
each dimension remained unchanged. Specifically, we ranked
the original vertex coordinates along each axis (X, Y, and Z) and
replaced the coordinate components with their corresponding
ranks in each axis. We then normalized the rank values and used
them as the new magnitude-free, relativeness-preserved coordi-
nates. Our literature search revealed a similar existing operation
in mathematics called “rank transformation” for the 1D case
(Conover and Iman, 1981; Headrick and Sawilowsky, 2000;
Saltelli and Sobol, 1995). Therefore, we adopted this convention
and named our transformation algorithm CRT. Figure 2B
illustrates a 2D version of CRT. It is important to note that
mathematically, CRT is monotonic and irreversible, although
vertex correspondence could be saved and tracked for individual
faces.

To examine the importance of relative positioning against
Euclidean magnitudes for age estimation with 3D face point
cloud, we incorporated CRT into the data loading module
immediately following the rotation augmentation for training,
and labeled the transformed vertices as the rV (relative vertex)
field. The operational sequence increased the variability of
transformation results, as the ranking of coordinates often
changed significantly after large-angle rotations. Figure 2C
provides visual examples of the transformation effect. We
evaluated models trained on the rV field alone, or in conjunction
with the N and/or C fields. These models’ MAE values and MI
scores to Euclidean counterparts are summarized in Figure 2D.
Remarkably, despite the pronounced visual changes due to CRT,
the age estimates from these models were comparably accurate
and indistinguishable from the outputs of their corresponding
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Figure 2. Modeling on data fields and transformed data. A, Hierarchical view of data field-specific model evaluation results. The dot size of a vertex is proportional to the MAE
value and rescaled to a parameter value range of [50, 500]. The transparency (alpha parameter) of an edge is proportional to the squared MI score and rescaled to a parameter
value range of [0.05, 1.0]. B, Illustration of a 2D CRT. Points 1, 2, 3, 4 originally had irregular ascending y-coordinates, which were transformed and rescaled to an arithmetic
progression from —1 to 1 by CRT and normalization. Points 2 and 4 originally shared the same x-coordinate, and they continued to do so after CRT and normalization. C,
Examples of face shape distortion. The same face underwent random spatial rotations and then CRT. Transformed faces are shown with a reverse rotation for the convenience of
comparison. The corresponding arc values for each random rotation are shown below the face. D, The impact of CRT on age estimation. The bars represent MAE values based on
the left-hand y-axis, and the dots connected by lines represent MI scores based on the right-hand y-axis. All MI scores have P-values<1x10~>. E, Cross-model inference on
Euclidean and Transformed Data. The FPCT-age model trained on CRT-treated faces (FPCT-age-TF) was used to estimate ages of Euclidean faces (EF data), while the FPCT-age
model trained on Euclidean faces (FPCT-age-EF) estimated ages for CRT-treated faces (TF data). The down triangle-connected line represents MI scores for the EF data+FPCT-age-
TF group, the up triangle-connected line for the TF data+FPCT-age-EF group, and the circle-connected line compares MI scores between the two groups. In D and E, two
horizontal dotted lines mark the first- and second-order MI. F, The impact of CMTs on age estimation. Four elementary monotonic functions (exponential, logarithmic, square, and
sine) were applied immediately after CRT and normalized to [—1, 1] in a coordinate-wise manner. The three circles on the radar plot correspond to the first-order MI, the second-
order MI and the MAE of exp(CRT) model (the largest among the four), from the inside out. All MI scores have P-values<1x10~> and fall between the first- and second-order MI,
and all MAEs are no greater than 2.70.

FPCT-age training and inference and determined MAE and MI
scores in this setting. The (r)VNC and (r)VC models exhibited

Euclidean models.
Additionally, we designed an experiment to assess the

interchangeability of Euclidean and transformed data/models,
to further elucidate the commonality in age-related features
across both face forms. Specifically, we swapped the face form for

https://doi.org/10.1007/s11427-023-2518-8

consistent mappings across face forms with minimal differences.
In contrast, (r)V models required strict face form matching, while
(r)VN models presented an intermediate scenario between the
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Table 1. Statistical conclusions: regression of age estimate residuals (VN and VC
models on VNC model)

Main statisitcs Value and interpretation

0.80. The VNC model estimate residuals can be well

R? explained by the linear combination of the VN and VC
model estimate residuals.
MAD 1.21.
MI score 0.74. Calculated using R over MAD, with g<1x107>.

F-statistics 3,232.0. The regression is highly linear.

0.22. Contribution of VN model estimate residuals

Coefficient of VN to the linear combination.

0.66. Contribution of the VC model estimate residuals

Coeflicient of VC to the linear combination.

Durbin-Waston statistics 1.977. No autocorrelation.

Condition number 5.03. No multicollinearity.

two. These observations are encapsulated in Figure 2E.
Synthesizing these findings, we propose that the relative
positioning of facial information, with emphasis on color
information, is the underlying low-level biomarker of age.

To further confirm the dispensability of exact face shape for
age estimation, we conducted additional experiments by
applying multiple subsequent elementary monotonic transfor-
mations following CRT on the input to generate further distorted
face shapes. These composite transformations were collectively
referred to as CMTs, with CRT being a special case of CMT. Figure
2F presents visual examples for each of these composite CMTs
and summarizes the model MAE values and MI scores. As
expected, the resulting models achieved comparable accuracy
and were highly indistinguishable from both the rVNC and VNC
models, which led us to a hypothesis that any CMT applied to 3D
faces should preserve age-related features. We emphasize that
the composite transformation log(CRT) made FPCT-age more
responsive to the transformed facial data, as evidenced by a
lower MAE compared with that of the VNC model, suggesting
that rational transformation design may improve estimation
accuracy even for deep learning architectures. A software
implementing CMTs with interactive visualization, referred to
as VisualCMT, is provided (see Figure S5 in Supporting
Information).

Coordinate-wise rank transformation inspires a facial data
masking strategy

The resulting visual changes suggested that CMTs might enable
facial data masking while preserving information of interest. We
used CRT as an example to test our hypothesis that face shape
distortions resulting from CMTs might challenge both human
visual perception and computational face verification systems.
To measure human visual perception of the CRT-treated
images, we conducted a test in which participants completed 3
types of tasks for 46 3D facial images covering an age range from
25 to 70: sex estimation, age estimation, and face matching.
Participants’ answers and response time were recorded. A
random half of the subjects’ 3D faces underwent CRT (see
Materials and Methods). To improve convenience and accessi-
bility, we programmed a graphical user interface (GUI) as
illustrated in Figure 3A, for participants to complete the test on
their mobile phones. We use Euclidean face (EF) to denote
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untransformed faces and transformed face (TF) to denote CRT-
treated faces for brevity.

Results from 21 participants showed that CRT caused
significant estimation compromise. Specifically, sex estimation
accuracy dropped by 25.8% (t-test P-value<1x10~16), identifi-
cation accuracy dropped by 58.1% (P<1x1072%), and age
estimation error rose by 15.0% (P=0.0012). Figure 3B and C
show the accuracy results calculated for individual 3D faces. It is
worth noting that perception difficulty varied widely among both
EFs and TFs. We saw a 22.0% increase in sex estimation time
(P<1x10712), a 2.3% increase in age estimation time (P=0.38),
and a 53.8% increase in identification time (P<1x10723), as
shown in Figure 3D. We conclude that TFs are considerably more
difficult for human to perceive, especially in identification tasks.

To investigate the impact of CRT on computational face
verification systems, we incorporated the ArcFace loss module
(Deng et al., 2019) into the PCT architecture to establish a
minimal 3D face point cloud verification model, which we
referred to as FPCT-ID. For this task, we assembled training,
gallery and probe sets using data subjects collected over multiple
years (see Materials and Methods). Transfer learning from
trained FPCT-age models was used to offset the limited amount
of available data for this task. For evaluation, we derived the
embedded facial features (256-dimensional vectors) from the
gallery and probe sets, and constructed receiver operating
characteristic (ROC) curves. To do this, we scanned the
separation threshold based on cosine distances between the
feature vectors of the gallery and probed facial data. The
procedures are demonstrated in Figure 4A. We observed
diminishing returns in the area under curve (AUC) over 2,000
epochs of training, as shown in the subpanel of Figure 4B, and
decided to evaluate AUC using the model checkpoint at the
2,000th epoch. Interestingly, in contrast to the age estimation
task, we found that removing the N and/or C field had only
limited consequence on face verification performance, as shown
in Figure 4B, suggestive of the differential facial characteristics
related to age and identity.

With a working face verification model, we investigated the
impact of face form on models’ response. Initially, when we
modeled rVNC data for both training and inference, the accuracy
was surprisingly better, as can be seen by comparing the leftmost
and rightmost bars in the 4th group of bars in Figure 4C. We then
decided to conduct exhaustive experiments with all possible face
form combinations. Specifically, we trained FPCT-ID models on
either EFs or TFs (the resulting models were denoted as FPCT-ID-
EF and FPCT-ID-TF, respectively) and probed the test set facial
features (inferred from either EFs or TFs) against the gallery set
facial features (inferred from either EFs or TFs). Given the two
training options and the two inference options for each set, this
resulted in a total of eight possible ROC curves for each data field-
specific model (see Figure 4A for data flow). We found that
alternating between VNC and rVNC input only caused a
negligible compromise in accuracy, contrary to what was
observed in the visual perception test. When we experimented
with (r)VN and (r)VC data, we observed larger but not highly
discriminative gaps in verification accuracy for mixed face forms.
Only the V and rV models were substantially confused by input
faces in the opposite form, as evidenced by a marked drop in
accuracy when the face forms were not the same throughout.
The AUC values of all combinatorial inferences are summarized
in Figure 4C. Under conventional practices, data is typically split
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visualization.

into separate training, gallery and probe sets, for training face
verification models and evaluating their performance. However,
given the limited sample size available for this task, we opted to
use the training data directly as the gallery to maximize the
available training data. To validate our approach, we provided
evidence that using the training set as the gallery did not
introduce an overfitting risk. While there was a noticeable
decrease in FPCT-ID’s performance with reduced training data,
the overall pattern of performance variation based on face form
combinations remained consistent (Figure S6 in Supporting
Information).

We posited that when color or normal vector information was
available, the relative positioning of the information was
sufficient for identification, similar to age estimation. To examine
this hypothesis, we used the FPCT-ID-EF model to make
inference on test data in both face forms, and collected facial
feature vectors for dimension reduction using non-linear (UMAP
and t-SNE, see Figure 4D and Figure S7B in SupportingInforma-
tion, respectively) or linear (PCA, Figure S7A in Supporting
Information) algorithms. When the N and/or C data fields were

https://doi.org/10.1007/511427-023-2518-8

available alongside the (r)V field, the extracted facial features
from EFs and TFs were mostly inseparable. However, when
learning was based solely on V/rV data, the inference was
sensitive to face form.

Based on these observations CRT and other CMTs have the
potential to be effective facial data masking techniques that
obscure identity for both human visual perception and face
verification systems, while preserving ID-independent informa-
tion, such as age. To enhance 3D facial data protection, we
propose a general guideline that features CMTs-based data
transformation, as illustrated in Figure 5. Specifically, we suggest
that for face recognition applications, only the V field of face point
cloud data should be distributed and used to train models. For
other face-based applications that have been confirmed to rely
minimally on Euclidean face shape, facial data with transformed
shape should be distributed. The entire guideline requires regular
audits to ensure that the data repository and provisioning
adheres to regulations. By streamlining the management of face
datasets, this guideline is potential to accelerate advancements in
both research and industry.
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Figure 5. 3D facial data protection guideline. Data collection: ethical approval should be obtained, and informed written consent should be acquired. Data segmentation: this can
be automatically executed through embedded camera software or by segmenting fields from the raw data at the certified data center. Data transformation and repository: the
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requests dependent on facial ID, the Euclidean vertices should be distributed. For requests independent of facial ID, the transformed vertices and other necessary data should be

distributed.

DISCUSSION

In this study, our initial objective was to estimate age using 3D
face point cloud data and explore the impact of data fields on
modeling. However, we made a surprising observation that a
rigid Euclidean description of the human face was not necessary
for accurate age and identity estimation. Based on these
discoveries, we proposed a 3D facial data protection guideline.
Modeling directly on 3D face point cloud data was not a common
practice to date. However, we showed that this data structure did
not require extensive preprocessing to be compatible with deep
regression models. This allows for easy deployment of such
models to digital applications and hardware. We developed CRT
and CMT algorithms to distort face shape. These algorithms are
easy to implement and could hinder both human visual
perception and computational face verification systems. Our
findings fill a gap in the urgently needed 3D facial data masking
techniques. We have verified that it is possible to preserve age-
related features while removing identity features. The develop-
ment of similar techniques has the potential to facilitate the
sharing of facial data for research. Additionally, we highlight the
theoretical importance of our discoveries that the relative

https://doi.org/10.1007/511427-023-2518-8

positioning of facial features can be informative enough for
multiple tasks.

In our prior study (Xia et al., 2020), we were constrained to
reshape the original facial structures to a square ratio due to
the limitations of classical convolutional neural networks.
Notably, even with this reshaping, the accuracy of age
estimation remained high. In hindsight, this can be attributed
to the fact that the squaring process is a special instance of
CMTs, which does not compromise age-related features.
Furthermore, CMTs can be readily adapted to 2D imagery.
To achieve this, one can map a 2D image to 3D space using
reconstruction techniques or by simply assigning a constant Z
coordinate to all facial pixels. After random rotation and CMT
treatment, the data can be reoriented and projected back to 2D.
It might be worth exploring whether 2D facial content can
potentially retain age-related features when subjected to
CMTs.

Currently, CMT methodologies presented in this study for age
estimation and data protection with 3D face point cloud is tested
only in Asians of ages from 18 to 85 years, further tests will be
needed to see whether it is similarly applicable to other ethnic
and age groups.
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MATERIALS AND METHODS

Ethical approval

The collection, use and ethical review of the facial data used in
this study were approved by the Ethical Committees of the Staff
Hospital of Jidong oil-field of China National Petroleum Corpora-
tion in 2015, and renewed in 2020. Hard copies of signed
consents from all subjects were archived and stored in a secure
location.

Data preparation

Data collection and data format. This study used anonymized
facial data from a Han Chinese cohort collected between 2016
and 2020 (excluding 2017) in Tangshan City, Hebei Province,
China. The subjects were registered residents of Tangshan City
with low mobility, and data collection was concentrated between
June and November of each year. After data cleaning, a total of
16,580 samples were eligible for downstream use, with some
subjects enrolled in multiple years.

The 3D facial data were captured using a 3dMDface system
(3dMD Inc., USA). Raw data were exported as OBJ-formatted 3D
facial information, which included vertex coordinates, normal
vectors, texture assignments, and triangular element correspon-
dences, along with paired texture images. The camera system
was set up and calibrated in a room with stable lighting. During
image capture, subjects were directed to sit at an appropriate
height and distance, facing the camera with a neutral expression.
They were required to remove any accessories such as glasses or
hats, and hair on the forehead was secured with a headband to
avoid obstruction. If a subject’s eyes were closed or the image
capture program failed, the subject was re-shot to ensure data
integrity.

Data splits. In the initial subsection of the Results, we employed
a 10-fold cross validation approach to train and evaluate FPCT-
age. This involved performing a data split of the entire face
dataset into ten subsets of nearly equal size, each with a similar
age distribution. One of these subsets was reserved as the
untouched test set during training. Of the remaining nine
subsets, each was used in turn as the validation set, with the
other eight combined to form the training set, yielding nine
paired training and validation sets. Given the comparable age
distributions between males and females, the data were split only
based on age, without considering sex. To address imbalances in
eleven age labels where data counts ranged between 10 and 20,
we categorized data into 24 age groups based on 25 percentiles,
ensuring a minimum age span of one year for each group. Data in
each age group were then randomly divided into ten subsets. Due
to the consistent model performance across different training
sets, only the first training, validation, and the test sets were used
in subsequent subsections of the Results.

For the FPCT-ID model, we excluded data subjects with fewer
than three samples. For each of the remaining data subjects, we
randomly chose one sample to be included in the probe, which is
a query dataset containing faces to be verified. The other samples
were used for training and establishing the gallery, a reference
dataset containing faces considered known. As a result, both the
training set and the gallery contained 5,164 samples, while the
probe comprised 2,333 samples.

Data preprocessing. The 3dMDface system generates point
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cloud data that originally represents the face as a mesh of triangle
elements, with each triangular element naturally a 27-dimen-
sional vector consisting of vertex coordinates, normal vectors,
and color assignments of its three constituent vertices. However,
in our preliminary experiments, we found that the training and
convergence of deep learning architectures were significantly
slowed by this high-dimensional input. To address this issue, we
applied error-free linear interpolation to compress the channel-
wise values of each triangular element onto its mass center,
resulting in a 9-dimensional vector. The interpolated point cloud,
with mass centers as elements, has a visualization indistinguish-
able from the raw data and allows for more effective model
training.

The working principle of the 3dMDface system introduces
randomness in the quantity of captured data points for each face.
The resulting data clouds typically contain more than 30,000
triangular elements, which can cause out-of-memory issues for
large batch size. To address this issue, we adopted the FPS
method, which had been widely used in the field of point cloud
modeling since PointNet++ (Qi et al., 2017b). After mass center
interpolation, the FPS method uniformly sampled the data in the
spatial domain, maximally preserving information from both
dense and sparse regions of the original data. We evaluated the
visualization effect, model performance and training efficiency
with different sampling rates in a preliminary experiment, as
shown in Figure S4A—C in Supporting Information, respectively.
In this article, we used a sampling rate of 12,288 for all other
experiments. Some samples contained neck and collar, which
were not filtered out, as these would be treated as random noise
by the model and did not impair model performance.

Data augmentation. During training, we applied common data
augmentation techniques used in point cloud modeling. First, we
applied shuffling by randomly reordering the records of points.
Next, we applied rotation by independently performing random
rotations along each axis, ranging in [—=n, =], for both vertex
coordinates and normal vectors. Additionally, we applied shift by
randomly shifting the vertex coordinates along each axis with a
random value in the range [—1, 1]. Finally, we applied scaling to
all dimensions of the vertex coordinates and normal vectors
within the range of [0.8, 1.25]. No data augmentation was
conducted during the inference phase.

Deep learning

Geometric models. We conducted preliminary age estimation
experiments using several base models, including PointNet (Qi et
al., 2017a), two versions of point transformer (Engel et al., 2021;
Zhao et al., 2021), and PCT (Guo et al., 2021a). Through a
preliminary grid search on optimizer and learning rate and
limiting training to 500 epochs, we selected PCT as the most
promising base model for further optimization, modeling and
analysis due to its superior performance. PCT is a novel
architecture designed for point cloud data and achieves state-
of-the-art performance on 3D object databases. It captures global
context using symmetric function and attention modules, and
captures local context using neighbor embedding modules (Guo
et al.,, 2021a). To balance model performance and time
consumption, we set the number of training epochs for FPCT-
age to be 1,000.

Average ensembling. We saved model checkpoints (diction-
aries storing model parameters values) at every fifth epoch
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starting from the 500th epoch. The age estimation for each
subject was derived by averaging over a total of 100 checkpoints
(for each training set) as the ensemble result.

ArcFace loss function. Face recognition is a challenging
classification task with a large number of classes, which makes
it difficult for traditional classification loss functions to perform
well. Improving the loss function for such large-scale classifica-
tion tasks is a critical research challenge. The Additive Angular
Margin Loss (ArcFace) is a novel loss function proposed to
enhance the discriminative power of feature embeddings. It uses
geodesic distance margins in the softmax loss function to
maximize class separability while promoting intra-class compact-
ness and inter-class discrepancy. This approach has achieved
state-of-the-art results in comprehensive face recognition experi-
ments (Deng et al., 2019). To balance model performance and
time consumption, we set the number of training epochs for
FPCT-ID to be 2,000.

Hyperparameter grid search. The geometric models were
initially optimized for object point clouds. However, due to the
subtler spatial distribution of points in face point clouds
compared with object point clouds, we conducted a comprehen-
sive grid search on important hyperparameters for our face
dataset. For efficiency, we limited the number of training epochs
to be 500, and trained and evaluated the models using the first
pair of training and validation sets.

(1) Optimizer and initial learning rate. We evaluated learning
rates of 1x107°6, 1x10~>, 1x10~%, 1x1073, and 1x10~2, and
optimizers including stochastic gradient descent (SGD, with
momentum 0.9) and Adam (with betal=0.9 and beta2=0.99).
Adam optimizer with an initial learning rate of 1x10~% achieved
the best performance for both FPCT-age and FPCT-ID. In
contrast, SGD and initial rate of 1x10~2 were optimal for
ModelNet40 classification task.

(2) Scheduler. We evaluated learning rate schedulers including
Step, ReduceOnPlateau, OneCycle (Smith and Topin, 2017),
CosineAnnealing (Smith, 2015), and no scheduler. Adam
without a scheduler outperformed the complicated schedulers
after approximately 300 epochs, and we used it for both FPCT-
age and FPCT-ID.

(3) Feature embedding. Two implementations of FPS were
incorporated in the shallow layers of PCT, each followed by a K-
nearest neighbors (KNN) embedding. We evaluated various
combinations of sampling rates and K values. To balance the
trade-off between resource consumption and accuracy gain, we
selected 1,024 and 512 as the two sampling rates and 32 and 32
as the two K values for FPCT-age, and 512 and 256 as the two
sampling rates and 32 and 32 as the two K values for FPCT-ID.

(4) Weight decay. We evaluated weight decay rates of 1x107°,
1x1075, 1x107%, 1x1073, 1x1072, 1x10~1 and 0. A weight
decay rate of 1x10~2 was optimal for both FPCT-age and FPCT-
ID.

(5) Batch size and data parallelism. We evaluated batch sizes of
8 and 16, and GPU numbers of 1, 2 and 4. The GPU was Nvidia
Quadro GV100 with CUDA 11.2. Using two GPUs, each loaded
with a batch size of 16, was optimal for both FPCT-age and FPCT-
ID.

Statistics

We used a permutation-based approach to calculate the P-value
to evaluate the statistical significance of MI scores. Given
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numeric arrays a and b, we first calculate the MI score sg
between them according to Eq. (1). We then apply a number of
random permutations on b, each permutation using a different
random seed, and calculate the MI score s; between a and each
permuted b. The number of cases where s = s, was counted and
divided by the total number of permutations. We set the number
of permutations to be 100,000, as a larger number requires too
much computation time. The P-value is denoted as <1x1075 if
there was no observation for s;=s.

Visual perception test

We randomly selected one subject per age from 25 to 70 years
old, and implemented CRT on a random half of their 3D facial
data. All 3D facial data were displayed from the front view. For
the identification task, raw 2D facial images (captured by the
3dMDface system alongside 3D data) of the subject in question
and eight other subjects of the same age and sex were displayed.
The entire test took approximately 20 min to complete. All test
3D and 2D candidate images were randomly shuffled for each
participant to eliminate the influence of changes in participants’
attention during the test. Response time was defined as the time
interval between the entrance and the exit of each page and was
recorded invisibly.

Data and materials availability

The data that support the findings of this study are divided into
two groups: shared data and restricted data. Shared data are
provided by one of the authors and available from the manuscript
and supplementary data. Restricted data relating to subjects in
this study are subject to an agreement that requires full
confidentiality. Therefore, such data cannot be shared. VNC
model checkpoints for age estimation and face verification at the
end of training are provided with code. All code on facial data
preprocessing and modeling are made publicly available at
https://github.com/JackieHanLab/CMTs-3DFace, together with
an executable software named VisualCMT for implementing
CMTs on face point cloud data. The code and software are
provided for non-commercial use.
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