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Abstract
Adaptation is a ubiquitous feature in biological sensory and signaling networks. It has been suggested
that adaptive systemsmay follow certain simple design principles across diverse organisms, cells and
pathways. One class of networks that can achieve adaptation utilizes an incoherent feedforward
control, inwhich two parallel signaling branches exert opposite but proportional effects on the output
at steady state. In this paper, we generalize this adaptationmechanismby establishing a steady-state
proportionality relationship among a subset of nodes in a network. Adaptation can be achieved by
using any two nodes in the sub-network to respectively regulate the output node positively and
negatively.We focus on enzyme networks andfirst identify basic regulationmotifs consisting of two
and three nodes that can be used to build small networkswith proportional relationships. Larger
proportional networks can then be constructedmodularly similar to LEGOs.Ourmethod provides a
general framework to construct and analyze a class of proportional and/or adaptation networkswith
arbitrary size,flexibility and versatile functional features.

Introduction

Biological systems monitor external and internal
signals and carry out appropriate responses using
complex circuits. Behind the rich behaviors of natural
and synthetic biological systems, such as bistable
switch [1, 2], oscillation [3, 4], and spatial patterning
[5, 6], are particular network motifs. Mapping out the
relationship between function and architecture of
biological networks and identifying the underlying
design principles are of broad interest [7–12]. Among
the biological functions, adaptation has been exten-
sively studied in the context of various sensory and
signaling systems [13–22]. Adaptation is the ability to
transiently respond to a change of input stimuli, and
then restore itself to the original steady state
(figure 1(a)). This function allows the system to
maintain a homeostasis and/or to respond to further
changes of the input. Despite the fact that adaptive
systems differ in different pathways and organisms,
they share certain intrinsic similarities [23–25]. Pre-
vious studies have shown that only a limited number
of network architectures can perform adaptation

[24, 25]. Ma et al [25], by enumerating all possible
three-node enzymatic regulatory networks, found that
all adaptive three-node networks converge on two
classes: a negative feedback loop with a buffer node
(NFBLB) and an incoherent feedforward loop with a
proportioner node (IFFLP). In the NFBLB class, an
intermediate node integrates the error of the output
node and thus buffers the change of output to help it
adapt using integral feedback control. In the IFFLP
class, the intermediate node responds to the input
proportionally and offsets the influence of the input
on the output. Both classes need only certain general
constraints on few key parameters to carry out perfect
adaptation. This work supports the idea that there
exist general design principles behind biological sys-
tems.However, due to the complexity of computation,
only the three-node networks were analyzed. Real
biological systems are more complex; it is desirable
and important to understand the structure and
behavior of larger networks. One challenge facing us is
to scale up computational methods to tackle large size
networks. In this study, we develop a rigorous frame-
work to hierarchically construct proportional
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networks of arbitrary size, which can be used to build
adaptive networks. Here, proportional network is
defined as network in which steady state concentra-
tions of any two nodes have a proportional relation-
ship. Analyses of these adaptive networks built from
proportional networks reveal new adaptation motifs,
less parameter constraints and/or more diverse
dynamic features.

Methods

Specifically, we focus on enzymatic regulatory net-
works and model network linkages with Michaelis–
Menten rate equations. In a network, each node has a
fixed total concentration that can be interconverted
between active and inactive forms by other active
nodes or themselves. To ensure reversibility, each

node has both positive (activating) and negative
(inactivating) regulation. If in a network there are no
positive (negative) regulations to a certain node, then a
basal activating (inactivating) enzyme is assumed to
act on the node. In our model, we further assume that
one node (A) receives the input signal and one node
(O) represents the output. If on the output node O
there are two opposing regulations from node X and Y
that are proportional in steady state, the output node
can achieve adaptation as shown below [25]. The
equation for the output node is:
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-
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O K
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whereX is the activating enzyme andY the inactivating
enzyme ofO. If µ* *X Y (* denotes steady state), then
O* depends only on the four parameters in (1). Thus,
the steady state ofO does not depend on the input—in

Figure 1. Schematic diagrams of adaptation and themodel. (a)Dynamics of input and output for an adaptive system (left); a large
networkwith proportional nodes controlling the output node. Nodes in the lilac circle form a proportionality sub-network and one of
them receives the input. Two ormore nodes from the sub-network can be used to control the output node oppositely (right). (b)The
flowchart of building stable proportional networks.
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other words, O can adapt to input changes.
Equation (1) can be easily generalized to the case in
which there are multiple activating (Xi) and/or
inactivating (Yj) enzymes of O. The two terms on the
right-hand side of (1) would be replaced by:

å -
- +
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1i X O i
X O
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andå +
k Y
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O Kj Y O j
Y O
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To construct adaptation networks of arbitrary size
through the proportionmechanism, we first construct
a sub-network in which all pairs of nodes have robust
proportional relationships in steady state. To be
robust, we mean that the relationship should not
depend on details of the parameters—the enzymes
should work either in the linear region or the saturated
region. Adaptation on output node can be realized by
assigning opposite regulations from the sub-network
nodes to the output (figure 1(a)).

The construction of proportional sub-network of
increasing sizes can be done hierarchically and mod-
ularly. We first identify building blocks of two and three
nodes that can be used to construct small proportional
networks. Larger proportional networks can then be
constructed by adding additional building blocks or by
combining proportional networks together. The result-
ing networks are checked for stability (figure 1(b)).

Results and discussion

Building blocks for proportional network
It is easy to see that if a node X is the substrate for
several enzymes (which can include X itself in the case

of auto-regulation), that is = ( )X

t
F X Y Z

d

d
, , , then

the steady state condition =( )F X Y Z, , 0 would
establish a quantitative relationship between these
enzymes and the substrate. In the case of Michaelis–
Menten kinetics and if all enzymes work in the linear
or saturated region, the relationship established by the
steady state condition is simple and robust. In
particular, with two nodes in which X is the substrate
of Y, or of Y and X, the steady state condition can
establish a proportional relationship between X and Y
(figure 2(a) left). For three nodes in which X is the
substrate, the steady state condition can establish a
proportional relationship between Y and Z, or a linear
relationship among X, Y and Z (figure 2(a) right).
These two- and three-nodes motifs with robust
proportional or linear relationships between nodes
can serve as building blocks for the construction of
proportional networks. There are four such building
blocks of two-nodes and seven of three-nodes

Figure 2.Basic building blocks and proportional networks built from the building blocks. (a)Basic two-node and three-nodemotifs
with only one node is regulated. Colors of the nodes represent the categories: the regulated node (gray) and the regulating node
(white). (b)Different combinations of two-node and three-node basicmotifs to construct three-node proportional networks.
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(figure 2(a), see figures S1 and S2 for equations
describing them). For convenience of later discussion,
we refer the substrate nodeX as the regulated node and
the other nodes (Y andZ) as the regulating nodes.

Constructing three-node proportional networks
frombuilding blocks
We build three-node proportional networks by com-
bining two-node and three-node building blocks.
During combination, a regulating node can combine
with any other regulating node from other motifs and
maintain its regulating capability; a regulating node
can also combine with a regulated node from another
motif and form a hybrid node. The regulated nodes
cannot combine with each other among motifs. Note
that for an adaptive network, theremust be a node that
receives the input (we refer such node as the input
node). For the proportional networks combined from
the building blocks, only the regulating node can serve
as an input node; otherwise the input signal would
enter the equation for the regulated node, disrupting
the predetermined proportional or linear relationship.
To simplify the stability analyses, which will be
discussed later, we assume that there is no feedback to
the input node fromother nodes in the network.

There are three major ways of combining building
blocks to construct three-node proportional networks
(figure 2(b)). The first is the combination of two two-
node motifs: the two motifs can share the regulating
node which serves as the input node, or they can form
a hybrid node. The second way is the combination of
two three-node motifs. They share one regulating
node which is also the input node and the other two
nodes become hybrid nodes. The third way is the com-
bination of a two-node motif and a three-node motif.
In such case, one of the regulating nodes in the three-
node motif is the input node. The combined network
can have either one hybrid node or two hybrid nodes.
After enumerating all such combinations, we are able
to construct three-node proportional networks, which
are then subject to stability test.

Larger proportional networks with more than
three nodes can be constructed in multiple ways.
Before discussing them, let us first analyze adaptation
networks that are made from three-node proportional
networks. Any three-node proportional network can
form an adaptive four-node network by using any two
or three nodes of the three-node network to oppositely
regulate an output node.

Four-node adaptive networks from three-node
proportional networks
When a proportional network is built with the process
above, the parameters need to be tuned to guarantee
that (1) the steady state of each node is positive and (2)
the system is stable. If a proportional network passes
the check, after assigning opposite regulations from
the network nodes to an output node, the output can

adapt. As an example of adaptation with the mech-
anism of proportion, we summarize the generation of
four-node adaptive networks with three-node propor-
tional sub-networks here.

First, we analyze the stability of the three-node
proportional (node A, B and C) network. We refer
node A as the node receiving input and assume that (i)
there is no feedback to node A from other nodes so
that the stability of the network can be determined
easily, (ii) all Michaelis–Menten terms are in the linear
or saturated regions such that there are no nonlinear
terms in the equations. The ordinary differential
equations describing such a proportional system can
bewritten as:
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The Jacobianmatrix of the system is
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To make the system’s steady state stable, the real
parts of all the eigenvalues of the Jacobian matrix
should be negative, which means that a < 0,AA

a a+ < 0,BB CC a a b b- > 0.BB CC BC CB Besides, the
parameters should also satisfy certain constraints to
make the concentration of each node positive at steady

state:
b b a b
a a b b

=
-
-

>* *B A 0CB AC CC AB

BB CC BC CB

and

b b a b
a a b b

=
-
-

>* *C A 0BC AB BB AC

BB CC BC CB

(see supplementary

material for detailed analysis). We then choose the
three-node proportional networks with such para-
meter constraints.

After we add an output nodeD to the system, four-
node adaptive networks are created. In this section, we
first study the adaptive networks in which input node
A only regulates node B in the proportional sub-net-
work and the output nodeD is only regulated byA and
B. There are four classes of such topologies (figure 3):
(1) incoherent feedforward loops (IFFLs), (2) the com-
bination of an IFFL and a positive feedback loop
(PFBL), (3) the combination of an IFFL and a negative
feedback loop (NFBL), and (4) the combination of a
coherent feedforward loop (CFFL) and a NFBL. These
topologies have different dynamical characteristics.
We sampled a wide range of parameters to
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characterize the adaptation and they behaved well
under some ranges of parameter sets (figure S6). Note
that for all the networks we discuss, if other nodes reg-
ulate a certain node all positively, then there is a basal
enzyme inactivating this node. Such basal enzyme can
be replaced by a positive self-regulation combined
with an inhibitory basal enzyme (motif 3 in figure 2(a)
left). Our results do not include all such replacements
for simplicity. Below we analyze the networks’
characteristics.

Incoherent feedforward loops
For a pure IFFL, the output node is controlled through
two pathways (figure 3(a)). One is directly from the
input node A, which has a short time scale and
determines the transient response of the output when
the input signal changes. The other one is a multi-step
signal transduction from the input node. This pathway
has a relatively longer time scale and can cancel the
change of output due to the first pathway to make the
network adaptive. This cascade structure contributes

Figure 3. Four classes of four-node adaptive networks built with proportionalmotifs. The topologies and response dynamics of the
four-node adaptive networks for (a) IFFL, (b) IFFL combinedwithNFBL, (c) IFFL combinedwith PFBL and (d)CFFL combinedwith
NFBL. In the simulations throughout the text, input changes from0.5 to 0.6 at time=30.Other parameters are listed in the
supplementarymaterial.
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to improving the sensitivity of the adaptation system
by delaying the signal transmission time in the indirect
pathway.

An IFFL combinedwith a feedback loop
An IFFL can combine a NFBL or a PFBL to yield an
adaptive network (figures 3(b) and (c)). From analysis
of the Jacobian matrix, the eigenvalues of the stable
adaptive networks with a positive feedback are always
real numbers, which means there is no damped
oscillation in the behavior of such networks. However,
the eigenvalues of the stable adaptive networks with a
negative feedback can be complex numbers under
certain parameter sets so that damped oscillations can
emerge (see supplementary material). Abundant out-
put dynamics in biological systems remain attractive
puzzles, such as shift from oscillation to a sustained
state or even adaptation [26–28]. The IFFL coupled
NFBL may provide a flexible network to achieve
multi-dynamics with corresponding parameters been
tuned. Examples of simulations for each category are
illustrated infigures 3(b) and (c).

ACFFL combinedwith aNFBL
For all the networks above, IFFLs are involved in the
process of adaptation. However, we noted a special
case in figure 3(d), in which a CFFL, combined with a
NFBL, achieved adaptation.

In such a network, A inhibits B, so when the input
changes from a low to a high value, the concentration
of A increases and B decreases initially. However,
when the system reaches equilibrium, the concentra-
tion of B should be proportional to that of A which
increases with the input. This means that after a tran-
sient decrease, B will increase later on to a new steady
state. Such a transient decrease is illustrated in
figure 3(d). Because A inactivatesD, and B activatesD,
after the change of input, the transient decrease of B
can helpA further inactivateD and thusD can respond
to the change of input more strongly to improve the
sensitivity. The CFFL topology was also found in
three-node adaptive networks but with stricter para-
meter constraints than those of four-node ones (figure
S4 and supplementarymaterial).

Four-node adaptive networkswithA regulating
bothB andC
We summarized above the features of four-node
adaptive networks with only B regulated byA.We now
discuss the case in which A regulates both B and C.
Figure 4(a) lists such three-node proportional sub-
networks (In the networks, if other nodes regulate a
certain node all positively, and this node regulates itself
negatively, then such negative self-regulation can be
replaced by a basal enzyme inactivating this node or a
positive self-regulation combined with an inhibitory
basal enzyme; besides, for simplicity, the output node
D is not shown) whose stability has been approved

(supplementary material). Among the networks, the
two pathways from A to B and from A to C can either
be independent or not. When there is a negative
feedback betweenB andC, the networks can perform a
damped oscillation under certain range of parameters
after the change of input. When there is no interaction
between B and C or the interaction is not a negative
feedback, there cannot be damped oscillations. For the
networks in which A inactivates B, after the change of
input, the concentration of B decreases transiently and
then increases to reach equilibrium which is the
feature of the network in figure 3(d) (see figure S5 for
more architectures). Due to symmetry, the mirror
images of networks in figure 4(a) are also proportional
networks and are not shownhere.

Another thing to be noticed is that after we con-
struct the proportional network and adding one out-
put node to make it achieve adaptation, such output
can be regulated by any combinations of the nodes in
the proportional network as long as all the regulations
do not have the same signs. Examples can be seen in
figure 4(b). Such characteristic can make network
designmore flexible with different output steady states
and dynamics.

Large adaptive networks
So far we have built stable two-node and three-node
proportional networks. We proceed to present two
methods to construct larger proportional networks.
Thefirst is a logic extension of the two- and three-node
ones. For example, if we want to build four-node
proportional networks, we can identify the basic four-
node motifs that can establish a linear relationship at
steady state: k k k k+ + + =X Y Z W 0.X Y Z W Then
by combining one such motif with two other motifs
from the motif pools of two-, three- and four-nodes,
one obtains a potential four-node proportional net-
work. Three motifs establish three relationships
among the four nodes, and when solving three
equations for four nodes, we could get proportionality
relationship between any two of the four nodes. Such
method is in principle general and can be applied to
building proportional networks of arbitrary size. In
practice, however, this methodmay not be suitable for
large networks. It can be cumbersome tomatchmotifs
and it may be difficult to establish a linear relationship
simultaneously involving many nodes because that
would require many enzymes to regulate the same
substrate.

The other method is to build large proportional
networks modularly with smaller proportional net-
works (modules) that have already been built and
shown be to stable. For example, we could design a
ten-node proportional network as follows (figure 5).
First, we can divide the ten nodes into different groups
and each group has two or three nodes. Thus each
group can form a two or three-node proportional
module. Next we can link different groups to make a
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connected network. Because in each two-node and
three-node proportional network, there is at least one
node that can assume the task of receiving input, if we
connect this node with any one node in another group
in a way as to make these two nodes form a stable two-
nodemotif (motif 1, 3, 4 in figure 2(a) left), then a pro-
portional relationship can be established between
these two nodes and such proportion can spread over
the two connected groups. If all groups are connected
this way, we would have a ten-node proportional net-
work. Notice that there cannot be any feedback among
these groups, otherwise, we have an extra proportion
relationship which could contradict the proportion-
ality that has been established. So the groups them-
selves can only form a directed rooted tree topology in
which the input node in the root receives the external
signal of the whole system. Obviously, the ten-node
network can serve as a module for constructing even
larger networks. Such modular design approach
makes it easier to create large proportional networks

from small ones that have been built. Because in the
process, each group is already a stable proportional
network, after we link different groups with a stable
two-node motif, the stability of the whole system is
guaranteed. Note also that even a systemwithmultiple
adaptive outputs with varying steady state values and
dynamics can be constructed from a proportional sub-
network (figure 5 bottom network). This design could
help to integratemultiple nodes and/or deliver diverse
outputs.

Biological examples of adaptation through
proportion
There are real examples for this kind of adaptive
networks. One is the adaptation of the chemotaxis
signaling pathway in Dictyostelium discoideum
(figure 6(a)). When the concentration of the chemoat-
tractant cAMP changes, the dynamics of activated Ras,
Ras-GTP shows adaptation. In the model from
previous study [29–32], the cAMP signal through the

Figure 4.Networks with nodeA regulating bothB andC. (a)Three-node proportional sub-networks. (b)Examples of networks in
which nodeD is regulated by combinations of upstreamnodesA,B andC. These three networks share the same proportional sub-
network equations but with different output node equations. The dynamics of the three networks are shownunder each network.
Parameters in the simulations are listed in the supplementarymaterial.
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receptor R activates both GTP-exchange factor for
Ras, RasGEF and GTPase activating protein for Ras,
RasGAP.While RasGEF can activate RasGTP, RasGAP
can convert active RasGTP to the inactive RasGDP.
Thus the system is a four-node IFFL that can achieve
adaptation through the proportion mechanism
among bound receptors, concentrations of RasGAP
and RasGEF [33] (figure 6(a)). Such model is consis-
tent with the local excitation, global inhibition model
for gradient sensing [32] and provides experimental
evidence that proportion can play a role in adaptive
process.

Hill coefficientn>1
So far, we have set the Hill coefficient n to be 1 to
establish the proportional relationship. However, in
biological world, cooperative regulations are abundant

which indicates larger Hill coefficients. Previous study
of three-node adaptive networks showed that Hill
coefficient n>1 hampers the linearity required to
establish the proportional relationship necessary in
the IFFLP class [25]. We note that this restriction on
Hill coefficient (n=1) can be relaxed in larger
adaptive networks, as with more nodes proportional
relationships could be established between powers of
concentrations. For example, in the biological exam-
ple above (figure 6(a)), as long as the two intermediate
nodes are regulated with the sameHill coefficient, they
can still form a proportional relationship and make
the output adapt.

To further illustrate how Hill coefficients n>1
can exist in proportional adaptive networks, we ana-
lyze another example shown in figure 6(b) (left). Let us
assume the equations for nodesB andC are:

Figure 5. Larger networks built hierarchically from small proportionalmodules. Amultiple-output adaptive networkwith a
proportional sub-network (in the bottom circle), which is in turn built from small proportionalmodules. Parameters in the
simulations are listed in the supplementarymaterial.
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If the first terms on the right-hand sides in both
equations are in the saturated region and the second
terms are in the linear region, then µ* * *A C B nB and

µ* *A C ,nC leading to µ -* *B C .n n 1B C When
= -n n 1,B C µ* *B C makes the output node adapt.

When the condition = -n n 1B C is not strictly
satisfied, the system could not achieve perfect adapta-
tion (figure S7).

With more nodes, one could have more choices
and combinations of Hill coefficients. Consider a
seven-node network shown infigure 6(b) (right):

=
-

- +

-
+

=
-

- +

-
+

=
-

- +

-
+

=
-

- +

-
+

B

t
k A

B

B K

k F
B

B K

C

t
k B

C

C K

k F
C

C K

D

t
k C

D

D K

k F
D

D K

G

t
k A

G

G K

k F
G

G K

d

d

1

1

d

d

1

1

d

d

1

1

d

d

1

1

AB
AB

F B B

n

n
F B
n

BC
BC

F C C

n

n
F C
n

CD
CD

F D D

n

n
F D
n

AG
AG

F G G

n

n
F G
n

B

B

B
B
B

C

C

C
C
C

D

D

D
D
D

G

G

G
G
G

Figure 6.Abiological example of a proportional adaptive network and adaptive networks with differentHill coefficients. (a)
Chemotaxis signaling pathway inDictyostelium discoideum and the simplified network. (b)A four-node and a seven-node adaptive
networkwithHill coefficient larger than 1. Parameters in the simulations are listed in the supplementarymaterial.
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where Fi is basal inactivating enzyme for node i. If the
first terms on the right-hand sides in equations
describing nodes B toH are in the saturated region and
the second terms are in the linear region, then

µ* *A B ,nB µ* *B C ,nC µ* *C D ,nD µ* *A G nG and
µ* *G H ,nH lead to µ* *A D ,n n nB C D µ* *A H .n nG H

When =n n n n n ,B DC G H µD H leads to the adapta-
tion of the output node J. Similarly, when the Hill
coefficients deviate from the strict condition for
perfect adaptation, the system’s ability to adapt
decreases (figure S8).

Conclusion

Understanding how complex biological networks
carry out sophisticated regulatory functions is a major
goal in systems biology, in which computational
approaches have been playing a unique, indispensable
and increasingly critical role. A deeper quantitative
understanding towards this end can also provide
useful tools for synthetic biologists. Previous study on
three-node enzymatic networks revealed two robust
solutions that can achieve perfect adaptation: NFFLB
and IFFLP [25]. In an extensive search for four-node
adaptive networks using an evolutionary algorithm
(data not shown), we found repeatedly adaptive net-
works with two or more nodes forming a proportion-
ality sub-network, which can be viewed as a
generalization of the IFFLP mechanism. These results
inspired us to perform the current systematic study on
constructing adaptive networks from proportionality
sub-networks. There are many ways to form propor-
tionality networks of different sizes. Instead of enu-
merating them, we focused on the methodology of
building them up using basic motifs and modules.
Self-consistent combinations of motifs and modules
can generate larger and larger proportional and
adaptive networks. Our results significantly enriched
the repertoire of adaptive networks of larger sizes. We
analyzed some example networks and found that they
display a variety of rich dynamic features as well as
more relaxed parameter constraints.

Proportional relationship can play important roles
in adaptive networks with other regulatory forms, e.g.
transcriptional regulation (supplementary material),
or in functions other than adaptation, such as circa-
dian clocks [34] and stress-responsive pathways [35].
How cells generate and regulate the proportional rela-
tionship in various settings are of general interest.

Investigators have used the approach of synthetic biol-
ogy to synthesize adaptive networks based on the
IFFLP motif [36]. The networks studied in this paper
provide a rich toolbox for constructing proportional
and adaptive networks. Besides, when synthetic biol-
ogy is aiming at constructing larger and more compli-
cated functional networks, how to coordinate
different modules and components becomes one of
the key points. In the bottom-up module-design
approach we provide here, different components are
coordinated to create large-scale networks performing
adaptation robustly without disrupting each module
whose proportionality is still remained. These results
not only shed light in understanding natural adaptive
networks, but also provide a systematic tool for
designing synthetic networks of versatile functional
features.
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