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A quantitative understanding of evolution rests on the analysis of the mutation 

accumulation process in biological populations, but is largely limited to high-frequency 

mutations due to the resolution of conventional sequencing technologies. Here, we 

examine the mutation composition of a poliovirus population over multiple passages 

using a highly-accurate sequencing strategy, that enables detection of up to 99% of all 

possible mutations, most of which are present at low-frequency. This data informs a 

mathematical model describing trajectory patterns of individual mutations to 

understand the type of interactions shaping population dynamics. We identify 

mutations consistent with a locus-independent behavior, and others deviating from that 

simple model by interactions. Clonal interference, followed by hitchhiking, appear to be 

the most prevalent interactions in the virus population. Epistasis, while presents, but 

does not significantly affect the distribution of mutational fitness on the short time scale 

examined in our study. Our study provides a comprehensive analysis of the allelic 

composition and how mutation rate, fitness, epistasis, clonal interference and 

hitchhiking influence population dynamics and evolution. 

 

Understanding how mutations accumulate in biological populations is a central task in 

evolutionary biology. Factors such as mutation-selection balance1-4, genetic drift5-7, epistasis8-

13, clonal interference14-22 and hitchhiking17,23, together determine the frequencies and 

dynamics of mutations in asexual populations. Accordingly, examining the role of these 

factors is critical to understand evolution16,19,22,24-27. However, conventional sequencing 

technologies have so far limited researchers to consider only high-frequency mutations8-
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11,16,17, ignoring the contribution and dynamics of minor alleles. 

 

To reveal the principles of virus population dynamics and evolution across the entire 

spectrum of mutational abundances, we measured the genetic composition of 37 poliovirus 

populations obtained by serial passage using a highly-accurate sequencing technique. Totally 

22,118 genetic variants are identified, most of which are of low abundance. A mathematical 

model is developed to understand and identify genetic interactions controlling distinct 

mutational trajectories. The overall impact of these genetic interaction factors on fitness 

landscape is also assessed. 

 

Results 

A highly-accurate sequencing strategy enables the detection of both high and low 

abundance genetic variants that follow complex dynamic patterns. To systematically 

investigate mutation dynamics in asexual populations we used CirSeq, a population 

sequencing method that enables reliable frequency estimations of both high and low 

abundance genetic variants28,29. We examined the genetic composition of 37 poliovirus 

populations obtained by serial passage in HeLa S3 cells at low multiplicity of infection 

(m.o.i. 0.1) (Supplementary Fig. 1) and large population size (106). Given the high mutation 

rates per locus (~10-6-10-4), it was possible to calculate the frequency of a large number of 

genetic variants (22,118 from a total of 22,320 possible variants) (Methods). The majority of 

undetected variants mapped to the ends of the genome where CirSeq yielded low coverage. 
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Based on the frequency of individual mutations we distinguished different classes of 

substitutions. First, a small number of mutations (~15) were observed at relatively high 

frequency (>0.04) (Fig. 1a). Within this high-frequency variant group some mutations follow 

a steady increase in frequency, consistent with the expected behavior of beneficial mutations 

or hitchhikers. Genetic hitchhiking17,23 occurs when a mutation changes frequency not 

because it is itself under natural selection, but because it is in the same genome with another 

mutation that is favorable under selection. Other mutations decrease in frequency after an 

apparent increase, a behavior consistent with clonal interference, when two (or more) 

mutations arise independently in different genomes, and if they are not combined in a single 

genome, their competition typically leads to a decrease in their frequencies and disappearance 

of some alleles from the population. 

 

Under our experimental conditions, the vast majority of mutations are present at very low 

abundances, and they follow complex dynamic patterns (Fig. 1b). We thus set out to 

understand the genetic interactions controlling distinct mutational trajectories across the 

entire spectrum of mutational abundances to uncover basic principles of virus population 

dynamics and evolution. Accordingly, we developed a mathematical model of mutation 

dynamics. Our experimental design, low m.o.i. and large population size at each passage, was 

designed to minimize genetic drift5, complementation30 and recombination31,32 between 

individuals in the population. Given that the change in frequency of a given variant over time 

is determined by mutation rate and selection (“unlinked mutations”, Fig. 2a), deviations from 

the expected pattern may stem from its interactions with other mutations (Fig. 2b).  
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A mathematical model of mutation dynamics. We considered a virus population of 

genome length L with two possible alleles at a locus k, wild type and mutant, whose 

frequencies are denoted as 𝑧"(𝑡) and 𝑦"(𝑡) at passage t, respectively. The number of the 

possible genotypes containing each allele at this locus is 2()*, and the abundance of these 

genotypes would change with time, thus making the total allele frequency and the fitness 

associated with each allele time-dependent. Forward and reverse mutation rates at this locus 

are indicated as 𝜇", and 𝜇"), respectively (Supplementary Fig. 2a). The change in allele 

frequencies over time can be written as: 

𝑑𝑦"(𝑡)
𝑑𝑡 = (1 − 𝜇"))𝑓23

4 (𝑡)𝑦"(𝑡) + 𝜇",𝑓63
4 (𝑡)𝑧"(𝑡) − 𝑦"(𝑡),	

𝑑𝑧"(𝑡)
𝑑𝑡 = (1 − 𝜇",)𝑓63

4 (𝑡)𝑧"(𝑡) + 𝜇")𝑓23
4 (𝑡)𝑦"(𝑡) − 𝑧"(𝑡), 

(1) 

where 𝑓23
4 (𝑡) and 𝑓63

4 (𝑡) are the relative fitness of 𝑦"(𝑡) and 𝑧"(𝑡) over all possible genotypes 

containing each allele (Supplementary Fig. 2b). The dynamics of 𝑦"(𝑡) are governed by 

mutant offspring produced by 𝑦"(𝑡), mutants produced by 𝑧"(𝑡) and the dilution term that 

keeps the population size constant. Although the model assumes two alleles at each locus, it 

can naturally be applied to situations with multiple alleles.  

 

One-locus model for locus independence behavior. Previous studies have suggested that 

mutations with “unlinked” trajectories predicted by one-locus model may appear only for 

unrealistically large populations over a long time scale33. However, under our experimental 

conditions, we observed a number of mutations which behavior can be described by a single 
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locus model, i.e., mutations behave independent and unlinked (Supplementary Fig. 2c and 

Methods). In these examples, neutral mutations accumulate linearly, beneficial mutations 

grow exponentially before saturating and asymptotically reaching fixation and detrimental 

mutations accumulate until reaching mutation-selection balance (Fig. 3a).  

 

The assumption of mutations behaving independently from each other is reasonable during 

early passages, when the probability of more than one mutation per genome is low28. 

However, as time progresses, multiple mutations are likely to accumulate in single 

genomes28. In such a situation, a trajectory predicted by the locus-independent model will be 

still valid for this mutation if it does not have interactions with other mutations (C. Chang, et 

al., manuscript in preparation). On the other hand, epistasis between individual mutations, 

defined based on the effect of one allele on the fitness of another, is considered to be one of 

the mechanisms responsible for deviations from the independent locus model (Fig. 2b,c). 

Epistatic interactions have been proposed to play an important role in evolution8-11 but their 

effects on minor alleles and on the overall population dynamics have not been experimentally 

examined in detail.  

 

Two-loci interaction model. To examine the contribution of interactions between mutations to 

virus population composition, we developed a two-loci interaction model (Supplementary 

Fig. 2c and Methods). We initially focused on epistasis between two beneficial mutations and 

between a beneficial and a detrimental mutation. Epitasis between two detrimental mutations 

is difficult to detected from the present data, since the abundance of detrimental mutations is 
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usually low. To detect epistatic effects on a given mutation (b), its “modifier” (the interacting 

mutation, a) needs to be at high enough frequency for the double mutant (ab) to be generated 

and be detected over background, thus a should be at higher frequency than that expected for 

a detrimental mutation (Supplementary Fig. 7a). Accordingly, the frequency of the mutation 

b, 𝑦9(𝑡), is given by the sum of the frequency of b when locus a is wild type (A) plus the 

frequency of the double mutant when locus a is mutant (a), thus giving 

𝑦9(𝑡) = [𝑏|𝐴](𝑡) × [𝐴](𝑡) + [𝑎𝑏|𝑎](𝑡) × [𝑎](𝑡), (2) 

where [𝑏|𝐴] and [𝑎𝑏|𝑎] are the conditional frequencies of b in the single and double mutants, 

and all terms on the right hand of the equation cannot be detected under our experimental 

conditions (i.e., latent variables). Mathematically, either of these above-mentioned two terms 

of conditional frequencies could be viewed as a variation of the one-locus model and thus 

equations for the latter could be directly used for the former, the frequencies of which can be 

determined by the relative fitness of mutant b in each genetic background (C. Chang, et al., 

manuscript in preparation). For example, the relative fitness of mutant b with genetic 

background A (fb|A) is defined as the fitness of the single mutant b, which determines the 

frequency of [b|A] (Fig. 2d), without any effect from other modifying mutations 

(“modifiers”; e.g. a). On the other hand, the relative fitness of mutant b with genetic 

background a (fab|a) is defined as the fitness of double mutant ab divided by the fitness of 

mutant a, with the effect from modifier a that epistasis has been implicitly considered 

(determining the frequencies of [𝑎𝑏|𝑎]; 	Fig. 2d). Considering the trajectory of b, starting 

from a frequency dictated by the mutation rate at which b is acquired, fitness of individual 

mutations dominates the trajectory of b until the double mutant ab is high enough in the 
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population. After a transition stage, where the abundance of the single mutant b and double 

mutant ab are at the same order (see the crosses of cyan and pink curves in Fig. 2b and in 

Supplementary Figs. 4-6), the fitness of b will be modified and dominated by the interaction 

with a. If no epistasis is present, fb|A is expected to be equal to fab|a (Fig. 2d). For a detrimental 

mutation, the locus-independent model approximates well in the presence of a second 

mutation on the same genome (Supplementary Fig. 8a). On the other hand, for a neutral or a 

beneficial mutation, its trajectory could be slightly modified by another (beneficial) mutation 

on the same genome because of non-negligible higher-order terms of the hitchhiking effect in 

a deterministic numerical trajectory  (Supplementary Fig. 8b,c; also C. Chang, et al., 

manuscript in preparation). These higher-order terms of hitchhiking, however, may not 

present in stochastic simulations in finite-sized population (Supplementary Fig. 8e), reducing 

the two-loci model to locus independent model in such a situation. Regardless the fitness, if 

the mutation frequency is modified by epistasis, it would violate the locus independence 

model and its frequency will deviate from the expectation without epistasis (Supplementary 

Figs. 4-6).  

 

Epistasis between beneficial and detrimental mutations. Our model describes, and our 

data fits, several distinct types (definitions in Supplementary Table 3) and strengths of 

epistasis (Fig. 3c). Pairwise strong epistasis between beneficial and detrimental mutations 

lead to trajectory shifting of the detrimental mutation from the mutation-selection balance 

that it is expected to reach in the case of no mutational interaction (compare Fig. 3a, U to C at 

position 2509 with Fig. 3c, left three panels). Epistasis modifies the trajectories of several 
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mutations that do not longer fit to a one-locus model. We find examples of detrimental 

mutations under positive epistasis reaching a frequency higher than its original mutation-

selection balance (Fig. 3c, A to G at position 3985), or that even behave as neutral (Fig. 3c, A 

to G at position 4269, compensated mutation) or beneficial (Fig. 3c, C to U at position 5026). 

Conversely, a negative interaction leads to a lower balance, although is not observed in our 

data (an example numerical trajectory in the lower right panel of Supplementary Fig. 4; 

however, we also have real-data examples that be fitted by the clonal interference model as 

well as the model of detrimental mutation with negative interaction, with the fitting of the 

former better than the latter in these cases; see Supplementary Figs. 13-14).  

 

To further examine the two-loci interaction model we conducted a number of simulations 

where parameters and variables can be thoroughly examined. We found that genetic 

interactions for a detrimental mutation with different beneficial mutations could lead to 

similar trajectories to each other (Supplementary Fig. 9). However, given this complexity, we 

are able to assess with sufficient confidence the strength of effective epistasis exerted at 

individual loci rather than obtaining specific pairs of interacting mutations (Methods). 

 

Clonal interference and hitchhiking. In addition to epistasis, clonal interference and 

hitchhiking are important and pervasive factors in asexual evolution17. In fact, we identified 

clonal interference and hitchhiking based on the specific characteristics of anomalous 

mutational trajectories, which also deviates from the locus independent mutational behavior 

(Fig. 2e,f and Supplementary Figs. 4-6). For instance, following a characteristic delay, clonal 
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interference may reduce the frequency of mutations that are competing with other, fitter or 

more abundant, variants. In one example, the abundance of C5712A increase initially and 

then decrease over time (Fig. 3b). Our two-loci model (Fig. 2e, left panel) and simulations 

(“Clonal interference II” in Supplementary Fig. 5 and “Clonal interference III” in 

Supplementary Fig. 6), describe this trajectory considering that the double mutant ab never 

appeared in the population, which is one of the basic assumptions for clonal interference. 

However, we also observed trajectories in which some mutation frequency increase following 

an initial decrease (see Fig. 3b, neutral: U to C at position 2650; detrimental: G to A at 

position 1552; beneficial: G to U at position 3173 and U to C at position 2065). Our model 

suggests that in this case the double mutant ab is formed late or formed on time or early but 

its frequency is initially low due to clonal interference, thus a decrease is initially observed, 

but the formation of the double mutant eventually corrects that trajectory (right panel of Fig. 

2e, pink arrow; and Supplementary Figs. 4-6). Accordingly, to identify mutations modified 

by clonal interference, we consider these two scenarios by introducing in our model a term 

describing a “delayed effect” of the formation of double mutant ab. Thus, as clonal 

interference has the effect of delaying the emergence of the double mutant, we replaced in 

equation (2) the conditional frequency [𝑎𝑏|𝑎](𝑡) with [𝑎𝑏|𝑎](𝑡 − 𝑑𝑒𝑙𝑎𝑦), to include an 

explicit time delay, with the time unit being number of passages. In the experimental data, we 

are able to observe the increase-decrease-increase pattern benefiting from the exceptionally 

high per-locus mutation rate. 
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On the other hand, hitchhiking occurs when a mutation that is not under natural selection 

links to another selectively favorable mutation. Besides neutral mutations, beneficial or 

detrimental mutations can also change frequencies by linking to another beneficial mutation 

(Supplementary Figs. 4-6; also see McDonald, Rice and Desai32). Such a mutation can 

accumulates faster or reach higher frequency than it would have if it were only subject to its 

own selection, or even be able to be fixed in the population. In the context of the two-loci 

model, hitchhiking is equivalent to a nonzero frequency of double mutant ab (left panel of 

Fig. 2f). For a large-sized asexual population with minimized recombination, once mutant a 

reach high abundance, hitchhiking is unavoidable since the double mutant ab is natural to 

happen because of high per-locus mutation rate. It makes most, if not all, mutation 

trajectories examples of hitchhiking. For example, the trajectory of a mutation with no 

interaction seems to be unlinked (the green curve in Fig. 2b), but its genetic constitution is 

initially the single mutant (cyan curve) and then the double mutant (the purple curve). Thus, 

this linked mutation can have an “unlinked” trajectory because of hitchhiking. Similarly, 

mutations with epistasis or even clonal interference can be examples of hitchhiking, as long 

as they have nonzero frequencies of double mutant ab (see the purple curves in 

Supplementary Figs. 4-6). The only situation explicitly not belonging to hitchhiking is that 

clonal interference completely prevent the present of the double mutant. Thus, it would be 

improper to use hitchhiking to describe all co-occurrence phenomena because its effect is so 

broad. We adopt a narrower and more specific definition of hitchhiking in our paper. For a 

given mutant, if its trajectory can be better explained by a hitchhiking model of which its 

double mutant frequency (the purple curve in Fig. 2f) is higher than that predicted by the 
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model without interaction (the light purple curve), it will be considered under hitchhiking. 

The initial frequency of [𝑎𝑏|𝑎] in the two-loci model is the key parameter to describe and 

approximate the effect of hitchhiking on a mutation trajectory that deviates from an 

“unlinked” behavior (Methods). In the data, we find examples of hitchhiking for neutral 

(U673C; semi-log plot in Fig. 3b and linear plot in Supplementary Fig. 11b), beneficial 

(C3942U in Fig. 3b) and detrimental mutations (A3814G in Fig. 3b). 

 

We further expect that many epistasis events related to beneficial mutations to be masked by 

clonal interference or hitchhiking, and thus are unlikely to be identified (Supplementary 

Table 11).  Beneficial-to-beneficial mutations (𝑓I|J > 1, 𝑓LI|L > 1), both positive and 

negative epistasis, are vulnerable to the effect of clonal interference and can have 

deformation in trajectories when such an effect is present (Supplementary Fig. 10a). Even if 

the effect of clonal interference is not introduced, beneficial-to-beneficial mutations with 

negative epistasis or beneficial-to-lethal mutations (𝑓I|J > 1, 𝑓LI|L ≈ 0), can have similar 

trajectories to that of non-epistasis mutations under clonal interference or hitchhiking in 

simulation (Supplementary Fig. 10b,c). However, we were able to detect beneficial-to-

detrimental mutations (𝑓I|J > 1, 𝑓LI|L < 1;	Fig. 3c, U to C at position 6036 is an example; 

also see Supplementary Table 8b). 

 

In general, clonal interference and hitchhiking are not thought to act on one mutation 

simultaneously, since the former would slow or even prevent the accumulation of the double 

mutant, but the latter, on the other hand, would improve the accumulation (Fig. 2b). In spite 
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of these general considerations, as is mentioned above, it may happen in some conditions, 

that trajectories under clonal interference, hitchhiking or epistasis may appear similar. Thus, 

whenever a mutation can be classified, distinguishing between clonal interference, 

hitchhiking and epistasis is critical to understand the mechanisms controlling virus population 

dynamics.  

 

Model selection to determine the best interaction model for a mutation trajectory. For 

this purpose, we have devised a model selection procedure based on one-locus and two-loci 

models to determine the best interaction model for each mutation’s trajectory (Methods). This 

consists of a scoring procedure of models with increasing complexity, where complexity here 

is measured by the type of the genetic interaction and the number of parameters allowed in 

the model (we use 6 levels of complexity, see Supplementary Table 1). Every possible 

interaction (no interaction, clonal interference, hitchhiking, and positive/negative epistasis) 

was considered for mutations at every locus. Model fitting was performed in both linear and 

log space to properly consider the weights of both high and low frequency data. For models 

of the same level of complexity, the best model is selected based on goodness of fitting in 

both linear and log space in order to properly consider data of both high and low abundance. 

For models at different complexity levels, a Bayesian Information Criterion34,35 is also used 

to assess significance of model selection. This method tends to penalize a more complex 

model (with more parameters) unless it fits significantly better than a less complex one. 

Notably, in order to guarantee the accuracy of our epistasis predictions, if a mutational 

trajectory can be better explained by clonal interference or hitchhiking, it will be classified as 
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non-epistatic even in the case where the fit to either of these two models is not statistically 

different from the fit to the epistatic model, although the numbers of parameters are the same 

(Supplementary Table 1). To exemplify our procedure let us consider the mutant at position 

4269 (A to G; Fig. 3c). By fitting in both linear and log space, the best candidate model of 

each level of complexity is obtained (Fig. 4 and Supplementary Fig. 12). Among those, the 

detrimental-to-beneficial two-loci epistatic model stands out as the one that fits the data best 

(significantly better than the competitive “neutral mutation under hitchhiking” model), with 

its fab|a very close to 1, thus indicating that it is a compensated mutation (Supplementary 

Table 3).  

 

Landscape. Under the assumptions of the model, our classification uncovers the underlying 

evolutionary dynamics for the majority of mutation trajectories of the data (Supplementary 

Table 5). For mutations having a trajectory that allows for assessment of fitness (N=1226), 

non-epistatic mutations count for the majority (N=1198). Half of these mutations are under 

clonal interference (N=644), the majority of which are beneficial or neutral mutations (Fig. 

5a,b). Most of the inferred hitchhikers (N=329) are either neutral or deleterious variants, with 

a few of them being beneficial (Fig. 5a,b). Most of the inferred locus-independent mutations 

have a fitness near neutral (Fig. 5a). 

 

Mutations under epistasis represent a relatively small proportion of the total (N=28; 2.3%), 

mostly being positive interactions (Supplementary Fig. 15d). Analysis of fitness landscapes 

of fb|A and fab|a showed that the overall distribution of mutational effects is not significantly 
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affected by epistasis in the time scale of our experiments (Fig. 5a,b), during which several 

mutations almost fixed (Fig. 1a), suggesting that epistasis is not a fast time-scale factor for 

changing fitness landscape in evolution. Interestingly, we also observed a compensatory 

effect of epistasis, resulting in an increase in fitness for many detrimental mutants (Fig. 5c).  

 

Discussion 

Over 60% of all mutations were classified as mutation with flat trajectory, those that show 

low frequency and no observable initial accumulation phase (Fig 3c, right panel), which are 

predicted as detrimental mutations with low fitness under the locus independence assumption 

(≤0.6; estimated by Eq. (7)). This includes a large number of mutations that are considered to 

be with high mutation rates (Supplementary Table 6; the magnitude of mutation rates of 

different mutation types is available in Acevedo et al.28). Under the locus independence 

assumption, we show that both mutation rate (peaked at 10)Q in simulation) and strong 

negative selection could contribute to the formation of a mutation with flat trajectory, which 

could be further enhanced by the presence of clonal interference (Supplementary Table 14). 

However, for a detrimental mutation, when the mutation rate is high (≥ 10)Q), clonal 

interference solely cannot explain a mutation with flat trajectory unless its negative selection 

is strong enough (Supplementary Table 14), indicating loci with high mutation rates are 

generally under strong negative selection. Alternatively, hypermutation could introduce 

multiple C to U or G to A mutations (those with the highest mutation rates in Acevedo et 

al.28) to the same genome, thus largely increasing the likelihood for the aggregated mutations 

being detrimental and could lead to a flat trajectory if the overall fitness is in the parameter 
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range that no initial accumulation phase is observed. Considering that the observation of 

mutations with flat trajectory is not limited to C to U or G to A (Supplementary Table 6), 

both mechanisms could contribute to the observation of pervasive mutations with flat 

trajectories. Interestingly, we observed the enrichment of mutations with flat trajectory in 

coding regions of capsid proteins (Supplementary Fig. 17).  

 

In our study, the number of loci in the interaction model is set to be two. Though higher-order 

epistasis involving multiple loci is possible, we expect this higher dimension interactions to 

be infrequent under our experimental conditions (e.g. 37 passages), given that these 

mutations need to be of high abundance (Supplementary Fig. 7b).  

 

Overall, our analysis revealed the enormous dynamical range of complex interactions of a 

viral population. This is even more striking considering the weakly-selective nature of the 

experimental environment. While low selection allows for wide exploration of the genetic 

landscape with little or no penalty, our work highlights the exceptional potential of genetic 

interactions that can occur during an infection. Hence clonal interference appears from our 

analysis to be the most prevalent means of interaction between mutations, followed by 

genetic hitchhiking. Epistasis is present, but not pervasive, and does not significantly affect 

the distribution of mutational fitness on the short time scale examined here. 

 

We have shown, using a combination of CirSeq data analysis and mathematical modeling, 

that a variety of mutational dynamics can be assessed through analysis of the trajectories of 
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individual mutants. Despite the fact that pairs of interacting mutations are elusive, by taking 

into account the major factors including mutation rate, fitness, epistasis, clonal interference 

and hitchhiking (Fig. 2), information about the evolutionary forces acting on individual 

mutations can be revealed. 
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METHODS 

Passaging of poliovirus population. Poliovirus type 1 Mahoney populations were obtained 

by passaging through HeLa S3 cells as described in Acevedo et al.28. Specifically, a single 

wild type poliovirus clone was isolated by plaque purification (passage 0) and amplified to 

obtain a high titer stock (P1). For all subsequent passages, 106 plaque forming units (p.f.u.) 

were used to infect a HeLa S3 monolayer at a multiplicity of infection (m.o.i.) 0.1 for 8 hours 

(approximately one replication cycle). Virus was harvested by three freeze-thaw cycles and 

clearing of the supernatant by centrifugation.  

 

Production and sequencing of CirSeq libraries. As described in Acevedo et al.28, each 

passage was amplified in HeLa S3 by a single high m.o.i. infection. At 6 hours post infection, 

total cellular RNA was isolated by TRIzol extraction and virus RNA was enriched by poly(A) 

purification. Libraries were produced as described in Acevedo and Andino29. Briefly, virus 

RNA was fragmented, circularized and reverse-transcribed to generate cDNAs containing 

tandemly-repeated virus sequences. These cDNAs were further cloned by second strand 

synthesis, end repair, dA-tailing and ligation of Illumina TruSeq indexed adaptors. Libraries 

were sequenced on either the MiSeq or HiSeq 2500 platforms for 300-323 cycles. 

 

Quality control of the data. Mutations which show long periods of absence (that is, >10 

passages) have been removed from the analysis. This brings the number of mutations down to 

from 22,118 to 21,031. We also removed all data of passage 35 from analysis because it has 

unreasonable bias.  
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Establishment and observability of a mutant. According to the theoretical analysis of 

Desai and Fisher3, a beneficial mutation with number larger than 𝑛~1/𝑠 can be established in 

a population with a sufficiently small mutation rate (s is the selection coefficient). Under the 

effect of genetic drift, a lineage with size n would need n generations to change by order n. A 

beneficial mutation with selection coefficient s on average can generate ns more offspring per 

generation, and 𝑛W𝑠 for n generations. Thus, a beneficial mutation can establish when 𝑛W𝑠 >n 

or 𝑛 > 1/𝑠.  

 

In our disease model, differently from the work of Desai and Fisher, mutation rate is not 

negligible and needs to be explicitly considered as follows. For a beneficial mutation, the 

number of de novo alleles obtained at mutation rate 𝜇 for n generations would be 𝜇𝑃𝑛, where 

P is the total number of individuals in the population. Considering both contributions by 

mutation rate and by selection, 𝜇𝑃𝑛 + 𝑛Ws > n is needed for establishment, i.e., 𝑛 > *)[\
]

 . 

Within our parameters range, once a beneficial mutation has emerged, the effect of genetic 

drift is limited, since 𝜇𝑃 ≥ 1. Thus, the contribution by mutation rate along is sufficient for 

the establishment and the observability of a beneficial mutation. We further consider the 

stochasticity of generation by de novo mutations by assuming that the number of offspring 

contributed by mutation rate is Poisson distributed with average 𝜇𝑃. When 𝜇𝑃 = 3, the 

probability of generating no offspring is about 5%. This implies that, for mutation rate larger 

than , a beneficial mutation will always be present in the population and escape from 

the fate of extinction by genetic drift. This analysis does not consider the occurrence of 

-63 10´
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extinction by clonal interference.  

 

For a neutral mutation to establish in the population, one also needs to have 𝜇𝑃 > 1. This 

condition needs to hold in order for a detrimental and even lethal mutation to survive and 

present in a population, and helps explaining how the whole spectrum of mutations, including 

strongly deleterious, can be observed in our data. 

 

For a double mutant, it is able to establish and be observed in the population if the abundance 

of genomes with the “dominant” mutation(s) (denoted as A) and the mutation rate of the 

“subordinated” mutation (still denoted as 𝜇) is large. Consider that A would be smaller than 

the total population size P, 𝜇 needs to be higher than that required by the single mutant 

analysis. 

 

A mathematical model to capture mutation dynamics. For each passage of the serial 

passage experiments, 106 p.f.u. were used to infect HeLa cells with 0.1 m.o.i., minimizing 

genetic drift, complementation and recombination between individuals in the population. 

Within one passage, when a virus successfully infects a cell, it can generate tens of thousands 

of offsprings at the end of this passage. However, only a tiny fraction would be sampled to 

infect cells in the next passage, given that the p.f.u. to infect each passage is fixed. In 

evolution literatures, the definition of fitness is based on the number of reproducible 

offsprings. Thus, in this system, the average fitness of the population could be normalized to 

1, and the fitness of a specific mutant or genotype needs to be normalized by the total number 
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of offsprings generated by all viruses during this passage. 

 

Let 𝑦"(𝑡) and 𝑧"(𝑡) denote, respectively, the frequency of mutant and wild type alleles at 

locus k at passage t. Their time-dependent average fitness are 𝑓23
4 (𝑡) and 𝑓63

4 (𝑡). The forward 

and reverse mutation rates at locus k are 𝜇", and 𝜇"). Thus, in passage 𝑡 + 1, the allele 

frequency could be given by 

𝑦"(𝑡 + 1) = (1 − 𝜇"))𝑓23
4 (𝑡)𝑦"(𝑡) + 𝜇",𝑓63

4 (𝑡)𝑧"(𝑡),	

𝑧"(𝑡 + 1) = (1 − 𝜇",)𝑓63
4 (𝑡)𝑧"(𝑡) + 𝜇")𝑓23

4 (𝑡)𝑦"(𝑡). 
(3) 

By subtracting the frequency at passage t for each equation in Eq. (3) and use a continuum 

approximation, we could easily get Eq. (1) in the main text. 

 

Although Eq. (1) is too complex to be solved analytically, model reduction techniques allow 

for approximate solution (Supplementary Fig. 2c).  

 

One-locus model. When a mutation at locus k is independent, i.e. it does not interact with 

any other mutation at other loci, it is not a hitchhiker and it is not under clonal interference, 

the ratio between passage-dependent fitness can be simplified as 𝑓23
4 (𝑡)/𝑓63

4 (𝑡) = 𝑓", i.e., the 

mutant’s own fitness. Also, backward mutations are neglected in our analysis. Under locus 

independence, the full model can be reduced to one-locus model. This reduction holds even 

when the population size is finite (C. Chang, et al., manuscript in preparation). 

 

A locus-independent neutral mutation does not change the fitness of the genome. Thus, its 
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accumulation is linear in time and its frequency is approximatively equal to the forward 

mutation rate times the time, or: 

𝑦"(𝑡) = 𝜇",𝑡. (4) 

 

A locus-independent beneficial mutation accumulates as follows 

𝑦"(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝜇",

𝑠"
(exp(𝑠"𝑡) − 1)																											𝑦"(𝑡) < g

𝜇",

𝑠"
	

𝜇",
𝑠"
exp(𝑠"𝑡)

𝜇",
𝑠"
exp(𝑠"𝑡) + 1

																														𝑦"(𝑡) > g
𝜇",

𝑠"

 (5) 

where	𝑠" = 𝑓" − 1 is the selection coefficient. By convention, a positive selection coefficient 

indicates a beneficial mutation 0 is neutral, and negative a detrimental mutation. 

 

The frequency of a locus-independent detrimental mutation in time is given by 

𝑦"(𝑡) =
𝜇",

|𝑠"|
(exp(|𝑠"|𝑡) − 1). (6) 

If a mutation is observed at a frequency in the population at a given time, we can estimate the 

number of passages that it takes it to reach its mutation-selection balance 𝜇",/|𝑠"| 

𝑡] = −
𝑙𝑛(%	to	balance)

|𝑠"|
, (7)	

where the numerator represents the natural logarithm of the ratio between observed mutations 

selection balance and the asymptotic one.  

 

Two-loci model: epistasis. Our two-loci model captures all three kinds of interactions: 

epistasis, clonal interference, and hitchhiking (Fig. 1c). Numerical simulations displaying the 
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several dynamic behaviors that characterize the interactions are shown in Supplementary 

Figs. 4-6.  

 

Let us consider first the case of epistatic interactions, without clonal interference or 

hitchhiking. Epistasis can occur through combinations of beneficial (positive selection 

coefficient) and deleterious (negative selection coefficient) mutations. From a modeling 

perspective, we consider epistasis involving neutral mutations as a special case of epistasis 

between detrimental or beneficial mutations. 

 

We use a multiplicative definition of epistasis36. Mathematically, the frequency of a 

“dominant” mutation at locus a can be directly obtained by Eq. (5), which holds even when a 

is simultaneously interacting with other mutations besides mutation b (C. Chang, et al., 

manuscript in preparation). Eqs. (4), (5) or (6) can be used to obtain [𝑏|𝐴] and [𝑎𝑏|𝑎] 

(Supplementary Table 1). The mathematical form above allows for enumeration of all 

possible cases of pairwise epistasis.  

 

Two-loci model: clonal interference and hitchhiking. Clonal interference and hitchhiking 

are reported to be pervasive in asexual evolution17. In simulations, even only one beneficial 

mutation with large fitness in the genome is enough to induce substantial hitchhiking 

(Supplementary Fig. 21). Concurrently, clonal interference becomes an important effect when 

multiple beneficial mutations with large fitness appear in the population (Supplementary Fig. 

20). It is known that the ultimate consequence of clonal interference is extinction of a 
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beneficial mutation through competition16-19. However, clonal interference can lead to various 

mutation dynamics when the per locus mutation rate is extremely high. This is due to the 

aforementioned effective time delay of establishment of double or multiple mutations. Either 

of these effects may severely affect mutation trajectories. 

 

Using the curve of double mutants predicted by the model without interaction as the frame of 

reference, clonal interference and hitchhiking shift the curve to different directions, but these 

two effects are unlikely to happen simultaneously (Fig. 1c). In general, we observe that 

hitchhiking shifts the frequency of the double mutant upwards. This effect is akin to 

assigning the conditional frequency [𝑎𝑏|𝑎] a non-zero initial condition. Clonal interference 

has the effect of delaying the emergence of the double mutant (rightward). This is similar to 

replacing the conditional frequency [𝑎𝑏|𝑎](𝑡) with [𝑎𝑏|𝑎](𝑡 − 𝑑𝑒𝑙𝑎𝑦), that is, to include an 

explicit time delay, with the time unit being the passage. If the delay is long enough, it would 

lead to the classical phenomenon of clonal interference, with mutations under this effect 

eventually lost in the evolution. On the other hand, if the delay is finite, we would observe the 

rescue of mutations with an initial decrease as the cases observed in our data.  

 

In the context of the two-loci model, fb|A and fab|a would still be the same under the effect of 

clonal interference or hitchhiking, if epistasis is not present.  

 

Model selection. We use a model selection procedure to identify which of the considered 

models best describes the behavior of each mutation (Fig. 4 and Supplementary Fig. 12), and 
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classify mutations into different subtypes (Supplementary Table 3). We consider the 

simplified one-locus and two-loci models derived from the full model to fit the data. The 

structure of the models reveals six potential classes (Supplementary Table 1). Classification 

of mutation behaviors is done by iterating over models of increasing complexity, and priority 

is given to models of lower complexity (Fig. 4b). In general, the one-locus model is preferred 

over two-loci model, since a two-loci model can recapitulate the one-locus model in certain 

conditions. Analogously, one-locus neutral will have priority over every other model, since it 

is a limiting case of all models. Moreover, in our model clonal interference and hitchhiking 

take precedence over epistasis in order to guarantee the accuracy of predicting epistasis. We 

do not consider a “second order” combination of epistasis, clonal interference and 

hitchhiking, which would lead to higher false positive rate for predicting epistasis. If none of 

the above-mentioned models can capture the dynamics of a mutant, we use one sample t-test 

to determine if a mutation is mutation with flat trajectory (we use the log of abundances in 

the test). We use R2 and log (R2) to estimate model goodness of fit, while we adopt Bayesian 

information criterion (BIC) for quantitative model selection34,35. Simulation suggests that 

when the sum of the squares of the residuals is very small (i.e., R2 is very close to 1), a small 

improvement in R2 leads to a very large increase of BIC. In this situation, the simpler model 

is actually good enough to explain the data. Thus, both BIC and R2 are used in concert to 

determine the significance for model selection (a complex model is significant if ∆𝐵𝐼𝐶 ≥ 10 

and ∆𝑅W ≥ 0.01). 

 

Determine start passage. Although the first sequenced passage is marked as P2 (i.e., second 

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.16.908129doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.16.908129


28 
 

passage) in experiments, it is unclear what is the actual or effective start passage for the data. 

In our model, the passage is an independent variable. Thus, the starting passage number 

should be considered as a global parameter in the inference process.  

 

Intuitively, neutral or near neutral mutations in the population can help us to infer this 

parameter. By linear fit of mutations that are very likely to be neutral, we could get their 

intercepts with x-axis (passage axis), which would be the position of passage 0. In simulation, 

we found that, given the population size of 106, this method is unable to infer the start 

passage when the mutation rate is lower than 10-5, so we only count mutations above this 

mutation rate. Furthermore, weighted average of the inferred start passages using 1/R2 as 

weight can improve the accuracy of this method. The simulation results are available in 

Supplementary Table 4 and the inferred start passage for the real data is 4.26 (N=69). 

 

Besides the inference method by neutral mutations, we also developed a probabilistic method 

to infer the start passage, by which we try to maximize the probability of having a start 

passage given the data (maximum a posteriori estimation). The posteriori probability is given 

by 

𝑃(start	passage|data) =
𝑃(data|start	passage)𝑃(start	passage)

𝑃(𝑑𝑎𝑡𝑎) ,	

																																																												∝ 𝑃(data|start	passage)𝑃(start	passage). 

Since we have no preference on the start passage, a flat prior for the start passage is used. 

This optimization problem converts to maximize 𝑃(data|start	passage), thus 

					ln 𝑃(data|start	passage)	
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=yln𝑃(dataz|start	passage)
z

	

= ylny𝑃{dataz|model~,	start	passage�𝑃{model~|start	passage�,
~z

 

where i and j are the indices for data and model, assuming that the observed mutation 

trajectories could be generated from the models we derived. For 𝑃{model~|start	passage�, 

again we have no preference, so we use the average of all models we derived. 

𝑃{dataz|model~,	start	passage� could be directly calculated from the BIC of model~37. In 

simulations, we found that directly using the start passage that maximize 

ln 𝑃(data|start	passage) tends to overestimate the actual start passage, if several 

neighboring start passages could have a similar ln 𝑃(data|start	passage). In such a situation, 

a smaller start passage is chosen to avoid over-estimation if its ln 𝑃(data|start	passage) is 

not less than the maximum minus a given threshold (set to be 0.2). In simulations, the 

inferred start passage numbers agree with the real start passages (Supplementary Table 4). In 

the inference of the real data, we only use mutations that are not classified as mutation with 

flat trajectory or “other” subtype by any start passages of 1 to 8 in the inference process, since 

they would not offer effective information about the actual start passage. The start passage in 

real data is inferred as 5. 

 

Since the probabilistic method is more accurate than the neutral mutation method, and is 

applicable even to mutations with low mutation rate, it would be reasonable to consider 5 as 

the start passage, which is also very close to 4.26 predicted by the later.  
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Simulation setup. The fitness of a genome is given by 𝑓z = ∏ 𝑓" ∏ (1 + 𝜀"�)",�,"��" , 

where 𝑓" and 𝜀"� are, respectively, the fitness of a mutation at locus k and epistasis between 

mutations at loci k and l. We assume that the number of offspring of a genome is Poisson 

distributed around its fitness. Any locus of an offspring may mutate during replication 

according to locus-specific mutation rates. The population is diluted to its initial size (106) by 

random sampling at end of every generation (5´106). To introduce different levels of clonal 

interference effects into simulation, the number of beneficial mutations with large fitness is 

specified from 1 to 5. The performance of our model selection procedure in simulations is 

reported in Supplementary Figs. 18-19 and Supplementary Tables 8-13.  

 

For numerical investigations, we find their deterministic numerical approximations based on 

the ordinary differential equations of the one-locus or two-loci models. 

 

Ambiguity in assessment of mutation interactions. Exact prediction of pairs of interacting 

mutation from frequencies data would be a challenging task. Different genetic interactions 

could lead to similar trajectories (Supplementary Fig. 9). 

 

However, it is possible to assume that, in the case of a detrimental mutation subordinated to a 

beneficial mutation, the roster of candidate “dominant” mutations can be reduced to a small 

number of high frequency ones. Assume, for example, that a deleterious mutation stays 

detrimental or neutral even after epistatically interacting with a beneficial mutation. By 

calculation, if a beneficial mutation cannot reach an abundance over 0.025 in the late 
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passages, this detrimental mutation is unable to have an abundance twice higher than its 

original mutation-selection balance (0.10 for fifth times higher than the original balance). In 

the data, there are 9 mutations with abundance higher than 2.5% at the last passage, 7 out of 

which is larger than 10%. 
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Figure legends 

 

Figure 1. Evolutionary determinants of mutation trajectories. a, Trajectories of 15 

highest frequency mutations. b, Samples of randomly selected mutation trajectories grouped 

by mutation type. Most randomly selected mutants shown similar order of abundance for 

each mutation type. a,b, Each color represents one particular mutation. Passage 35 is 

removed from data analysis during quality control of data processing (Methods).  

 

Figure 2. Multiple evolutionary factors shape mutation trajectories. A detrimental 

mutation is employed as an example to explain the effects or definitions of different 

evolutionary factors. a, In the context of a one-locus model, mutation rate and selection 

determine the trajectory of a detrimental mutation. The sample numerical trajectory is plotted 

with fitness 0.8 and mutation rate 10-4. b, In the context of a two-loci model, we give a 

numerical trajectory of a detrimental mutation b also with fitness 0.8 and mutation rate 10-4. 

The fitness of the dominant mutation a is 1.5, with a same mutation rate 10-4. The green curve 

represents the total frequency of mutation b in the population (observable data). The blue 

curve indicates the frequency of the single detrimental mutant, b, and the purple curve is the 

frequency of the double mutant ab, which will take over the single mutant as the major form 

of mutant b when the abundance of the dominant mutation a becomes large at its locus. (In 

this panel, only trajectories related to mutant b are shown. See Supplementary Fig. 3 for all 

numerical trajectories of mutants a and b). The fitness of the double mutant ab in this 

simulation is simply the product of the fitness of the single mutant a and b (no epistasis). The 
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arrows represent the factors that could affect the trajectory of the mutation. An increase of the 

effect leads to a deformation of the curve along its direction. Clonal interference shifts the 

purple curve to the right (delayed formation of the double mutant), hitchhiking shifts it 

upwards (non-zero initial frequency of b in double mutant) (see their quantitative definitions 

in panels e and f), thus would not occur simultaneously on the same mutation trajectory. 

Positive and negative epistasis change the slope of the accumulation rate, as well as the 

mutation-selection balance, as they change the selection coefficient. See also Supplementary 

Figs. 4-6 for the detailed effects of different factors on trajectories of detrimental, neutral and 

beneficial mutations. c, The definition of epistasis. 𝑓� and 𝑓9 represent the fitness of mutants 

a and b, and ε�9 is the epistasis. d, The definitions of the relative fitness of mutant b with 

genetic background A (fb|A) and genetic background a (fab|a) in the context of the two-loci 

model. In the case of ε�9=0, fb|A =fab|a . e, The left panel illustrates the classical definition of 

clonal interference in the context of the two-loci model, i,e, the double mutant is unable to 

form and mutant b as a single mutant finally extinct. The right panel shows a quantitative, 

broader definition of clonal interference used in our paper. Using the trajectory of the double 

mutant predicted by the model without interaction as the frame of reference (the light purple 

curve; note that a one-locus model is equivalent to a two-loci model without epistasis, clonal 

interference or hitchhiking for a detrimental mutation), if the formation of the double mutant 

is delayed, we say it is under clonal interference. This definition includes the traditional 

definition of clonal interference as a limiting case of infinite delay. It also includes the 

situations when the extinction of mutant b is rescued by the delayed formation of the double 

mutant. f, The left panel illustrates the classical definition of hitchhiking in the context of the 
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two-loci model, i,e, the formation of the double mutant. Under this definition, by the per 

locus high mutation rate in our data, all mutations would eventually hitchhike. The right 

panel shows a quantitative, narrower definition of hitchhiking used in our paper. Similar to 

that for clonal interference, using the trajectory of the double mutant predicted by the model 

without interaction as the frame of reference (the light purple curve), if the trajectory of the 

double mutant is higher than the one predicted by the one-locus model from the very 

beginning, we say it is under hitchhiking. b,e,f, The only observable variable in the two-loci 

model is the total frequency of mutant b. All other variables are latent variables. c,e,f, Those 

panels give the genetic interactions that are able to drive mutation trajectories departure from 

the simple mutation-selection model as shown in panel b.  

 

Figure 3. Mathematical model recapitulates the mutational behaviors observed in the 

poliovirus population. a, Examples of mutations showing no interactions (locus-

independence): neutral, beneficial and detrimental mutations. The number in each pair of 

parentheses is the inferred selection coefficient of this mutation. For mutation with flat 

trajectory, inference of selection coefficient and mutation rate from the data is not possible. It 

belongs to no interaction under unlinked assumption, and hypermutation under linked 

assumption. Note that the plot for the neutral mutation A2959G is in linear space. Its semi-

log plot is available in Supplementary Fig. 11a. b, Neutral, detrimental and beneficial 

mutations under clonal interference or hitchhiking. The effect of clonal interference moves 

the curve of the double mutant toward right (Fig. 2b,e), which delayed the accumulation of 

the total abundance of the mutant. The effect of hitchhiking moves the curve of the double 
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mutant toward upside (Fig. 2b,f), leading to a faster accumulation in the initial region, and 

even causing an abundance higher than the balance it should have. d is the delay between 

emergence and establishment of the mutation (see text), and i is initial frequency of [𝑎𝑏|𝑎]. c, 

Epistasis between mutations can affect mutation frequency and the accumulation speed. The 

left three subpanels show that the trajectory of a detrimental mutation can be greatly 

influenced by interaction between beneficial and detrimental mutations, which can 

significantly alter the mutation-selection balance (3985: A to G), or allows it to accumulate at 

high frequency in the population (4269: A to G as compensated mutation, and 5026: C to U 

as detrimental-to-beneficial mutation). The right panel shows a beneficial mutation becoming 

detrimental following a strong negative epistasis event can significantly decrease in 

frequency (beneficial-to-detrimental mutation).  The pair of numbers in the parentheses are 

the selection coefficients for fb|A and the fab|a of this mutation. a,b,c, Detailed information for 

all these mutations is available at Supplementary Table 7. Also see Supplementary Figs. 4-6 

for the effects of these evolutionary factors. 

 

Figure 4. An example of model selection. a, In this plot, different panels represent the 

fitting of different models to the trajectory of the mutation A to G at position 4269 (Fig. 3c). 

We only included several representative models in this plot, according to the fitting results 

illustrated in the panel b. The full version is available at Supplementary Fig. 12. In titles of 

each panel, one-letter code represents one-locus model, two-letter code is a two-loci epistasis 

model (the first letter represents the model for fb|A, and the second letter represents the model 

for fab|a). For instance, DB is the detrimental-to-beneficial two-loci epistasis model. The 
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numbers following l and n are R2 in log space and normal space. For each letter of a code, N 

is neutral, D represents detrimental, and B means beneficial. D or I in the parentheses means 

this model is the version of clonal interference or hitchhiking. An exception is F, which 

represents mutation with flat trajectory. Note that in this F model, a larger p-value suggest a 

better fit (i.e., the data could be explained by the null model under larger p-value). Also see 

Supplementary Table 1 for the code. In the model selection process, every one-locus and two-

loci models are used to fit the data, but only those models fit well enough in log and normal 

spaces are considered. For models in each level (Supplementary Table 1), the best one is 

selected (with its model code being marked with color). The best model that can explain the 

data is chosen from best models in each level according to the procedure described in 

Methods and here illustrated in the panel b. b, A flow chart of model selection. For each level 

of models, the best model with average R2 passing threshold is selected. The threshold is set 

to be 0.8 for non-epistatic models (model levels 1-4) and 0.9 for epistatic models (model 

level 5). For models in different levels, the more complex model should be significantly 

better to outcompete other models, which requires better average R2 and better BIC.  

 

Figure 5. The fitness landscape. The distributions of (a) fb|A and (b) fab|a. a,b, Colors 

represent different subtypes of mutations: no epistasis (blue), clonal interference (red), 

hitchhiking (green) and epistasis (brown). c, Scatter plot of fb|A vs. fab|a. Mutations are color 

coded by the type of epistasis (black for no interaction, blue for positive epistasis, green for 

negative epistasis). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4  
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Figure 5 
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