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Designability, thermodynamic stability, and dynamics in protein folding:
A lattice model study
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In the framework of a lattice-model study of protein folding, we investigate the interplay between
designability, thermodynamic stability, and kinetics. To be ‘‘protein-like,’’ heteropolymers must be
thermodynamically stable, stable against mutating the amino-acid sequence, and must be fast
folders. We find two criteria which, together, guarantee that a sequence will be ‘‘protein like:’’~i!
the ground state is a highly designable structure, i.e., the native structure is the ground state of a
large number of sequences, and~ii ! the sequence has a largeD/G ratio,D being the average energy
separation between the ground state and the excited compact conformations, andG the dispersion in
energy of excited compact conformations. These two criteria are not incompatible since, on average,
sequences whose ground states are highly designable structures have largeD/G values. These two
criteria require knowledge only of the compact-state spectrum. These claims are substantiated by the
study of 45 sequences, with various values ofD/G and various degrees of designability, by means
of a Borst–Kalos–Lebowitz algorithm, and the Ferrenberg–Swendsen histogram optimization
method. Finally, we report on the reasons for slow folding. A comparison between a very slow
folding sequence, an average folding one, and a fast folding one, suggests that slow folding
originates from a proliferation of nearly compact low-energy conformations, not present for fast
folders. © 1999 American Institute of Physics.@S0021-9606~99!53301-1#
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I. INTRODUCTION

Among the set of all possible linear amino-acid h
eropolymers, only very few are ‘‘protein-like.’’ For a he
eropolymer to be ‘‘protein-like,’’ three requirements must
met: ~i! The heteropolymer must be thermodynamica
stable: at thermal equilibrium, it must spend a large fract
of its time in the ground state.~Anfissen1 has shown the
ground state of a protein to be the biologically active co
figuration.! ~ii ! The heteropolymer must have a fast foldin
time: the native state should be kinetically accessible, ty
cally, within milliseconds to seconds for real proteins.~iii !
The ‘‘protein-like’’ heteropolymer must be stable again
mutations: if an amino acid is mutated into another one,
native structure should typically be preserved.

Why are some sequences of amino acids ‘‘protein-lik
while others are not? Since theoretical methods cannot
reliably find the ground state of real amino-acid chains,
address this question within a simple lattice model. Latt
models have been widely used in the study of protein fold
dynamics.2–8 The main ingredients of these lattice mode
are ~i! the protein is viewed as a heteropolymer on a cu
lattice, and ~ii ! noncovalently bonded nearest-neighb
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monomers experience an interaction that depends on m
mer type. In one class of lattice models, the interactions
tween adjacent monomers are chosen as random varia
from a continuous probability distribution~see, for instance
Refs. 3,4, and 6!. We adopt another approach, namely,
so-calledH-P model, where the monomers come in only tw
types, hydrophobic or polar.2,7 The main physical motivation
for studying H-P models is that the specific ground-sta
configuration of real proteins appears to be largely de
mined by optimal burial of hydrophobic amino acids aw
from water.9 It was also shown,10 from an analysis of the
Miyazawa and Jernigan matrix,11 that the uncharged amin
acids fall into two sets: hydrophobic and polar, according
their affinity for water. Moreover, there is experimental ev
dence that the native structures of certain proteins are st
when hydrophobic amino acids are substituted within
hydrophobic class and polar amino acids are substitu
within the polar class.12 The small number of possible inter
actions in anH-P model~H-H, H-P, andP-P! and the finite
number of possible sequences of a given length provide
alistic constraints on the design of particular structures.
et al.13 took advantage of these constraints to study so
design properties of anH-P model in the complete space o
possible sequences. In particular, these authors introdu
the concept ofdesignability. In the terminology of Liet al.,
the designability of a given compact structure is defined
2 © 1999 American Institute of Physics
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the numberNS of sequences that have this structure as th
nondegenerate compact ground state; a highly design
structure is the nondegenerate ground state of an atypic
large number of sequences. These authors reached the
clusion that~i! highly designable structures are likely to b
thermodynamically stable since they have a large gap in t
compact-state spectrum;~ii ! highly designable structures ar
likely to be stable against point mutations; and~iii ! highly
designable structures have protein-like motifs. These ob
vations suggest that Nature’s selection of protein structu
is not accidental but a consequence of thermodynamic st
ity and stability against mutations.

The aim of the present article is to push further t
analysis of Li et al. In particular, the study in Ref. 13 i
limited to the compact-state spectra ofH-P heteropolymers
of 27 monomers length~the compact states of which fill
33333 cube!, and the dynamical aspects are not discuss
Here, we address thermodynamic and dynamic propertie
cluding all states, not only the compact ones. Of course,
present study is, therefore, limited to a small number of
quences~45!, in contrast to the complete enumeration in R
13. More precisely, we address the following questions:

~i! In the compact-state-spectrum studies, thermo
namic stability is measured by the gap in the compact-s
spectrum. By gap, we mean the energy difference betw
the first excited compact state~s! and the ground compac
state. How does the compact-state-spectrum gap corr
with the ‘‘true’’ thermodynamic stability, where all the pos
sible conformations~including the open and partially ope
ones! are taken into account? Also, how does the ‘‘true
thermodynamic stability correlate with the degree of desi
ability?

~ii ! How does the folding time correlate with th
compact-state spectrum? An answer to this question
postulated in Ref. 4: a small gap in the compact-state sp
trum leads to slow folders and a large gap in the comp
state spectrum leads to fast folders. It was shown in Re
that this postulate iswrong in the framework of a random
interaction model: even though sequences with a large c
pact state gap are fast folders, sequences with a small c
pact state gap can fold either slow or fast. Is the postu
right or wrong forH-P heteropolymers?

~iii ! Are highly designable structures also fast folde
Sequences that have highly designable ground states,
thus, are stable against mutations are also, typically, ther
dynamically stable according to the analysis of the comp
state spectrum carried out in Ref. 13. Moreover, Vendrusc
et al.14 showed, in different lattice models, that both types
stability are equivalent. One would like to know whether t
requirement of fast folding dynamics introduces new co
straints on the set of ‘‘protein-like’’ sequences. Finally, o
can ask why are some sequences fast folders while other
slow?

This article is organized as follows: Sec. II is devoted
the details of the model and the technical aspects of
simulations. We implement several techniques that were
veloped in the context of statistical mechanics of spin m
els. These techniques are next used in Secs. III and IV
analyze the thermodynamics and dynamics of a set of
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quences. Section V summarizes our answers to the ques
presented above.

II. MODEL AND SIMULATION TECHNIQUES

The aim of this section is to briefly recall the definitio
of the heteropolymerH-P model, and to describe the simu
lation techniques.

A. The model

In the model analyzed in Ref. 13, a protein is a se
avoiding walk of monomers on a cubic lattice. A sequence
defined by the set$s i% of amino acids along the chain, wher
s iP(H-hydrophobic, P-polar), andi runs over the mono-
mers along the chain (i 51, . . . ,27 for achain which folds
into a compact 33333 cube!. The different structures are
defined by assigning a positionr i to the ith monomer on the
cubic lattice, such that the distance between two consecu
monomers is equal to unity and two monomers cannot lie
the same site~self-avoidance condition!. Given a sequence
s, the Hamiltonian is

H5(
i , j

Es i ,s j
D~r i ,r j !, ~1!

whereEH,H , EH,P , andEP,P are the energies ofH-H, H-P,
andP-P contacts, respectively, andD(r i ,r j )51 if r i and r j

are nearest-neighboring sites withi and j not adjacent along
the chain, and zero otherwise. For instance, in the case o
two-dimensional conformation of Fig. 1, there are fourH-H
contacts, oneH-P contact, and threeP-P contacts and the
energy of this conformation is thus 4EH,H1EH,P13EP,P .
The present model differs from theH-P models in Refs. 2
and 7 since we take the interaction energiesEH,H ,EH,P , and
EP,P to be all different from each other. From the analysis
the Miyazawa–Jernigan matrix for real proteins, it w
shown10 that EH,H,EH,P,EP,P and (EH,H1EP,P)/2
,EH,P . This last condition expresses the fact that differe
types of monomers tend to segregate. Following Ref. 13,
choose EH,H522.32EC , EH,P5212EC , and EP,P

52EC . These dimensionless coefficients define the ene
scale in which the temperature will be measured. An incre
of the compactness energyEC tends to favor compact con
formations with respect to open ones. The results of Ref.
concerning the compact-state spectrum are of course i
pendent ofEC . In the present work, the open, partially ope
and compact states are all taken into account in the num
cal calculations, so that the results presented here depen
EC . The determination ofEC from an analysis of the
Miyazawa and Jerningan matrix along the lines of Ref. 10
rather imprecise, but such an analysis suggests thatEC is of
the order of 2 or 3. From the point of view of our calcul

FIG. 1. A conformation of a 15 mer in two dimensions.
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tions, we have chosen the overall drive to compactificat
EC to be large enough so that~i! the average compactifica
tion time ~being the average time to first reach a comp
state! is much smaller than the average folding time~being
the average time to first reach the ground state! and~ii ! very
few sequences have a noncompact ground state. How
EC should not be too large since, as was shown in Ref. 7
EC increases above a certain threshold, the folded ph
gives way to a collapsed glassy phase. In practice, after
liminary simulations, we have chosenEC51.5.

B. Simulation techniques

1. Dynamics

The most commonly used technique in thre
dimensional lattice–heteropolymer folding dynamics is
Monte Carlo method with two one-monomer moves~end
moves, corner moves! and one two-monomer move~crank-
shaft move! ~see Ref. 7 for a pedagogical description of th
algorithm!. However, for the model we simulated, a simp
implementation of the Monte Carlo method spends mos
the time refusing moves, leading to large computation tim
Hence, we chose to implement a Bortz–Kalos–Lebow
~BKL ! type algorithm,15 an algorithm especially efficient in
the presence of slow relaxation. In contrast to the stand
Monte Carlo algorithm, this algorithm never rejects mov
In practice, one keeps track of all the possible statesa that
can be reached by the three types of moves listed ab
starting from a statea0 . Once the list of all possible move
is established, together with the Monte Carlo transition pr
abilities,

Pa0→a5minFexpS 2
DEa0→a

T
D , 1G , ~2!

one move is picked according to its relative transition pro
ability and that move is then performed. The time spent
the statea0 is randomly chosen from the exponential dist
bution

P~ta0
!5expF2S (

aÞa0

Pa0→aD ta0G . ~3!

One need not recalculate this list of possible final state
each step, but instead one updates this list by cance
moves that are no longer possible and adding new mo
that become possible. The energy costsDEa0→a of all these
moves are also updated. This algorithm is especially effic
for slow and average folders, but still does not allow syste
atic studies at low temperatures. One unit time of this B
algorithm ~noted BKL unit in the following! corresponds to
27 Monte Carlo steps~MCSs! of the usual Monte Carlo al
gorithm ~in lattice–heteropolymer folding and for the usu
Monte Carlo algorithm, one MCS usually corresponds to
tempting to move one monomer!. We emphasize that th
BKL algorithm employs the same move set as the us
Monte Carlo algorithm. This BKL algorithm is faster tha
the usual Monte Carlo algorithm in terms of computation
time, but the resulting physical dynamics are equivale
given the correspondence: 1 BKL unit527 MCSs.
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2. Thermodynamics

One possibility to compute thermodynamic quantities
to carry out an exhaustive enumeration of all the poss
conformations, including the noncompact ones. Such an
act method was used, for instance, in the case of a 15-m
three dimensions,6 and for a 16-mer in two dimensions.14

Since, in practice, we could not apply this exact method
27-mers in three dimensions, we have used Monte Carlo
togram techniques to study the thermodynamics.

Several groups working on proteins have rediscove
the Monte Carlo histogram technique and applied it to h
eropolymer models of proteins. We refer the reader to Re
for a clear description of this technique. Most simply, t
technique consists of carrying out a simulation at a giv
temperatureT0 and keeping track of the histogram of variou
quantities, for instance, the joint probability of the energyE,
number of contacts, and similarity with the ground sta
Using this histogram calculated atT0 , one can recalculate
several thermodynamic quantities at another temperatuT
by changing the Boltzmann weight to exp(2E/T) without
carrying out a new simulation. However,T should remain
close toT0 since the simulation at temperatureT0 is carried
out over a finite time and the phase space is thus only
tially sampled. We did not in fact use this ‘‘naive’’ histo
gram technique but rather made use of the powerful met
invented by Ferrenberg and Swendsen.16,17This method con-
sists in optimizing several histograms calculated at differ
temperatures to obtain the temperature dependence of
ous thermodynamic quantities. Moreover, the accuracy of
optimized thermodynamic quantities can be evaluated,
additional simulations can be carried out when necess
Following Ref. 16, we briefly summarize this technique
focusing on the case of the single-energy histogram, the g
eralization to joint histograms of various quantities bei
straightforward. We considerR energy histograms labeled b
n51,... ,R, carried out overtn time units at the temperature
T1 , . . . ,Tn , . . . ,TR , with the normalization

tn5(
E

Nn~E!,

whereNn(E) is the number of times a state~or states! with
energyE is sampled in thenth histogram. The partition func
tion Z(T) is expanded over the density of statesW(E) as

Z~T!5(
E

W~E!exp~2E/T!.

Each of theR histogram simulations carried out at a tempe
ture Tn leads to a ‘‘naive’’ estimate of the density of state

Wn~E!5tn
21Nn~E!exp~E/Tn2Fn /Tn!, ~4!

with Fn the free energy at temperatureTn . The Ferrenberg
and Swendsen method16 consists in expanding the density o
statesW(E) as a combination of the ‘‘naive’’ densities o
states~4!

W~E!5 (
n51

R

pn~E!Wn~E!,
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the coefficients of this expansion@as well as the free energie
Fn in Eq. ~4!# being determined by minimizing the error i
this estimation ofW(E). The result is a closed set o
multiple-histogram equations for theFn ~Ref. 16!

P~E,T!5
(n51

R Nn~E!exp~2E/T!

(n51
R tn exp~2E/Tn1Fn /Tn!

, ~5!

exp~Fn /Tn!5(
E

P~E,Tn!. ~6!

Once Eqs.~5! and ~6! have been solved by successive ite
tions, the average of an energy-dependent operator is ca
lated as

^O ~E!&5
(EO ~E!P~E,T!

(EP~E,T!
.

III. THERMODYNAMICS

The compact-state spectrum was previously determi
by means of exact enumerations.13 Thanks to this work, we
know for each sequence the lowest-energy compact s
However, it is possible that the true ground state is not co
pact. We therefore checked during the histogram calculat
that no open state has a lower energy than the com
ground state. We eliminated a few sequences with nonc
pact ground states. Since we were not able to perform
exact enumeration of the noncompact states, we canno
clude the possibility of a noncompact ground state that w
not found during the simulations. However, we believe t
this possibility is rather unlikely. We will comment later o
the characteristics of those few sequences with a noncom
ground state.

A. Qualitative study of a thermodynamically stable
and unstable sequence

We first begin with a qualitative analysis of a ‘‘protein
like’’ and a ‘‘non-protein-like’’ sequence, from the point o
view of thermodynamics. As stated in the introduction, o
necessary condition for a sequence to be ‘‘protein-like’’
that it be thermodynamically stable. Hence, we have to fin
quantitative way to measure thermal stability. It has be
proposed18 that real proteins undergo a folding transition
some temperatureTf larger than the glass transition temper
ture Tg , below which the dynamics dramatically freeze. F
‘‘protein-like’’ sequences, folding should be a first-order-lik
transition, withTf much larger thanTg , thus allowing the
possibility of a temperature regime in which the ground st
is thermodynamically favored and kinetically accessible.
‘‘first-order-like,’’ we mean that as a function of temperatu
the native-state occupancy has a narrow transition from
low value in the unfolded phase to a high value in the fold
phase. We will use the width of this transition as a meas
of thermodynamic stability, the thermodynamically stable
quences having a narrow transition. The first-order-like
havior of the folding transition was put on a quantitati
basis for a latticeH-P model by Socci and Onuchic.7 These
authors studied the shape of the energy histogram and
-
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served a transition from a unimodal shape to a bimodal sh
as the temperature was lowered belowTf , suggesting the
occurrence of a first-order-like transition.

On the other hand, in the case of a thermodynamica
unstable sequence~and thus one that is not ‘‘protein-like’’!,
there are low-lying states competing with the ground sta
and the transition to the folded ground state as the temp
ture is decreased is thus broad. In order to compare diffe
sequences, we measure thermodynamic stability in term
the width in temperature of the transition to the native st
compared to the transition temperature. In biological sit
tions, the temperature is usually fixed and the notion of th
mal stability is then not only sequence dependent but a
temperature dependent. For instance, some sequences
have a narrow transition to the folded state but with too l
a Tf , so that in practice the protein is unfolded at the te
perature of interest. Our definition of thermodynamic stab
ity is thus, in the context of real proteins, only a necess
condition.

Following Socci and Onuchic,7 we employ the optimized
histogram method described in Sec. II B 2, and determine
probability P 25(T) that the sequence is in any conformatio
having more than 25 correct ground-state contacts, or ‘‘
tive’’ contacts, out of 28 possible contacts for the ful
folded structure. Throughout this paper, this set of conform
tions will be referred to as ‘‘native states.’’ We will conside
a heteropolymer as correctly folded if the number of nat
contacts is larger than or equal to 25. This assumption spe
up computations and is sensible from the point of view
real proteins since structure fluctuations around the fol
conformation are expected, and do not prevent the pro
from being functional~see, for instance, Ref. 19!. The varia-
tions of P 25(T) as a function of temperatureT are shown on
Fig. 2 for the thermodynamically stable sequence A and
thermodynamically unstable sequence C.~These two se-
quences will be studied in detail in the present article.! The
larger width of the transition to the folded conformation
the case of sequence C is due to the existence of low-ly
semicompact conformations, not present for thermodyna

FIG. 2. ProbabilityP 25(T) to be in any state having more that 25 nativ
contacts as a function of temperature for the thermodynamically stable
quence A and the thermodynamically unstable sequence C.
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cally stable sequences. The consequences of these low-
states for the folding dynamics will be investigated in wh
follows.

B. Thermodynamic stability: Compact state spectrum
versus transition width

In order to answer the first question in item~i! in the
introductory section, we want to compare the compact-st
spectrum estimation of the thermodynamic stability, in ter
of the folding temperatureTf and the glass-transition tem
peratureTg ,18,20 to the thermodynamic stability estimate
with the method of Sec. III A.

1. Compact-state-spectrum results

We first review the results of Goldsteinet al.,18 and
Bryngelson and Wolynes,20 who estimated the folding tem
peratureTf and the glass temperatureTg in terms of simple
spectral quantities. The requirement that the ratioTf /Tg

should be large for protein-like sequences results in m
mizing a simple quantity related to the energy spectrum
close analogy to Derrida’s treatment of the spin-gla
problem,21 these authors have developed a random-ene
model ~REM! approach to proteins.18,20 Their model relies
on the assumption that the energies of different configu
tions of the protein are independent random variables. Un
this hypothesis, the glass-transition temperatureTg and the
folding temperatureTf can be related in a simple fashion
the shape of the energy spectrum, consisting of a native s
with energy E0 , and a higher-energy ‘‘liquid-like’’ state
with no native structure, and with a large entropyS0 . D
denotes the average energy difference between the h
energy liquid-like states and the native state, andG is the
standard deviation of energies of the liquid-like states. T
glass temperatureTg has been obtained in Refs. 18 and
following Derrida’s treatment,21 under the assumption tha
the numberN of monomers is a large parameter. Assumin
Gaussian density of liquid-like states, with a maximum
E5Ē, the entropy per monomer is

s~e!5s02
1

2g2
~e2 ē !2,

if emin,e,emax, with emin5 ē2A2s0g, and emax5 ē
1A2s0g. The entropy per monomer vanishes outside t
energy interval. The temperature is related to the entr
through 1/T5]s/]e, and a transition to a glassy phase o
curs belowTg , with 1/Tg5]s/]eue5emin

. This leads to

Tg5
g

A2s0

5
G

A2S0

.

The folding temperature is obtained as the temperature
low which the native-state occupancy is sizable compare
the liquid-like states occupancy. The contribution of t
liquid-like states to the partition function is

Zliq5expFS01
1

2TS 1

T
G222ĒD G ,
ing
t
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and the native-state contribution isZnat5exp(2E0 /T), with
E0 the native-state energy. EquatingZliq5Znat, we
obtain18,20

Tf5
1

2S0
~D1AD222S0G2!.

The ratio Tf /Tg is an indicator of how protein like a se
quence is. SinceTf /Tg increases monotonically withD/G,
within the REM approach, either ratio can be used as a m
sure of protein-like behavior.

We take here as a working hypothesis the application
these results to our lattice model including thecompactstates
only. We believe that the ratioD/G calculated only from the
compact states is a good indicator for protein-like behav
The results obtained in the present article are fully consis
with this assumption.

More precisely, we calculateD andG from the compact-
state spectra, the compact states being conformations ex
filling the 33333 cube, and the compact-state spectrum
a given sequence being the set of energies of all com
conformations:

D5
1

NC
(
a.0

~Ea2E0!, ~7!

G25
1

NC
(
a.0

Ea
22S 1

NC
(
a.0

EaD 2

, ~8!

where theEa (a.0) denote the energies of the excited co
pact conformations,E0 is the lowest compact-state energ
andNC is the number of excited compact conformations.

2. Thermodynamic stability versus D/G

As far as the Monte Carlo results are concerned,
estimate the thermal stability of a sequence by the width
the transition inP 25(T) vs T, as shown in Fig. 2. More
precisely, we calculate the dimensionless transition width

d52S T~0.1!2T~0.8!

T~0.1!1T~0.8! D , ~9!

whereT(x) is the temperature for which the probability isx
to find the heteropolymer in a state with 25 or more nat
contacts.@This is the inverse function ofP 25(T) as plotted in
Fig. 2#. We have plotted in Fig. 3 the widthd of the transi-
tion as a function ofD/G defined by Eqs.~7! and ~8!.

We have separated the sequences into a set ‘‘L’’of
quences with large values ofD/G and a set ‘‘S’’ with small
values of this ratio.~For further consideration, we have ex
tracted from the ‘‘L’’ set two subsets ‘‘LA’’ and ‘‘LB’’ with
a fixed D/G ratio, of order 4.5 and 4.7, respectively. Als
the set ‘‘SA’’ has been extracted from the ‘‘S’’ set, with
D/G ratio of order 3.7.) It is clear in Fig. 3 that in spite o
some scatter, the ‘‘L,’’ ‘‘LA,’’ and ‘‘LB’’ sets, with a high
D/G ratio ~larger that 4.3) correspond to thermodynamica
stable sequences, with a narrow transition to the native st
ture ~i.e., a smalld value!, whereas the transition to the na
tive structure for the sequences belonging to the ‘‘S’’ a
‘‘SA’’ sets (D/G,4.3) is rather broad. This shows th
‘‘protein-like’’ sequences~at least as far as thermodynami
is concerned! correspond to sequences with a largeD/G ra-
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tio, i.e., sequences with a low-energy native state compa
to the energy width of the distribution of compact states.

One can also ask how the transition widthd correlates
with D alone, independent ofG. It turns out thatD/G is
almost a monotonically increasing function ofD, as shown
in Fig. 4, G being nearly constant atG.2, and therefore,D
alone is also a good predictor of thermodynamic stability

C. Thermodynamic stability versus designability

The designability of a given structure is measured
terms of the numberNS of sequences that have this structu
as their nondegenerate ground state, and the sequence
responding to highly designable structures should
‘‘protein-like.’’ 13 Interestingly, the highly designable stru
tures show regular helix-like andb-sheet-like patterns,13

quite reminiscent of the regular patterns in real protei
Moreover, since these highly designable structures have
average a large gap to their first compact excited state,13 they

FIG. 3. Transition widthd from the Monte Carlo simulations vsD/G ob-
tained from the compact-state spectrum. As explained in the text, the d
ent sets and subsets of sequences are denoted by different symbols. T
error bars in the estimation ofd are shown. The larger error bars for larged
originate from the increase of glassiness asd increases.

FIG. 4. D vs D/G for our 45 selected sequences. The symbols are the s
as in Fig. 3.
ed

cor-
e

.
on

are likely to be thermodynamically stable. More specifical
the average gap in the compact-state spectrum sudd
jumps from a low value to a high value asNS increases
aboveNS;1400. It is thus of interest to relate the therm
dynamic stability of sequences, measured in terms ofd in
Eq. ~9!, to the degree of designability of their native-sta
structure measured byNS . We will reach the conclusion tha
D/G is a better predictor of thermodynamic stability tha
designability. Qualitatively, this could be anticipated sin
high designability of a structure still allows for very differen
behaviors of the sequences which design that structure.

The correlation between the transition widthd of the
various sequences analyzed here, and the numberNS of se-
quences that design their native structures is plotted in Fig
Clearly, the sequences whose ground states are highly
ignable structures are likely to be thermodynamically stab
However, we observe that several sequences belonging t
sets ‘‘S’’ and ‘‘SA’’ of thermodynamically unstable se
quences have a relatively high designabilityNS . These se-
quences, despite high designability, have a small value
D/G. Such sequences are expected to emerge due to the
that, even for a structure with largeNS , the ratioD/G is not
necessarily large for all sequences having that structure
ground state.22 In other words, it is possible to find atypica
sequences with a low value ofD/G even for structures with
a largeNS . For instance, using the compact-state spectra,
have plotted in Fig. 6 the distribution ofD/G for the top
structure~this is the structure with the maximalNS53794)
and a structure withNS5300. On average the sequenc
corresponding to the structure withNS53794 have larger
D/G than the sequences corresponding to the structure
NS5300. However, the tail of the distribution for theNS

53794 structure still extends to very smallD/G. In sum-
mary, a largeD/G ratio is a good predictor that a sequen
will be thermodynamically stable. A high designabilityNS

for a structure is consistent with, but does not guaran
largeD/G and, hence, thermodynamic stability of its asso
ated sequences.

Finally, we would like to comment on the results o

r-
ical

e

FIG. 5. Transition widthd vs the numberNS of sequences that design
given structure. Crosses denote sequences with a smallD/G ratio and
squares, diamonds, and triangles sequences with a largeD/G. Some se-
quences in the SA subset withD/G.3.7 can have a large designability i
spite of being thermodynamically unstable.
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Vendruscoloet al.14 These authors also carried out an ana
sis of the relation between thermodynamic stability, cal
lated with all the configurations including the open ones, a
the number of sequencesNS that design a given structure
The authors analyzed the two-dimensional case of
present model with 16 monomer chains and exactly enum
ated not only all the possible compact, but also all the p
sible open-state conformations. They found first, in agr
ment with Li et al.,13 a broad distribution ofNS . However,
they showed that the thermodynamic stability is flat as
function ofNS , in contradiction with our present results, an
also in contradiction with unpublished data,23 where the gap
in the compact-state spectrum in two dimensions was sh
to increase as a function ofNS . In our opinion, this discrep-
ancy is due to the fact that in Ref. 14 the overall compactn
energyEC in the inter-residue interactions was set to ze
thereby weighting open-state configurations too stron
with respect to compact states. We expect that a largerEC

would have led to anNS dependence of the thermodynam
stability in Ref. 14.

D. Conclusions on the thermodynamics

This section was devoted to the analysis of the therm
dynamics of several sequences, selected from highly
poorly designable sequences, and with large and small va
of D/G. The known compact-state spectra allow for the c
culation of the ratioD/G, which is thought to be proportiona
to the ratio of the folding temperature to the gla
temperature,18,20 and thus predicts to what extent a give
sequence is thermodynamically ‘‘protein-like.’’ The Mon
Carlo data calculated with open and partially open states
allowed us to characterize the thermodynamic stability o
given sequence, in terms of the widthd of its folding tran-
sition. We have shown that these two quantities,d andD/G,
are well correlated, signaling the validity of the compa
state-spectrum analysis. We have also shown that stab
with respect to mutations~measured in terms of designab
ity! is not directly equivalent to thermal stability.

FIG. 6. Distribution ofD/G for the top structure~structure with the maximal
NS53794, solid line! and a structure withNS5300 ~dashed line!. Each bin
has a width of 0.05 inD/G and the quantity on they axis measures how
many sequences fall in each bin.
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Finally, it is worth noting that we eliminated three s
quences with partially open ground states. These seque
had a very lowD/G ratio (2.17, 2.18, 2.52)~this ratio has
been calculated with the ground-state energyE0 being the
lowest compact-state energy!. By contrast, none of the simu
lated sequences with a high or moderateD/G ratio were
found to have a partially open ground state. This sugge
that the ground-state conformation of some of the remain
sequences with a smallD/G ratio may not be compact. How
ever, since these sequences are among the most uns
ones, our calculation of the transition widths as far
‘‘protein-like’’ sequences are concerned is unaffected.

IV. FOLDING SIMULATIONS

Besides thermodynamic stability and stability with r
spect to mutations of the amino-acid code, the native stat
a ‘‘protein-like’’ sequence should be dynamically accessib
Clearly, the dynamics of all the sequences, including
thermodynamically stable ones, becomes glassy at low t
peratures in our model since all the inter-residue interacti
are attractive. As the temperature is lowered, the aver
folding time ~the average time required to first reach t
native states, starting from a stretched conformation! will
first decrease and then, below a certain temperature, will s
to increase drastically, presumably scaling like ln(^tf&)
;1/T. Conversely, as we have already seen, the native-s
occupancy increases as the temperature is decreased.
we want to investigate the balance between thermodyna
stability and dynamical accessibility of the native state,
chose to examine the dynamics at the temperatureTf

(P f ) such
that the native-state occupancy is fixed at some prede
mined P f . The question is then: do the sequences with
large D/G ratio, thermodymic stability, and mutational st
bility also fold fast atTf?

In order to examine this question, we measured the
erage folding time, namely, the average time^t f& necessary
for the heteropolymer to first reach any of the native sta
~with 25 ground-state contacts, out of 28), starting from
stretched conformation. Because in our model all interact
energies are attractive, and individual non-native conta
may be as strong as native contacts, the folding dynamics
very slow compared to other models. For this reason,
simulated folding of the heteropolymers at the temperat
Tf

(10%) such that the average occupancy of the native state
only P f510%. We use the notationTf

(10%) in order to avoid
confusion with the usual definition ofTf corresponding to a
50% native-states occupancy. Compared to other wo
where models with a faster folding time were investigate
this occupancy of the native states is quite small. For
stance, Abkevichet al.24 could fold a few sequences at
temperature for which the average similarity with the grou
state was up to 95%. Their slowest average folding time w
then of the order of 23108 MCS, which is one order of
magnitude smaller than the fastest folding time in our sim
lations~given that 1BKL unit527 MCS). However, models
with faster folding times generally require unrealistic a
sumptions such as artificially lower energy for individu
native contacts compared to the non-native ones. E
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though we could not go systematically to lower tempe
tures, the effect of lowering the temperature was exami
for a few sequences.

A. Average folding times

One folding simulation consists in starting from
stretched heteropolymer, and running the dynamics until
of the native states is first reached. The time required is
folding time, which should then be averaged over seve
folding simulations. In practice, we have averaged the fo
ing time over 20 folding simulations. For each sequence,
temperature is fixed atTf

(10%) ~at this temperature, the native
states occupancy isP f510%). The average folding time
are plotted in Fig. 7 as a function ofD/G. The relative error
in the average folding time can be estimated by noticing t
the mean value of the folding time distribution is of the ord
of the standard deviation~we indeed calculated the full fold
ing time distribution for a few sequences!. The relative error
in the estimation of the average folding time is then of t
order of the inverse square root of the number of fold
simulations, namely, in our case of 1/A20.0.2. This preci-
sion is sufficient for the purpose of our discussion.

We observe in Fig. 7 that sequences with a largeD/G
ratio fold fast. We thus conclude, in response to question~iii !
in the introductory section, that folding dynamics do not a
any constraint in the selection of ‘‘protein-like’’ sequence
once a structure is stable against mutations and therm
namically stable~namely, a sequence with a largeD/G ratio
and a largeNS), it will be a fast folder.

A quite striking result visible in Fig. 7 is that sequenc
with a low D/G ratio ~belonging to the ‘‘S’’ and ‘‘SA’’ sets
of thermodynamically unstable sequences!, may also fold
fast, at least as fast as some of the sequences belonging
‘‘L,’’ ‘‘LA,’’ or ‘‘LB’’ sets. However, at lower temperatures
and, hence, larger native-states occupancy, we find a stro
correlation between lowD/G ratio and slow folding.

In order to go to lower temperatures, we selected f
sequences~denoted by A, B, C, and D; A and C being th
same sequences as in Fig. 2!, with the same fast folding time
0.143109 MCS, at Tf

(10%), i.e., with a 10% occupancy o

FIG. 7. Average folding times~in BKL units! vs D/G, with the same sym-
bols as Figs. 3, 4, and 5. A very slow folding sequence@hereafter denoted by
‘‘W’’ ~worst!# has not been shown. It belongs to the set ‘‘S,’’ hasD/G
52.7, and an average folding time of 4.33109 BKL units.
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conformations with 25 or more native contacts. We fold
these sequences again at temperatures correspondin
larger native-states occupancy. The sequences A and B
long to the set ‘‘L’’ of thermodynamically stable sequence
and the sequences C and D belong to the set ‘‘S’’ of th
modynamically unstable sequences. As the native-states
cupancy is increased, we observe in Fig. 8 that the fold
times of the two thermodynamically unstable sequences
and D, clearly become much larger than the folding times
the two thermodynamically stable sequences, A and B.
garding the results of our study at a fixed native-states oc
pancy of 10%~see Fig. 7!, this suggests that as the nativ
states occupancy increases the average folding times o
sequences with a smallD/G ratio will increase much more
rapidly than the folding time of the sequences with a lar
D/G ratio.

The conclusion regarding the variations of the avera
folding times as a function of the native-states occupanc
similar to the one reached by Abkevichet al.,24 who pro-
posed that the gapD in the compact-state spectrum correlat
with the average folding time calculated for large nativ
states occupancy.

B. Slow versus fast folding

Despite the complexity of protein energy landscap
several authors have proposed simple effective descript
of these landscapes. For instance, the role of traps~or folding
intermediates! in the folding process was underlined by se
eral authors, for instance, by Bryngelson and Wolynes25 and
by Klimov and Thirumalai.6 A scenario was proposed b
Bryngelsonet al.26 in which there exists a ‘‘folding path-
way’’ to the native state: in a first step, the protein collaps
via many possible paths in phase space, and, in a se

FIG. 8. Folding times of the four sequences A, B, C, and D for vario
native-states occupancies. The value ofD/G for the four sequences A, B, C
and D are respectively, 5.05, 4.91, 4.1, and 3.07. The sequences A a
are thermodynamically stable, and C and D are thermodynamically unst
The two arrows indicate that the corresponding folding times are a lo
bound.
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step, folds to the native structure via a small number of p
sible paths. Abkevichet al. found evidence for a nucleatio
process in a lattice model study.27 The aim of the presen
section is to see if there exists any simple scenario in
H-P model. Chan and Dill have also studied folding in
H-P model from the perspective of energy landscapes.28

Among all the sequences analyzed here at aP f510%
occupancy of native states, one sequence has an anomal
long folding time, approximatively 43109 MCS. This se-
quence belongs to the set of thermodynamically unstable
quences (D/G52.7 andd50.77). Since this sequence h
the longest folding time among our sequence selection,
will denote this sequence by ‘‘W’’~worst!. We will compare
this very slow folding sequence to a fast folding ‘‘protei
like’’ sequence~sequence A in Fig. 8!, and also to a se
quence which is thermodynamically unstable but folds fas
a native-states occupancy ofP f510% ~sequence C in Fig
8!.

1. Number of low-energy conformations

In order to obtain more information on low-energy trap
we carry out the following simulation. We start from
stretched conformation and let the dynamics evolve unt
conformation is first reached whose energy above
ground-stateDE5E2E0 is smaller than a givenDEhit . We
refer to the result of a single such simulation as a ‘‘hit.’’ Th
contact matrix of this conformation is then recorded.~The
contact matrix encodes a compact or nearly compact st
ture in a unique way. Its matrix elementsC i , j , with i , j
51, . . . ,27, labeling the monomers along the chain, a
equal to unity if the mononersi andj are in contact, and zero
otherwise.! We repeat this simulationN times (N51500 in
practice!. We have chosen a smallDEhit50.5, but similar
conclusions were obtained withDEhit51. We finally exam-
ine the different structures encoded in the set of contact
tricesC (1), . . . , C (N) of the N ‘‘hits.’’

We analyzed three sequences: sequence A~a ‘‘protein-
like’’ sequence!, sequence C~fast folding atP f510% occu-
pation of native states, but thermodynamically unstable!, and
the very slow folding sequence W.

We first study the number of different structures for t
sequences A, C, and W. It turns out that for the ‘‘prote
like’’ sequence A, no states other than the ground state w
found with an energyDE,DEhit50.5. As far as the two
other sequences C and W are concerned, we found 12 di
ent structures for sequence C and 125 for sequence W.
list of these structures obtained is shown in Table I for
quence C and Table II for sequence W. The Hamming d
tance to the ground state in the second column of these ta
is

d~C ,C ~GS!!5(
i 51

27

(
j 5 i 13

27

uC i , j2C i , j
~GS!u, ~10!

with C the contact matrix of a given hit andC ~GS! the con-
tact matrix of the ground-state structure. The contact ma
ces being symmetric, the summation in Eq.~10! is restricted
to the matrix elementsi< j . The matrix elementsj 5 i 11
have been discarded since they correspond to cova
s-

r
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TABLE I. The 12 structures obtained for sequence C. The energy of th
structures isDE50.3 ~except for the ground state that hasDE50). The
first column is the density of hits~probability that a given structure is hit!
and the second column is the Hamming distance to the ground state.
ground state is indicated in the table.

Density
of hits ~%! dGS

Density
of hits ~%! dGS

Density
of hits ~%! dGS

21.0 28 8.7 26 4.7 38
17.7 32 7.9 34 3.9 34
10.9 30 6.0 38 2.1~GS! 0 ~GS!
10.7 38 5.4 40 1.2 40

TABLE II. The 125 structures obtained for sequence W. The energy o
these structures isDE50.3, except for the ground state that hasDE50, and
all states are highly compact, with a number of contacts>26 out of 28
possible. The first column is the density of hits~probability that a given
structure is hit first! and the second column is the Hamming distance to
native state. The ground state is indicated in the table. The symbol* de-
notes a compact structure.

Density
of hits ~%! dGS

Density
of hits ~%! dGS

Density
of hits ~%! dGS

4.7 46 *0.8 38 0.3 36
4.5 44 *0.8 44 *0.3 42
3.4 48 *0.8 42 *0.3 46
3.3 44 *0.8 32 *0.3 40
3.3 46 *0.8 42 *0.3 50
3.1 46 0.7 52 *0.3 42
2.1 42 *0.7 40 *0.3 42
2.1 42 0.7 40 *0.3 38
2.1 48 *0.7 30 0.3 48

*2.0 46 *0.7 46 *0.3 42
1.9 42 *0.7 50 *0.3 48
1.7 40 *0.7 46 *0.3 50

*1.7 46 0.6 48 *0.3 44
1.6 40 0.6 46 *0.3 ~GS! 0 ~GS!
1.5 46 0.6 40 0.3 38

*1.5 40 *0.6 46 *0.3 38

*1.4 38 0.6 42 *0.2 40

*1.4 44 0.6 42 *0.2 34

*1.3 38 *0.6 34 0.2 38

*1.3 38 0.6 44 *0.2 40
1.3 48 *0.5 32 *0.2 44
1.3 40 *0.5 40 0.2 42

*1.2 46 0.5 42 *0.2 42
1.2 42 0.5 44 *0.1 48

*1.2 38 *0.5 12 *0.1 46
1.1 46 *0.5 50 0.1 36

*1.1 32 *0.5 42 *0.1 38

*1.1 32 0.5 46 *0.1 26
1.1 44 0.5 46 *0.1 44

*1.1 42 0.5 44 0.1 38

*1.0 40 0.5 44 *0.1 40
1.0 42 *0.4 42 *0.1 44

*1.0 42 *0.4 42 *0.1 36
0.9 46 *0.4 36 *0.1 50

*0.9 44 *0.4 36 *0.1 36

*0.9 34 *0.4 46 *0.1 50
0.9 42 *0.4 44 *0.1 46
0.9 44 *0.4 38 0.1 40

*0.9 40 0.4 44 *0.1 52

*0.9 46 *0.4 38 *0.1 50

*0.9 38 *0.3 40 *0.1 46

*0.9 50 *0.3 50
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bonds; the matrix elementsj 5 i 12 have also been discarde
since no contact can be made between these monomers

We conclude that going from the ‘‘protein-like’’ se
quence A to sequence C and to the very slow folder W,
has a spectacular proliferation of different low-energy co
formations that can be hit starting from a stretched con
mation. It is also worth remarking that the ground-sta
structure is not the most likely to be hit for either sequenc
or W.

In order to determine if any structures with energyDE
,DEhit50.5 have been missed, we first notice that for
quence C, the most unlikely hit has been reached 18 ti
out of N51500 simulations~the density of hits for this struc
ture is 1.2%, as shown in Table I!. This number is much
larger than unity, indicating that all structures of compara
or greater probability have been found. For sequence W,
most unlikely hits have been reached only once out of
N51500 simulations, strongly suggesting that some of
low-energy structures have not been found. In order to e
mate the number of missed structures for sequence W
have plotted in Fig. 9 the number of timesNi a structure has
been reached, ordered in decreasing order. The tails
been fitted to an exponential decayf ( i )528.5 exp(2i/50) if
i ,90 andg( i )5120 exp(2i/28) if i .90. An estimate of the
error in the total number of structures can be obtained
extrapolatingg( i ) and solving forg( i )51, which leads to
i 5134, compared to the 125 different structures obtain
This indicates that of order 10 structures withDE,DEhit

50.5 were likely not reached in theN51500 simulations.
We have also compared the states hit in the fold

simulation to the complete set of compact low-energy sta
with an energyDE,DEhit50.5 ~known from the compact-
state enumeration13!. In the case of sequence C, we fou
that all 12 low-energy states in Table I are indeed comp
and correspond exactly to all the compact states with an
ergy DE,DEhit50.5. For sequence W, we found 85 com
pact structures with an energyDE,DEhit50.5, a number
considerably smaller than the 125 structures in Table
which include partially open structures as well. Moreov
five of the 85 compact-state structures were not hit in
simulations. It is very plausible that these five low-ener
compact structures were missed because of poor statistic
the most unlikely hits; this is consistent with the earlier s
tistical estimate of a total of 10 missed structures.

The comparison between the low-energy compact st
tures and the hit simulations shows that, for the average f
ing sequence C, the full low-energy phase space is dyna
cally accessible, though some of these low-ene
conformations are more likely to be hit~see Table II!. The
proliferation of different low-energy conformations in th
case of the slow folding sequence W closely matches
large number of low-energy compact conformations. This
natural because the low energy cutoffDEhit50.5 restricts
‘‘hits’’ to compact or very-close-to compact states.

2. ‘‘Trapping’’ time in the low-energy conformations

We now turn to the question of how long the prote
remains in the first states reached with an energyDE
,DEhit . In particular, we would like to compare the magn
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tudes of the ‘‘trapping times’’ in these low-energy states.
do so, we start from a stretched conformation and let
dynamics evolve until a state with energyDE,DEhit is first
met at timet0 . We then calculate the autosimilarityS(t0 ,t)
between the conformation at timet0 and at a later timet0

1t. This quantity is then averaged overN51500 complete
simulations. The results are plotted in Fig. 10 for the
quences C and W, forDEhit50.5. As is visible in Fig. 10,
the typical ‘‘trapping time’’ in a conformation with an en
ergy DE,DEhit differs by only a factor of 2 or 3 betwee
the sequences C and W, compared to a factor of 30 dif
ence in folding times. This observation further confirms th
the slow folding of sequence W does not originate from
trapping in a few ‘‘valleys’’ in phase space with a very lon
trapping time. On the contrary, the trapping time of the a
erage folder C and the very slow folder W is of the sam
order of magnitude and slow folding seems to originate p
marily from the profusion of low-energy conformations fo
sequence W.

FIG. 9. Variations of the number of hitsi vs their ranki .

FIG. 10. Evolution of the autosimilarityS(t0 ,t) between the conformation
at timest0 and t01t.
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V. CONCLUSION

Let us now summarize our answers to the three qu
tions presented in the introduction.

~i! We have investigated the relation between compa
state-spectrum predictions, namely, theD/G criterion, Eqs.
~7! and ~8!, and thermodynamic stability, determined fro
Monte Carlo simulations where all the states~not only the
compact ones! are taken into account. We find that for hig
D/G the predictions of the compact-state-spectrum anal
are in good agreement with the Monte Carlo simulatio
Namely, sequences that have a highD/G ratio also have a
sharp transition to the native-state conformations~‘‘thermo-
dynamically stable’’!. For sequences with a low or interme
diateD/G ratio, the transition widths vary considerably an
are generally broader. This suggests that low-energy o
configurations can be important in determiningd in this case.
We find that designability~defined as the number of se
quences that have a given structure as their nondegen
ground state! is not in one-to-one correspondence with th
modynamic stability. Some sequences with highly desi
able ground states are thermodynamically unstable. H
ever, we did find that sequences with highly designa
ground states haveon averagea largeD/G ratio, and that
sequences with poorly designable ground states haveon av-
eragea smallD/G ratio.

~ii ! The folding simulations have shown that sequen
with a largeD/G ratio fold fast. Sequences with a lowD/G
ratio, and therefore, sequences which are thermodynamic
unstable, may fold slow or fast at the relatively high te
peratures that we investigated. At these temperatures the
tein spends only 10% of the time near its ground-state c
figuration. We have argued, with several examples, tha
lower temperatures the thermodynamically unstable
quences are likely to become slow folders whereas the st
ones are likely to continue to fold fast.

~iii ! To be ‘‘protein-like’’ a sequence must first be the
modynamically stable, which follows if it has a largeD/G
ratio. Second, the sequence must be mutationally sta
which follows if it has a highly designable ground state. W
find that the third requirement to be ‘‘protein-like,’’ name
fast folding, does not introduce additional constraints on
quence selection. Once a sequence has been designed
thermodynamically stable~large D/G) and stable agains
mutations~largeNS) its folding dynamics are fast.

We have also explored the reason for the slow folding
a sequence with an anomalously large average folding ti
We found that the ‘‘trapping time’’ in a given low-energ
state is of the same order of magnitude for both fast and s
folding sequences, and cannot explain the large differen
in the average folding times. Instead, we have shown that
slow folder visits a large number of different low-energ
states, whereas only a few low-energy states are visited
the fast folder. This suggests that slow folding dynam
originate from a large number of low-energy conformatio

Finally, we make a few remarks to illustrate the mag
tude of structure and sequence selection. We started fro
set of 227 sequences, only 4.75%~approximately 6 000 000)
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of these having a nondegenerate compact ground-s
structure.13 The total number of possible compact structur
is 51 704.13 Among all these structures, only 60 are high
designable~estimated from the jump of the average compa
state-spectrum gap asNS increases above.140013!. The 60
highly designable structures are designed by a total
128 320 sequences, only 15% of which haveD/G.4.3 and
are thus expected to be ‘‘protein-like’’ folders. In summar
only about 0.01% of the initial 227 sequences satisfy all th
requirements for ‘‘protein-like’’ behavior.
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