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Incommensurability in the frustrated two-dimensional XY model
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To examine the properties of the frustraté®Y model at an incommensurate field we have examined a
sequence of magnetic filling factarsvhich approach the irrational value of one minus the golden mean. At all
f studied, the system undergoes a finite-temperature ordering transition involving the freezing out of Ising-like
domain walls. As one approaches incommensurability, the low-temperature phase of the system changes from
the staircase states found by Halg§@&hys. Rev. B31, 5728(1984; J. Phys. C18, 2437(1985] to a striped
phase consisting of a superlattice of parallel sti#ftt’s-like) domain walls. Our results suggest that the glassy
effects previously reported for this model are an artifact of the boundary conditions and dynamics that were
used.[S0163-182609)03426-9

[. INTRODUCTION density, it is unknown what effect this additional global con-
straint will have.
The irrationality of a parametdy characterizing the frus- To study the system near incommensurability we examine
tration of a physical system, can have a profound and oftema sequence of statef=3/8, 5/13, 8/21, 13/34, 21/55, 34/
very surprising effect. In the frustrateétly model, the inter- 89 ..., which approaches the quadratic irrational value of

play of two length scales—the mean separation of vortices* =(3— \/5)/2. We examine ground-state properties and
induced by the frustratiohand the period of the underlying low-energy excitations using a numerical constrained optimi-
lattice—gives rise to a wide variety of interesting physicalzation to minimize the energy. We correlate these states to
phenomena.Halsey has proposédhased on numerical evi- those found with Monte CarlMC) simulations of systems
dence, that in the limit of an irrationd = (3—/5)/2 this  with softboundary conditions. When we relax the constraint
model displays a glass transition to a superconducting frozeaf fixed periodicity, allowing the system to find its own natu-
disordered vortex state. If this were true, it would make theral period, we find that the system undergoefinite tem-
frustratedXY model atf* a structural glass, a glassy system perature (not approaching zejophase transition to aor-
which possess no intrinsic random disorder, something ofleredstate. As one goes down this sequence towéfdwe
great current interest. Experiments on superconductingind that atf =5/13 the ground state changes from a staircase
arrays® an experimental realization of this model, find evi- stat€® to a striped phase, similar to those found in
dence for a finite-temperature transition for this irratioffal ~commensurate-incommensurate transitions. We therefore
However, recent simulations by Granatshowed results conclude that the “glassy” behavior seen by previous work-
consistent with a glass transition at zero temperature, aners is an artifact of energy barriers in their particular dynam-
those by Kim and Leeshowed dynamics resembling that of ics and boundary conditions.

a supercooled liquid near the transition temperature found by

Halsey. In contrast, Gupta, Teitel, and GianaBave re- Il. THE MODEL AND DOMAIN WALLS

cently studied the irrational Josephson array using the Cou-

lomb gas formalism and find a first-order transition to an The Hamiltonian of the frustratedY model is

ordered state. In light of these conflicting results, it is impor-
tant to clearly investigate which of these results holds for the
frustratedXY model, originally studied by Halsey.

Naively, one might have expected this system to behave
in a similar manner to the commensurate-incommensurat&here 6; is the phase on siteof a squarel XL lattice and
(C-) behavior seen in the discrete sine-Gordan médel. Aij= (27T/¢o)f’A dl is the integral of the vector potential
While this is the case for the frustrated¥ model in a one- from sitei to sitej with ¢y being the flux quantum. The
dimensional ladder geometfyglobal screening currents are directed sum of theA;; around an elementary plaquette
required in order to maintain a vortex density different from=A;; =2xf wheref, measured in the units @, is the mag-
the frustratiorf. Since in 2D this costs an energy logarithmic netic flux penetrating each plaquette due to the uniformly
in the size of the system, fixed density of vortices equdl to applied field.
is always observed, destroying the devil's staircase structure It is, in general, quite hard to study a system near incom-
of the phase diagraitin the densityf plang. Since previous mensurability. For numerical work this is due to the large
studies of C-I transitions have been done under conditions afystem sizes required; fé=p/q a system ofat least gx q,
fixed chemical potentialvarying density rather than fixed and possibly much largéPf,is required, and by definitiog

H=—J<Z> cod 6, 6;— A)), (1)
ij
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Newton method, on lattices with up to %30 sites and
constraints fixing the fluxoid occupation of each plaquette.
For f=3/8 the lowest energy wall is a herringbone wall, but
there is a shift wall with only slightly higher energy. For the
higher-order rationalsf(=5/13 to 34/89) there is at least one
shift wall with lower energy than any single herringbone
wall. In addition, a striped phase such as the one shown in
Fig. 2(a), consisting of a superlattice of parallel shift walls is
lower in energy than the plain staircase state fer8/21,
13/34, 21/55, and 34/89.

The energy of a superlattice of parallel shift walls is
FIG. 1. Fluxoid pattern fof = 2 for (a) a unit cell of the stair-  shown in Fig. 2b) for f=5/13 and 8/21. The presence of a
case state(b) A herringbone wall, andc) and shift-by-eight wall.  short-range energetic repulsion makes wall crossings ener-
A vortex is shown as a dark square. (), the pattern on the right getically unfavorable. Also, the interaction is essentially flat
is shifted down by eight from where it would be if it had just at large distances. There is, however, a minimum in the in-
continued the pattern on the left. teraction potential at a finite separation of the walls which

sets the period of the lowest energy state. This minimum

— for incommensuraté. The ground states of the Hamil- arises due the directionality of the wall which causes the
tonian (1) will be among the solutions to the supercurrentdistortion of the phase to be asymmetric on each side of the
conservation equationsH/d6;=0: wall. As a result, when the distortion of the phases from two
walls overlap, there can be some cancellation. If however,

S sin6;— 6 —A;)=0 2 the walls get too close, the distortions of the phase field from

= ! to ' the two walls start to match, causing a rapid increase in

]
. : . , nergy.
wherej’ are the nearest neighborsitcdOne set of solutions 9y

to these equations was found by Hafseywhich the square
network is partitioned into diagonal staircases with a con- [1l. BOUNDARY CONDITIONS
stant current flowing along each staircase. The resulting flux-
oid patterns consist of diagonal lines of vortices. A unit cell
of the staircase fluxoid pattern fd=8/21 is shown in Fig.

1(a). While these staircase states are not, as will be show
later, the ground states for all tieve study, they are still a

While energy calculations show that the striped phase is

lower in energy than the plain staircase state ffer8/21,
3/34, 21/55, and 34/89, this does not necessarily mean that

there is not some other state with even lower energy. To test

useful set of states in that the striped phases we find fitear thiS: We undertook extensive Monte Carlo simulations.
can be defined in terms of domains of staircase states sep oundary effects can propagate qwt_e far info the sys_tem as
rated by parallel domain walls. t e boundary can easily I|nduce a h|gh—energy domal.n v_vaII
Figures 1b) and Xc) show some of the low-energy do- into the system if the period pf the Iattlce. does not CO.InCIde
main walls for a typical casef==8/21. Domain walls be- with the systems natural period. To alleviate this strain, the

tween the 2 degenerate staircase states can be classifiedy St \INI” break this sn:lgle hlgl?-en_ergy mterflz_icet |ro1|totnu-
into two types.Shift walls involve a shift of the vortex pat- merous lower energy walls resuiting in a complicated struc-

tern across the walbuch as in Fig. @) where the pattern on ture of walls V‘.’hiCh can exteqd well into .the. system. These
the right is shifted down by eight lattice spacings with re_trapped domain structures will havg a S|gn|f|cant.effect on
spect to the pattern on the Igfiut the lines of vortices are flnlte-temper_ature states and transitions found in sm_aller
still going along the same diagondferringbonewalls are Sa"?P'e_S- This problem is even more extreme when domma_nt
walls between states with the vortex lines going along oppo?‘)«f"tatlons of the system cause the systems to have a_pe_nod
site diagonals. To calculate energies of different vortex patyvhICh depends on the presence or absence of the excitation.

terns, we solved equation@) numerically, using a quasi- Th|s_|s illustrated in Fig. _3. The ground state fbe=3/8
consists of the Halsey staircase state. However, close to the

03 critical point a common excitation is a shift-by-three wall, as

I {b) =513 can be seen in Fig.(8). The state illustrated in Fig.(8) is
very similar to the striped phases seen in more conventional

commensurate-incommensurat€-1) system$. However,

=§01 one should notice that the number of shift-by-three walls is
: S fixed to be a multiple of 8 if one imposes periodic boundary

Ry conditions, as we have done in this case. This is because

moE R T E R w07 Traaererttrn each time one crosses a shift wall the vortex pattern shifts by
o 5 {0 15 three, and it requires eight shifts of three to bring the vortex

d pattern back in coincidence to what it would be without the

FIG. 2. (3 A section of the striped phase fdr=8/21 corre- Walls. As one cools such a system further, the eight shift
sponding to the minimum in the energy(m. The sequence of wall Walls eventually condense into a superlattice of regularly
spacings repeats periodically. The shading is only a guide for thépaced wall§Fig. 3(b)] with the spacing set by the minimum
eye.(b) Energy per unit area of a superlattice of shift-by-eight wallsin the interwall potentia]Fig. 3(c)]. This superlattice of shift
as a function of their average separation fer=5 and ;. walls then remains a very low temperature, even though it is
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o5 0.26 In some sense, one can consider the boundary conditions
0.24 to impose a hidden chemical potential which fixes the den-
20 $0.22 sity of the shift walls. That the combination of frustration
15 0.2 © and this sort of global constraint could be the cause of the
10 018 glassy behavior seen by other workers is not that surprising.
5 The problems of these boundary conditions can be allevi-
0 5 dm 15 ated by installing a boundary layer at the edge of the system.
0 5 101520 25 30 In the boundary layer, the couplinin Eq. (1) goes from

FIG. 3. (a) A vortex configuration produced from Monte Carlo oneﬁg/r; the interior side toizwe}\ro on the_ exteriafx) =A(1
simulation of f=3/8 with periodic boundary conditions and at —€ ) WhereA=1/(1—e ™) andw is the number of
keT/J=0.122. The system was started in the high temperature staf@Ws Of lattice sites in the boundary layer anetw is ad-
and the temperature was lowered in stepA &= 0.003 through the  justed so that connection to the interigrhereJ=1) is rea-
transition temperature, equilibrating at each stép.Similar to(a) ~ sonably smooth(see Fig. 4 We found thatw=8 and A
except a smaller lattice arksT/J=0.025.(c) Energy per unitarea =2.5 gave reasonable results. A similar type of approach
of a superlattice of shift-by-three walls as a function of their aver-was introduced by Olsson in Ref. 13, but we found that the
age separation fdr= 3. Note that the spacing ifb) corresponds to  more extended boundary layer we use here was more effec-
the minimum energy. tive at allowing shift walls to move in and out of the bound-

aries. In practice, it would seem to be only necessary to use
clearly not the lowest energy statthe plain staircase state boundary layers in one direction and periodic boundary con-
has lower energy This is a result of the difficulty the system ditions can be kept in the other. This does lead to a preferred
encounters in trying to rid itself of such configurations. In direction in the striped phagstripes parallel to the boundary
order to remove the shift walls, the system would have to ddayerg and we shall mention the possible effects of this pref-
something like pinch all eight of them together to form aerence below. Measurements of the energy, order parameter,
dislocation, as suggested by Schetzal!! in the context of etc. were made only on the interior, where the coupling
commensurate-incommensurate transitions. However, suchl.
an intermediate configuration appears to have an energy
which is too hlgh to be accessible without some glObaI IV. GROUND STATES AND PHASE TRANSITIONS
Monte Carlo movesin other words, the core energy of such
a dislocation is prohibitively high Similar effects can be For the discrete degrees of freedom we kept track of an
seen in other models such as the chiral clock model with th@rientational order parametévly, measuring whether the
parameters so that domain walls do not wet each dthar.  vortices are preferentially arranged along one diagonal, and
natural way for such directed walls to adjust their density isin the striped phase an order paramegiteneasuring the den-
to enter or leave through the boundaries of the system. Thisity of shift walls. The MC simulations used a heat bath
would suggest some sort of free boundary conditions whickalgorithm with system sizes 32.<96. We computed about
do not fix the systems period. Free boundary conditions cah0’ MC steps(complete lattice updatgsand data from dif-
however also induce domain walls, as a free boundary caferent temperatures was combined and analyzed using histo-
act like a mirror plane in this system. To see this consider thgram technique¥’
f=0 case, which in the continuum limit has vortex excita- At the lowest temperatures of the simulatiorkgT/J
tions which are solutions to the Laplace’s equation. The cor=0.03, we find the system goes into the states expected from
responding solution in a system with a free boundary has athe energy calculationst=3/8 and 5/13 are in the plain
image charge opposite the vortex across the boundary. Assiaircase states arieé=8/21,13/34, and 21/55 are in a striped
result, even in the ground state a free boundary would inducphase. In the following discussion, we start by examinfing
a herringbone wallcf. Fig. 1(b)] at the boundary. =8/21,13/34, and 21/55 which undergo a phase transition at
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FIG. 5. Diagonal ordefdashed and shift wall density(solid) -5.0
versuskgT/J for f=8/21 andL=42, 63, and 84 for a system with

1.18

periodic boundary conditions in one direction and soft boundary
conditions in the other. Also shown is the diagonal or@fmt-long
dashedl for L=84 and shift wall densitydot-dashefi for L =63 FIG. 6. Free energy versus energy, showing the free energy
and 84 versukgT/J for f=8/21 for a system with soft boundary parrier between ordered and disordered statef f08/21 and with

conditions in both directions. The fine dotted horizontal line indi- periodic boundary conditions in one direction and soft boundary
cates a shift wall density of 21/29. conditions in the other.

aboutkgT.=0.13) from the striped phase to the diagonally wall density, which has a bit of a jump when the boundary
disordered phase. We then turn to the5/13 case which conditions are periodic in one direction and soft in the other
has a transition from the plain staircase state to the stripeghixed) whereas the shift-wall density goes smoothlypto
phase atkgT.=0.04) and then has a transition &T.  =21/29 when soft boundary conditions are applied in both
=0.13) to a diagonally disordered phase. For the largestirections. The order of the transition is most clearly indi-
system sizesf=3/8 appears to undergo a single transitioncated by examining the free energy at the transition, a tech-
from the plain staircase state to the diagonally disordere@ique described in Ref. 15. The free energy as a function of

phase at aboutgT,=0.123). energy is obtained using, (E) = — InP,(E) whereP (E) is
the probability distribution for the energly, generated by
A. f=8/21,13/34, and 21/55 Monte Carlo simulation of & XL system. Figure 6 shows

Fi 5 sh the di l ord d shif Il densi that for mixed boundary conditions near the transition tem-
Igure 5 shows the diagonal order and shift-wall density,e 41re  the free energy has two distinct minima, corre-
as a function of temperature fof==8/21. In the high-

; t h q ; lis of all t hift and h sponding to the ordered and disordered states. The free-
emperature phase, domain walls ot all types, Shilt and Nelaneq gy harrier between these two states grows as the system
ringbone, are present and the vortex lattice is disordered.

h itical h d by f . A§ize increases fronL=42 to 84 implying a first-order
the critical temperaturé, the system orders by freezing out yangjtion!s However, this barrier does not appear to be

herringbone walls, leaving a diagonally ordered striped, oqent when soft boundary conditions are applied in both
phase. This s_tnped phase has a denpﬁyZl/ZQ of shift  girections. Unfortunately, in neither case are the system sizes
walls almost independent of temperatugee Fig. . (0 |arge enough to start applying finite-size scaling to confirm
=21/29 corresponds to an average spacingf)IThe non-  the nature of the transition. It may appear strange that the
integer spacing comes from a s& of two different wall  boundary conditions can effect the order of the phase transi-
spacingdd; of 1 and 2, arranged in a Fibonacci sequence cution. However, imposing a periodic boundary condition in
off at 21;s,={do}={1}, s,={dp,d;}={2,1} ands, is de-  one direction fixes the direction of the stripes. This might act
rived from the sets,_, ands,_; ass,=S,_»:S,_1, Where like a (Z?) symmetry-breaking field and might cause the
the : symbol indicates concatenation. So, for instagge transition first order. It is not clear if the barrier observed in
={d;,d,,ds}={1}:{2,3={1,2,1}. The full sequence ts,;  Fig. 6 will continue to grow indefinitely. It is growing rather
is given along the bottom of Fig(@. Note that it is the wall  slowly compared to, say the barrier growth observed in the
spacings that repeat periodically every 21 walls, but the acfirst-order phase transition seen fb=2/5° and it is pos-
tual vortex lattice period repeats every>921=609 lattice  sible it may reach a finite size and level off, so that the
constants(one period of the wall spacings takes 29 latticetransition would also appear second order in the thermody-
constants forp=21/29). Thus, the typical period of the namic limit even for the mixed boundary conditions. In any
ground-state vortex lattice becomes of ordérather thaty ~ case, substantially more work on larger systems is needed to
(recall f=p/q). The spacing observed in the Monte Carlo resolve the situation. On the experimental side, the situation
simulations corresponds to the system sitting at the minimuneoncerning the order of the transition is also ambiguous.
of the energy in Fig. ®). We should note that this is quite Experimentally? a finite-temperature second-order phase
different from the case studied in commensuratetransition is seen &t=f*. That the transition occurs at finite
incommensurate transitiochsvhere there is no minimum in temperature is in agreement with our results. But the ob-
the interaction potential to pin the walls. served continuous transition could be due to the presence of
We now consider the order of the transition from thebond disorder which has been shown to wipe out any coex-
striped phase to the diagonally disordered phase as a functigstence region of two phases in two dimensions making all
of temperature. One can see from Fig. 5 that there appears tansitions continuout*?
be some difference between the behavior depending on the The f=13/34 and 21/55 cases also undergo a phase tran-
boundary conditions. This is very noticeable for the shift-sition at around the sanig.=0.13 from the diagonally dis-
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ordered high-temperature phase to the striped phase. Thehether or not this entropic repulsion is relevant, we esti-
striped phases for thegeappears to be slightly more com- mate if two walls remain bound together at the minima of the
plicated. Like thef=8/21 case, the stripes appear to beinteraction potential. This is done using a SOS model for two
mainly composed of shift-by-eight walls with a similar Fi- walls with a binding energy equal to the depth of the minima
bonacci sequence of spacingsith spacings of 2 and)3 in the interaction:

However, these higher-order rationals also have other walls

which have negative energy with respect to the staircase _ _

state. These additional walls also seem to be present in a Hd{A’Z}_zk: {(2bo+uy0; 0 +bolz= 24|

much lower density, interspaced between the shift-by-eight

walls in some quasiperiodic pattern. If one includes these +(2bo+u, 5zk,0)Ak}- 4
walls, the wall density is similar téd=8/21 and the vortex
lattices look very similar td =8/21, which is probably why
they have such similar, .

wherez, is the separation of the wallg(=0), andA, is the
number of vertical steps the two walls take in the same di-
rection in thekth column (-~ <A, <«). uj andu, are the
binding energies parallel and perpendicular to the wall. Sum-
B. f=5/13 ming overA, leaves the partition function in the form of a

For f=5/13 the shift walls are the lowest energy walls, transfer matrix:ZzE{Zk}HkTitfl. A ground-state eigenvec-

but the striped phase costs enefgge Fig. 20)]. The striped  tor 4,(z)=e %, where 14 is the localization length, or
phase can exist at finite temperature however, due to entropigpical distance separating the lines, characterizes the bound
reasons which we shall discuss below. In the Monte Carlgtate of the two linesw=0 defines the unbinding transition
simulations we see a very similar transition fb=5/13  at T,. Doing this, one finds an unbinding temperature of
(similar T) to the one seen for=8/21 from the diagonally  k,T,/J=0.51. BelowT,, the entropic repulsion is insuffi-
disordered high-temperature phase to the striped phase. Thgant to push the system out of the minimum. Abdyg the

wall density in the striped phase is fixed at abpet13/31,  striped “solid” phase will melt into a phase where the wall
which can be constructed from a Fibonacci sequence of wallensity changes continuously with temperature. Here, how-
spacings consisting of spacings of 2 and 3 in a manner simiver, this is preempted by the entrance of the diagonally
lar to that used for spacings of 1 and 2 fior8/21. ForL disordered phase at.=0.13.

=39, and at abouf~0.05 the wall spacings of 2 and 3 |n order for the striped phase to be stable for5/13,
appear to switch to give a slightly lower energy statgpat where it costs energy, there must be sufficient entropy from
=13/34. It is unclear however if this would be the case forthe lines wandering within the region between its neighbors.
larger systems and would require further study. These tw@he energy per line at finite temperature can be estimated
wall densities,p=13/34 and 13/31 correspond to the two using Eq.(3) with z, restricted to 0t 1 as the minimum in
dips within the larger minima seen in the interaction energythe interaction energy is at a spacing of about 2. The free
shown in Fig. 2b). At a lower temperaturd ,~0.045, the  energy per line per column is then

system undergoes a first order transition from the striped

phase to the plain staircase state. ep=TIn{e?lT/[1+e 270 /T(1+ 1+ 8e27: TT)/2]}.

The transition from the plain staircase state to the stripe
phase is similar to the commensurate-incommensurate tran-. . . : o
sitions studied in the context of adsorbed filfnshich is a with the pIam staircase state and a flrst-orqer phase transition
second-order phase transition. In studies of these transition@CCUrs: Tak|nger_=0.04l_J for the shift-by-eight wall at the
one considers the free energy of a single line per unit lengt§1iNIMum of the interaction energy and =0.04) from an
e.. This can be estimated using a simple solid-on-solicfverage of measurements of the energy of several kinks of

(SOS model of the shift line. The energy of the line, extend- differing lengths, one finds that, crosses zero afl,
ing from one side of the system to the other is =0.04] in reasonable agreement with the value observed in

the Monte Carlo simulations.

\t the point wheree,, crosses zero the striped phase coexists

Hd{Zy=olL+ 0, > [z¢—2zc4l, (3) V. CONCLUSION
k

In conclusion, we find that all of the systems studied un-
whereo (o) is the energy per unit length in the direction dergo a finite-temperature transition from an ordered state to
parallel (perpendicularto the wall. The heightg,, take on  a diagonally disordered stat®The transition temperature is
integer values. The partition function, can be evaluated tmearly constant and shows no signs of approaching zero as
give the interfacial free energy per coluMn es  one goes to more incommensurété\s one approaches in-
=TIn[e’l"tanH(o, /(2T))]. A phase transition occurs when commensuraté the low-temperature state changes from the
e; becomes negative. If this were the case here, one wouldlain staircase state found by Halsey to the striped phase. We
see a continuous rise in the shift-wall density. What makedind that the choice of boundary conditions, at least in the
this case different is the presence of the minimum in the walfinite-size systems available to study numerically, can have a
interaction potentialFig. 2(b)] which we take into account significant impact on the dynamics. It does this by creating
in the following. barriers for parallel shift walls, a dominant excitation in the

If placed in a system with other shift walls, the walls will low-temperature state. If one takes periodic boundary condi-
experience an entropic repulsion since a wall can only octions nearf =f* typically glassy behavior has been observed
cupy the region of space between its neighbors. To sem simulations. If one takes the soft boundary condition that
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allows the system to adjust the density of shift walls in onethe soft boundary condition in both directions it would ap-
direction and the periodic boundary condition in the otherpear that one finds a continuous transition to the ordered
direction, one obtains an ordered low-temperature state andw-temperature state. This final observation, one could ar-
what appears to be a weak first-order transition. If one takegue, should be the true result in the thermodynamic limit.
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