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Incommensurability in the frustrated two-dimensional XY model
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To examine the properties of the frustratedXY model at an incommensurate field we have examined a
sequence of magnetic filling factorsf which approach the irrational value of one minus the golden mean. At all
f studied, the system undergoes a finite-temperature ordering transition involving the freezing out of Ising-like
domain walls. As one approaches incommensurability, the low-temperature phase of the system changes from
the staircase states found by Halsey@Phys. Rev. B31, 5728~1984!; J. Phys. C18, 2437~1985!# to a striped
phase consisting of a superlattice of parallel shift~Pott’s-like! domain walls. Our results suggest that the glassy
effects previously reported for this model are an artifact of the boundary conditions and dynamics that were
used.@S0163-1829~99!03426-8#
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I. INTRODUCTION

The irrationality of a parameterf, characterizing the frus
tration of a physical system, can have a profound and o
very surprising effect. In the frustratedXY model, the inter-
play of two length scales—the mean separation of vorti
induced by the frustrationf and the period of the underlyin
lattice—gives rise to a wide variety of interesting physic
phenomena.1 Halsey has proposed,2 based on numerical evi
dence, that in the limit of an irrationalf * 5(32A5)/2 this
model displays a glass transition to a superconducting fro
disordered vortex state. If this were true, it would make
frustratedXY model atf * a structural glass, a glassy syste
which possess no intrinsic random disorder, something
great current interest. Experiments on superconduc
arrays,3 an experimental realization of this model, find ev
dence for a finite-temperature transition for this irrationalf * .
However, recent simulations by Granato4 showed results
consistent with a glass transition at zero temperature,
those by Kim and Lee5 showed dynamics resembling that
a supercooled liquid near the transition temperature found
Halsey. In contrast, Gupta, Teitel, and Gingras20 have re-
cently studied the irrational Josephson array using the C
lomb gas formalism and find a first-order transition to
ordered state. In light of these conflicting results, it is imp
tant to clearly investigate which of these results holds for
frustratedXY model, originally studied by Halsey.

Naively, one might have expected this system to beh
in a similar manner to the commensurate-incommensu
~C-I! behavior seen in the discrete sine-Gordan mod6

While this is the case for the frustratedXY model in a one-
dimensional ladder geometry,7 global screening currents ar
required in order to maintain a vortex density different fro
the frustrationf. Since in 2D this costs an energy logarithm
in the size of the system, fixed density of vortices equalf
is always observed, destroying the devil’s staircase struc
of the phase diagram~in the density-f plane!. Since previous
studies of C-I transitions have been done under condition
fixed chemical potential~varying density! rather than fixed
PRB 600163-1829/99/60~5!/3163~6!/$15.00
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density, it is unknown what effect this additional global co
straint will have.

To study the system near incommensurability we exam
a sequence of states,f 53/8, 5/13, 8/21, 13/34, 21/55, 34
89 . . . , which approaches the quadratic irrational value
f * 5(32A5)/2. We examine ground-state properties a
low-energy excitations using a numerical constrained opti
zation to minimize the energy. We correlate these state
those found with Monte Carlo~MC! simulations of systems
with soft boundary conditions. When we relax the constra
of fixed periodicity, allowing the system to find its own nat
ral period, we find that the system undergoes afinite tem-
perature ~not approaching zero! phase transition to anor-
deredstate. As one goes down this sequence towardsf * we
find that atf 55/13 the ground state changes from a stairc
state8,9 to a striped phase, similar to those found
commensurate-incommensurate transitions. We there
conclude that the ‘‘glassy’’ behavior seen by previous wo
ers is an artifact of energy barriers in their particular dyna
ics and boundary conditions.

II. THE MODEL AND DOMAIN WALLS

The Hamiltonian of the frustratedXY model is

H52J(̂
i j &

cos~u i2u j2Ai j !, ~1!

whereu j is the phase on sitej of a squareL3L lattice and
Ai j 5(2p/f0)* i

jA•dl is the integral of the vector potentia
from site i to site j with f0 being the flux quantum. The
directed sum of theAi j around an elementary plaquet
(Ai j 52p f wheref, measured in the units off0, is the mag-
netic flux penetrating each plaquette due to the uniform
applied field.

It is, in general, quite hard to study a system near inco
mensurability. For numerical work this is due to the lar
system sizes required; forf 5p/q a system ofat least q3q,
and possibly much larger,10 is required, and by definitionq
3163 ©1999 The American Physical Society
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3164 PRB 60COLIN DENNISTON AND CHAO TANG
˜` for incommensuratef. The ground states of the Hami
tonian ~1! will be among the solutions to the supercurre
conservation equations]H/]u i50:

(
j 8

sin~u j 82u i2Ai j 8!50, ~2!

where j 8 are the nearest neighbors toi. One set of solutions
to these equations was found by Halsey8 in which the square
network is partitioned into diagonal staircases with a c
stant current flowing along each staircase. The resulting fl
oid patterns consist of diagonal lines of vortices. A unit c
of the staircase fluxoid pattern forf 58/21 is shown in Fig.
1~a!. While these staircase states are not, as will be sh
later, the ground states for all thef we study, they are still a
useful set of states in that the striped phases we find neaf *
can be defined in terms of domains of staircase states s
rated by parallel domain walls.

Figures 1~b! and 1~c! show some of the low-energy do
main walls for a typical case,f 58/21. Domain walls be-
tween the 2q degenerate staircase states can be class
into two types.Shift walls involve a shift of the vortex pat
tern across the wall@such as in Fig. 2~c! where the pattern on
the right is shifted down by eight lattice spacings with r
spect to the pattern on the left# but the lines of vortices are
still going along the same diagonal.Herringbonewalls are
walls between states with the vortex lines going along op
site diagonals. To calculate energies of different vortex p
terns, we solved equations~2! numerically, using a quasi

FIG. 1. Fluxoid pattern forf 5
8

21 for ~a! a unit cell of the stair-
case state,~b! A herringbone wall, and~c! and shift-by-eight wall.
A vortex is shown as a dark square. In~c!, the pattern on the righ
is shifted down by eight from where it would be if it had ju
continued the pattern on the left.

FIG. 2. ~a! A section of the striped phase forf 58/21 corre-
sponding to the minimum in the energy in~b!. The sequence of wal
spacings repeats periodically. The shading is only a guide for
eye.~b! Energy per unit area of a superlattice of shift-by-eight wa
as a function of their average separation forf 5

5
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Newton method, on lattices with up to 2.33105 sites and
constraints fixing the fluxoid occupation of each plaque
For f 53/8 the lowest energy wall is a herringbone wall, b
there is a shift wall with only slightly higher energy. For th
higher-order rationals (f 55/13 to 34/89) there is at least on
shift wall with lower energy than any single herringbon
wall. In addition, a striped phase such as the one show
Fig. 2~a!, consisting of a superlattice of parallel shift walls
lower in energy than the plain staircase state forf 58/21,
13/34, 21/55, and 34/89.

The energy of a superlattice of parallel shift walls
shown in Fig. 2~b! for f 55/13 and 8/21. The presence of
short-range energetic repulsion makes wall crossings e
getically unfavorable. Also, the interaction is essentially fl
at large distances. There is, however, a minimum in the
teraction potential at a finite separation of the walls wh
sets the period of the lowest energy state. This minim
arises due the directionality of the wall which causes
distortion of the phase to be asymmetric on each side of
wall. As a result, when the distortion of the phases from t
walls overlap, there can be some cancellation. If howev
the walls get too close, the distortions of the phase field fr
the two walls start to match, causing a rapid increase
energy.

III. BOUNDARY CONDITIONS

While energy calculations show that the striped phase
lower in energy than the plain staircase state forf 58/21,
13/34, 21/55, and 34/89, this does not necessarily mean
there is not some other state with even lower energy. To
this, we undertook extensive Monte Carlo simulation
Boundary effects can propagate quite far into the system
the boundary can easily induce a high-energy domain w
into the system if the period of the lattice does not coinc
with the systems natural period. To alleviate this strain,
system will break this single high-energy interface into n
merous lower energy walls resulting in a complicated str
ture of walls which can extend well into the system. The
trapped domain structures will have a significant effect
finite-temperature states and transitions found in sma
samples. This problem is even more extreme when domin
excitations of the system cause the systems to have a pe
which depends on the presence or absence of the excita
This is illustrated in Fig. 3. The ground state forf 53/8
consists of the Halsey staircase state. However, close to
critical point a common excitation is a shift-by-three wall,
can be seen in Fig. 3~a!. The state illustrated in Fig. 3~a! is
very similar to the striped phases seen in more conventio
commensurate-incommensurate~C-I! systems.6 However,
one should notice that the number of shift-by-three walls
fixed to be a multiple of 8 if one imposes periodic bounda
conditions, as we have done in this case. This is beca
each time one crosses a shift wall the vortex pattern shifts
three, and it requires eight shifts of three to bring the vor
pattern back in coincidence to what it would be without t
walls. As one cools such a system further, the eight s
walls eventually condense into a superlattice of regula
spaced walls@Fig. 3~b!# with the spacing set by the minimum
in the interwall potential@Fig. 3~c!#. This superlattice of shift
walls then remains a very low temperature, even though
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PRB 60 3165INCOMMENSURABILITY IN THE FRUSTRATED TWO- . . .
clearly not the lowest energy state~the plain staircase stat
has lower energy!. This is a result of the difficulty the system
encounters in trying to rid itself of such configurations.
order to remove the shift walls, the system would have to
something like pinch all eight of them together to form
dislocation, as suggested by Schulzet al.11 in the context of
commensurate-incommensurate transitions. However, s
an intermediate configuration appears to have an en
which is too high to be accessible without some glo
Monte Carlo moves~in other words, the core energy of suc
a dislocation is prohibitively high!. Similar effects can be
seen in other models such as the chiral clock model with
parameters so that domain walls do not wet each other.12 A
natural way for such directed walls to adjust their density
to enter or leave through the boundaries of the system. T
would suggest some sort of free boundary conditions wh
do not fix the systems period. Free boundary conditions
however also induce domain walls, as a free boundary
act like a mirror plane in this system. To see this consider
f 50 case, which in the continuum limit has vortex excit
tions which are solutions to the Laplace’s equation. The c
responding solution in a system with a free boundary has
image charge opposite the vortex across the boundary.
result, even in the ground state a free boundary would ind
a herringbone wall@cf. Fig. 1~b!# at the boundary.

FIG. 3. ~a! A vortex configuration produced from Monte Car
simulation of f 53/8 with periodic boundary conditions and
kBT/J50.122. The system was started in the high temperature s
and the temperature was lowered in steps ofDT50.003 through the
transition temperature, equilibrating at each step.~b! Similar to ~a!
except a smaller lattice andkBT/J50.025.~c! Energy per unit area
of a superlattice of shift-by-three walls as a function of their av
age separation forf 5

3
8 . Note that the spacing in~b! corresponds to

the minimum energy.
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In some sense, one can consider the boundary condit
to impose a hidden chemical potential which fixes the d
sity of the shift walls. That the combination of frustratio
and this sort of global constraint could be the cause of
glassy behavior seen by other workers is not that surpris

The problems of these boundary conditions can be alle
ated by installing a boundary layer at the edge of the syst
In the boundary layer, the couplingJ in Eq. ~1! goes from
one on the interior side to zero on the exterior:J(x)5A(1
2e2x/l) where A51/(12e2wl) and w is the number of
rows of lattice sites in the boundary layer andl,w is ad-
justed so that connection to the interior~whereJ51) is rea-
sonably smooth~see Fig. 4!. We found thatw58 and l
52.5 gave reasonable results. A similar type of appro
was introduced by Olsson in Ref. 13, but we found that
more extended boundary layer we use here was more e
tive at allowing shift walls to move in and out of the boun
aries. In practice, it would seem to be only necessary to
boundary layers in one direction and periodic boundary c
ditions can be kept in the other. This does lead to a prefe
direction in the striped phase~stripes parallel to the boundar
layers! and we shall mention the possible effects of this pr
erence below. Measurements of the energy, order param
etc. were made only on the interior, where the couplingJ
51.

IV. GROUND STATES AND PHASE TRANSITIONS

For the discrete degrees of freedom we kept track of
orientational order parameterMd , measuring whether the
vortices are preferentially arranged along one diagonal,
in the striped phase an order parameterr measuring the den
sity of shift walls. The MC simulations used a heat ba
algorithm with system sizes 32<L<96. We computed abou
107 MC steps~complete lattice updates!, and data from dif-
ferent temperatures was combined and analyzed using h
gram techniques.14

At the lowest temperatures of the simulations,kBT/J
50.03, we find the system goes into the states expected f
the energy calculations:f 53/8 and 5/13 are in the plain
staircase states andf 58/21,13/34, and 21/55 are in a stripe
phase. In the following discussion, we start by examiningf
58/21,13/34, and 21/55 which undergo a phase transitio

te

-

FIG. 4. CouplingsJ in a cross-section of the system forL542.
Data from the boundary layers is discarded.
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3166 PRB 60COLIN DENNISTON AND CHAO TANG
aboutkBTc50.13J from the striped phase to the diagona
disordered phase. We then turn to thef 55/13 case which
has a transition from the plain staircase state to the str
phase atkBTc50.04J and then has a transition atkBTc
50.13J to a diagonally disordered phase. For the larg
system sizes,f 53/8 appears to undergo a single transiti
from the plain staircase state to the diagonally disorde
phase at aboutkBTc50.123J.

A. f 58/21,13/34, and 21/55

Figure 5 shows the diagonal order and shift-wall dens
as a function of temperature forf 58/21. In the high-
temperature phase, domain walls of all types, shift and h
ringbone, are present and the vortex lattice is disordered
the critical temperatureTc , the system orders by freezing o
herringbone walls, leaving a diagonally ordered strip
phase. This striped phase has a densityr521/29 of shift
walls almost independent of temperature~see Fig. 5!. (r

521/29 corresponds to an average spacing of 18
21 .! The non-

integer spacing comes from a sets21 of two different wall
spacingsdi of 1 and 2, arranged in a Fibonacci sequence
off at 21; s15$d0%5$1%, s25$d0 ,d1%5$2,1% and sn is de-
rived from the setssn22 andsn21 assn5sn22 :sn21, where
the : symbol indicates concatenation. So, for instances3
5$d1 ,d2 ,d3%5$1%:$2,1%5$1,2,1%. The full sequence tos21
is given along the bottom of Fig. 2~a!. Note that it is the wall
spacings that repeat periodically every 21 walls, but the
tual vortex lattice period repeats every 293215609 lattice
constants~one period of the wall spacings takes 29 latti
constants forr521/29). Thus, the typical period of th
ground-state vortex lattice becomes of orderq2 rather thatq
~recall f 5p/q). The spacing observed in the Monte Car
simulations corresponds to the system sitting at the minim
of the energy in Fig. 2~b!. We should note that this is quit
different from the case studied in commensura
incommensurate transitions6 where there is no minimum in
the interaction potential to pin the walls.

We now consider the order of the transition from t
striped phase to the diagonally disordered phase as a fun
of temperature. One can see from Fig. 5 that there appea
be some difference between the behavior depending on
boundary conditions. This is very noticeable for the sh

FIG. 5. Diagonal order~dashed! and shift wall density~solid!
versuskBT/J for f 58/21 andL542, 63, and 84 for a system wit
periodic boundary conditions in one direction and soft bound
conditions in the other. Also shown is the diagonal order~dot-long
dashed! for L584 and shift wall density~dot-dashed! for L563
and 84 versuskBT/J for f 58/21 for a system with soft boundar
conditions in both directions. The fine dotted horizontal line in
cates a shift wall density of 21/29.
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wall density, which has a bit of a jump when the bounda
conditions are periodic in one direction and soft in the oth
~mixed! whereas the shift-wall density goes smoothly tor
521/29 when soft boundary conditions are applied in b
directions. The order of the transition is most clearly ind
cated by examining the free energy at the transition, a te
nique described in Ref. 15. The free energy as a function
energy is obtained usingFL(E)52 lnPL(E) wherePL(E) is
the probability distribution for the energyE, generated by
Monte Carlo simulation of aL3L system. Figure 6 shows
that for mixed boundary conditions near the transition te
perature, the free energy has two distinct minima, cor
sponding to the ordered and disordered states. The f
energy barrier between these two states grows as the sy
size increases fromL542 to 84 implying a first-order
transition.15 However, this barrier does not appear to
present when soft boundary conditions are applied in b
directions. Unfortunately, in neither case are the system s
large enough to start applying finite-size scaling to confi
the nature of the transition. It may appear strange that
boundary conditions can effect the order of the phase tra
tion. However, imposing a periodic boundary condition
one direction fixes the direction of the stripes. This might
like a (Z2) symmetry-breaking field and might cause t
transition first order. It is not clear if the barrier observed
Fig. 6 will continue to grow indefinitely. It is growing rathe
slowly compared to, say the barrier growth observed in
first-order phase transition seen forf 52/5,16 and it is pos-
sible it may reach a finite size and level off, so that t
transition would also appear second order in the thermo
namic limit even for the mixed boundary conditions. In a
case, substantially more work on larger systems is neede
resolve the situation. On the experimental side, the situa
concerning the order of the transition is also ambiguo
Experimentally,3 a finite-temperature second-order pha
transition is seen atf 5 f * . That the transition occurs at finit
temperature is in agreement with our results. But the
served continuous transition could be due to the presenc
bond disorder which has been shown to wipe out any co
istence region of two phases in two dimensions making
transitions continuous.18,19

The f 513/34 and 21/55 cases also undergo a phase t
sition at around the sameTc50.13 from the diagonally dis-

y

FIG. 6. Free energy versus energy, showing the free ene
barrier between ordered and disordered state forf 58/21 and with
periodic boundary conditions in one direction and soft bound
conditions in the other.
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PRB 60 3167INCOMMENSURABILITY IN THE FRUSTRATED TWO- . . .
ordered high-temperature phase to the striped phase.
striped phases for thesef appears to be slightly more com
plicated. Like the f 58/21 case, the stripes appear to
mainly composed of shift-by-eight walls with a similar F
bonacci sequence of spacings~with spacings of 2 and 3!.
However, these higher-order rationals also have other w
which have negative energy with respect to the stairc
state. These additional walls also seem to be present
much lower density, interspaced between the shift-by-e
walls in some quasiperiodic pattern. If one includes th
walls, the wall density is similar tof 58/21 and the vortex
lattices look very similar tof 58/21, which is probably why
they have such similarTc .

B. f 55/13

For f 55/13 the shift walls are the lowest energy wal
but the striped phase costs energy@see Fig. 2~b!#. The striped
phase can exist at finite temperature however, due to entr
reasons which we shall discuss below. In the Monte Ca
simulations we see a very similar transition forf 55/13
~similar Tc) to the one seen forf 58/21 from the diagonally
disordered high-temperature phase to the striped phase.
wall density in the striped phase is fixed at aboutr513/31,
which can be constructed from a Fibonacci sequence of
spacings consisting of spacings of 2 and 3 in a manner s
lar to that used for spacings of 1 and 2 forf 58/21. ForL
539, and at aboutT'0.05 the wall spacings of 2 and
appear to switch to give a slightly lower energy state ar
513/34. It is unclear however if this would be the case
larger systems and would require further study. These
wall densities,r513/34 and 13/31 correspond to the tw
dips within the larger minima seen in the interaction ene
shown in Fig. 2~b!. At a lower temperatureTp'0.045, the
system undergoes a first order transition from the stri
phase to the plain staircase state.

The transition from the plain staircase state to the stri
phase is similar to the commensurate-incommensurate
sitions studied in the context of adsorbed films,6 which is a
second-order phase transition. In studies of these transit
one considers the free energy of a single line per unit len
es . This can be estimated using a simple solid-on-so
~SOS! model of the shift line. The energy of the line, exten
ing from one side of the system to the other is

Hs$z%5s iL1s'(
k

uzk2zk21u, ~3!

wheres i (s') is the energy per unit length in the directio
parallel ~perpendicular! to the wall. The heightszk , take on
integer values. The partition function, can be evaluated
give the interfacial free energy per column17 es
5Tln@esi /Ttanh„s' /(2T)…#. A phase transition occurs whe
es becomes negative. If this were the case here, one w
see a continuous rise in the shift-wall density. What ma
this case different is the presence of the minimum in the w
interaction potential@Fig. 2~b!# which we take into accoun
in the following.

If placed in a system with other shift walls, the walls w
experience an entropic repulsion since a wall can only
cupy the region of space between its neighbors. To
he
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whether or not this entropic repulsion is relevant, we e
mate if two walls remain bound together at the minima of t
interaction potential. This is done using a SOS model for t
walls with a binding energy equal to the depth of the minim
in the interaction:

Hd$D,z%5(
k

$~2bs1uidzk,0!1bsuzk2zk21u

1~2bs1u'dzk,0!Dk%. ~4!

wherezk is the separation of the walls (zk>0), andDk is the
number of vertical steps the two walls take in the same
rection in thekth column (2`,Dk,`). ui andu' are the
binding energies parallel and perpendicular to the wall. Su
ming overDk leaves the partition function in the form of
transfer matrix:Z5($zk%)kTzk

zk21. A ground-state eigenvec

tor cm(z)5e2mz, where 1/m is the localization length, or
typical distance separating the lines, characterizes the bo
state of the two lines.m50 defines the unbinding transitio
at Tb . Doing this, one finds an unbinding temperature
kBTb /J50.51. BelowTb , the entropic repulsion is insuffi
cient to push the system out of the minimum. AboveTb , the
striped ‘‘solid’’ phase will melt into a phase where the wa
density changes continuously with temperature. Here, h
ever, this is preempted by the entrance of the diagon
disordered phase atTc50.13J.

In order for the striped phase to be stable forf 55/13,
where it costs energy, there must be sufficient entropy fr
the lines wandering within the region between its neighbo
The energy per line at finite temperature can be estima
using Eq.~3! with zk restricted to 0,61 as the minimum in
the interaction energy is at a spacing of about 2. The f
energy per line per column is then

eb5T ln$es i /T/@11e22s' /T~11A118e2s' /T!/2#%.

At the point whereeb crosses zero the striped phase coex
with the plain staircase state and a first-order phase trans
occurs. Takings i50.041J for the shift-by-eight wall at the
minimum of the interaction energy ands'50.04J from an
average of measurements of the energy of several kink
differing lengths, one finds thateb crosses zero atTb
50.04J in reasonable agreement with the value observed
the Monte Carlo simulations.

V. CONCLUSION

In conclusion, we find that all of the systems studied u
dergo a finite-temperature transition from an ordered stat
a diagonally disordered state.20 The transition temperature i
nearly constant and shows no signs of approaching zer
one goes to more incommensuratef. As one approaches in
commensuratef, the low-temperature state changes from t
plain staircase state found by Halsey to the striped phase
find that the choice of boundary conditions, at least in
finite-size systems available to study numerically, can hav
significant impact on the dynamics. It does this by creat
barriers for parallel shift walls, a dominant excitation in th
low-temperature state. If one takes periodic boundary con
tions nearf 5 f * typically glassy behavior has been observ
in simulations. If one takes the soft boundary condition th
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3168 PRB 60COLIN DENNISTON AND CHAO TANG
allows the system to adjust the density of shift walls in o
direction and the periodic boundary condition in the oth
direction, one obtains an ordered low-temperature state
what appears to be a weak first-order transition. If one ta
e
r
nd
s

the soft boundary condition in both directions it would a
pear that one finds a continuous transition to the orde
low-temperature state. This final observation, one could
gue, should be the true result in the thermodynamic limit
1For a general review, see Physica B152, 1 ~1988!; 222, 1 ~1996!.
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