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ABSTRACT Using an off-lattice model, we
fully enumerate folded conformations of polypep-
tide chains of up to N � 19 monomers. Structures
are found to differ markedly in designability,
defined as the number of sequences with that
structure as a unique lowest-energy conforma-
tion. We find that designability is closely corre-
lated with the pattern of surface exposure of the
folded structure. For longer chains, complete enu-
meration of structures is impractical. Instead,
structures can be randomly sampled, and relative
designability estimated either from designability
within the random sample, or directly from sur-
face-exposure pattern. We compare the surface-
exposure patterns of those structures identified as
highly designable to the patterns of naturally
occurring proteins. Proteins 2002;47:295–304.
© 2002 Wiley-Liss, Inc.

Key words: protein design; protein structure predic-
tion; off-lattice model; hydrophobicity

INTRODUCTION

Naturally occurring proteins fold into specific three-
dimensional (3D) structures to achieve their unique func-
tionality.1 For many proteins, it has been shown that the
amino acid sequence alone is sufficient to determine the
folded conformation.2 Interestingly, out of all geometri-
cally possible folds, nature seems to have selected only a
small set of fold families.3–6 This selection may arise, in
part, from differences in the designability of folded struc-
tures.7–10 By definition, the designability of a structure is
the number of amino acid sequences with that structure as
the lowest-free-energy conformation. In lattice models,
where it is possible to enumerate all compact structures,
there is a small class of highly designable structures, i.e.,
structures that are unique lowest-energy conformations of
many more than their share of sequences.10,11 The se-
quences associated with these highly designable struc-
tures are found to have protein-like properties: mutational
stability,9,10 thermodynamic stability,10,11 and fast folding
kinetics.12 The topology of the neutral networks formed by
the sequences of designable lattice model structures has
also received study.13 Recently, off-lattice studies of pro-
tein structures have also shown that certain backbone
configurations are highly designable, and that the associ-
ated sequences have enhanced mutational and thermody-
namic stability.14 Therefore, whether the goal is a better

understanding of existing protein fold families or design-
ing novel folds,14 designability may offer a way to identify
structures and sequences with protein-like folding proper-
ties.

In previous work, the determination of the designability
of a structure has relied on the enumeration of a wide cross
section of all possible structures. This is because the
designability of one structure depends on competition for
sequences from other structures. For short chains on
lattices, it is straightforward to enumerate all compact
structures.9,10,15–19 For off-lattice models, one approach
has been to enumerate all structures obtainable with a
small, discrete set of backbone dihedral angles.14 Clearly,
for long peptide chains, this complete enumeration is
infeasible, even for a small set of dihedral angles. Can one
nevertheless identify highly designable long-chain protein
structures?

In this article, we present evidence from studies of short
chains, up to N � 19, that the designability of a structure
can be predicted without a complete enumeration of struc-
tures. Essentially, this is possible because we have found
that the designability of a structure is closely connected to
its pattern of surface exposure. Structures with large
variation in surface exposure are likely to be highly
designable, structures with more uniform surface expo-
sure are not. The higher the designability of a structure,
the more clearly differentiated are its surface and core.
Because the variation in surface exposure of a structure is
independent of all other structures, designability can be
estimated structure by structure without the need for
complete enumeration.

One implication of this result is that candidates for
highly designable long-chain structures can be identified
simply from their surface-exposure patterns. This ap-
proach avoids the need for a complete enumeration of
structures. It is therefore computationally feasible to
consider much longer peptide chains, with a greater
variety of backbone conformations. We demonstrate the
efficiency of this approach by generating backbone configu-
rations of up to N � 40 monomers. For these lengths,
complete enumeration of structures would be impractical.
Instead, we generate a relatively sparse sample of struc-
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tures. From the sample, it is straightforward to select the
candidate highly designable conformations as those with
the most clearly delineated surfaces and cores. An effec-
tively equivalent procedure is to calculate designability,
allowing only the structures in the sparse sample to
compete for sequences. In either case, successful predic-
tion of designability relies on its close relation to surface-
exposure variation—a property of individual structures.
There is one important caveat to this point—two struc-
tures with very similar patterns of surface exposure will
compete for structures often in a “winner-take-all” fashion.
The implications of this for design are discussed under
Results and Discussion, on random sampling.

The results of the off-lattice model motivate us to
consider the surface-exposure pattern of natural protein
structures. We report a study of the surface-exposure
pattern of backbones of up to length N � 75 from the
Protein Data Bank (PDB). For small proteins, which are
often stabilized by disulfide bonds and salt bridges, there
is often no clearly delineated core. In contrast, for large
proteins, the core is uniformly well defined with little
variation from structure to structure. The most highly
designable configurations generated using our sampling
technique have patterns of surface exposure that fall
within the range of naturally occurring proteins.

MODELS AND METHODS

The designability of a structure is a measure of how
many sequences “fold” into that structure in relation to all
other competing structures. Precise determination of des-
ignability requires generating a comprehensive set of
structures, which then compete as possible lowest-energy
states for amino acid sequences. It is only truly feasible to
generate a complete set of model structures for short
polypeptide chains. For larger chains, say with N � 30
monomers, it is not currently possible to enumerate struc-
tures. However, it will be shown that it is possible to
estimate the designability of structures without complete
enumeration. To find the best means of estimating design-
ability, we study short chains (N � 15, 17, and 19) for
which designability can be precisely determined within an
off-lattice model. This section reviews our model for obtain-
ing the designabilities of short-chain polypeptide struc-
tures. In the next section, we show that the designability of
a structure within this model can be estimated from its
surface-exposure pattern.

Off-Lattice Model

Our method of generating structures is closely related to
the discrete-angle models introduced by Park and Lev-
itt.14,20 For short polypeptide chains of N � 15, 17, and 19
monomers, a “complete” set of backbones is generated,
using a fixed set of three dihedral (�, �) angles.20 For this
particular study, we employ one angle pair (�60, �50)
from the �-helical region of a Ramachandran plot, and two
angle pairs (�140, 150) and (�65, 125) from the �-strand
region. The complete set of 3N backbones is generated with
these angles.

To restrict our consideration to self-avoiding structures,
we introduce “side groups” by hard spheres of radius r� �

1.9 Å centered on the C� positions. Self-avoidance is taken
into account by discarding all structures with overlapping
spheres. The percentage of self-avoiding structures out of
the possible 3N structures was found to be 42% for N � 15,
36% for N � 17, and 31% for N � 19.

An example of a structure generated using the three
angle pairs and with self-avoiding spheres centered on the
C� positions is shown in Figure 1.

Hydrophobicity Model

There is considerable evidence that hydrophobic forces
are primarily responsible for the folding of an amino acid
sequence into a particular structure.21–23 The hydrophobic-
ity of each type of amino acid can be determined experimen-
tally.24–26 Those that are more hydrophobic are energeti-
cally favored to reside in the core of the folded protein,
where there is low exposure to water. In a given folded
protein, a hydrophobic energy can be assigned to each
particular amino acid according to its hydrophobicity and
exposure to water.

To determine the hydrophobic energy of an amino acid
sequence folded into one of our model structures, it is
necessary to determine the exposure of each residue along
the backbone. As described above, hard spheres are placed
on each C� position, and the surface exposure of these
spheres to water is evaluated. This is done using the
method of Shrake and Rupley,27 which determines how
much of a sphere centered on a C� position is exposed to a
water molecule, represented as a sphere with a radius of
1.4 Å. We use the notation that the jth residue of the �th
structure has accessible surface area aj

�. The sum of these
surface areas gives the total residue accessible surface

Fig. 1. Depiction of a 19mer structure, constructed using the three (�,
�) angle pairs described in the text. The amino acid side groups are
modeled by self-avoiding spheres of radius 1.9 Å centered on the C�

positions.
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area for a given structure. As a screen, we use this
quantity to remove those structures that have too much
surface exposure and thus are too open to be stable folds.
In practice, we reduce the representative set to approxi-
mately 5,000 structures with the least exposed surface
area. The discarded structures are too open to have
well-defined cores and therefore have low designabilities,
as discussed in Results and Discussion.

These remaining structures are “compact” in that, even
for the small peptide chains used in this study (N � 15,
17, and 19), there is the beginning of the formation of a
core that is inaccessible to solvent. We then normalize the
surface area of the remaining compact structures using
the following normalization condition:

âj
� �

aj
�

�
j

aj
�

(1)

The motivation behind this normalization procedure is
that our goal is for all the remaining compact structures to
be equally compact—the normalized structures all have
the same total surface exposure (¥jãj

� � 1). This is in line
with lattice studies in which all structures are equally
compact.9–11 The normalization eliminates the need for an
overall compactification energy in the energy function
used below because all structures are equally compact.
Physically, the use of equally compact structures accounts
for the tendency of each structure to relax to its best
packed equivalent.

With the residue-by-residue surface areas of a set of
compact, self-avoiding structures in hand, all that is
needed is a hydrophobic-energy function to associate these
structures with amino acid sequences. We find it conve-
nient to assign a polarity between 0.0 and 1.0 to each
amino acid, with 0.0 highly hydrophobic and 1.0 highly
polar. Our notation is that the jth amino acid of a sequence
� has polarity pj

�. In our model, the energy of this amino
acid sequence when folded into the �th structure is11,28,29

E�,� � ��
j

pj
�ãj

� (2)

For a given sequence, the lowest-energy structure is the
one that minimizes this energy. Note that because all
structures have the same total exposed surface (¥jãj

� � 1),
a sequence will have lowest energy on the structure that
best matches its pattern of hydrophobicity—more hydro-
phobic at core sites, more polar at surface sites—indepen-
dent of the absolute hydrophobicity or polarity of the
sequence.

Designability

The designability of a given structure is defined as the
number of sequences with that structure as a unique
lowest-energy conformation.10 We assess the designabili-
ties of structures by evaluating the energy (2) of a large
number of random sequences of polarities on all the
structures in the representative set. Each sequence of
polarities pj is generated as a string of N random real

numbers between 0.0 and 1.0. Consistent with a previous
study,14 we report in the next section that most structures
are the lowest-energy conformations of only a few or no
sequences; hence, these structures have low designability.
Only a small fraction of structures are highly designable.

RESULTS AND DISCUSSION

We now examine the factors that influence a structure’s
designability. What causes a structure to be the lowest-
energy state of many sequences within our hydrophobic
model? We show below that the variance of a structure’s
surface-area pattern is an important quantity in determin-
ing designability.

Predictors of Designability

In our model, the energy of a sequence folded into a
particular structure is given by equation (2). Therefore,
the only property of a structure that influences energy is
the structure’s vector of solvent-exposed surface areas ã
� ã1, . . . , ãN. Moreover, because of the normalization
condition, equation (1), all such vectors reside on an
N-dimensional hyper-plane (e.g., for a chain of length N �
3, the vectors would reside on the plane ã1 � ã2 � ã3 �
1). The vectors for all structures can be decomposed into a
constant component n � (1/N, 1/N, . . . , 1/N) normal to
this hyper-plane plus a variable in-plane component (Fig.
2). We denote a structure’s in-plane component by r � ã �
n. For a given sequence, the relative energies of structures
depend only on these r values, as can be seen by rewriting
the hydrophobic energy as

Fig. 2. Schematic diagram of fold space. Black circles correspond to
vectors of exposed surface area ã for individual structures. Because the
surface-area vectors are normalized, all lie on a single hyper-plane. The
vector for uniform exposed area n � (1/N, . . . , 1/N) is the origin for all
vectors on the hyper-plane. The in-plane vector r � ã � n is shown for one
structure (labeled S) with a large �r�, and thus a highly nonuniform
exposed surface area. For the same structure, the vector � � r � �r�,
relative to the mean of the distribution �r�, is also shown. Structures with
surface-exposure patterns very different from the mean, and thus with
large values of ���, are typically highly designable. Sequences that have S
as their lowest-energy conformation, and thus contribute to the designabil-
ity of S, are shown schematically by the shaded “hyper-cone.”
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E�,� � ��
j

pj
�rj

� �
1
N �

j

pj
� (3)

where the last term is structure independent.
The first term in the energy (3) is the negative of an

N-dimensional dot product between the polarity vector p of
the sequence and the in-plane component r of the struc-
ture. The lowest-energy structure is the one for which this
dot product is the greatest. The vector p can also be
written in terms of a component parallel to the normal
vector n of the hyper-plane and a component that lies in
the hyper-plane. For a given sequence, the lowest-energy
structure will be the structure that has the greatest
projection of its in-plane component r onto the in-plane
component of the vector p. Hence, structures that lie the
farthest out from the “origin of the hyper-plane,” n, on this
plane will tend to be lowest-energy structures for the most
sequences (e.g., structure S shown in Fig. 2). Distance from
the origin n on the hyper-plane is therefore expected to be
an easy-to-calculate predictor of designability. For a given
structure, this distance is

r � ��
j

	rj

2 (4)

Note that r2/N is the variance of a structure’s residue-by-
residue exposed surface area. From a physical point of
view, the in-plane distance r is a measure of how much
variation there is in a structure’s exposed surface area
compared to uniform exposure to solvent. Structures that
have large values of r have well-differentiated core and
surface sites.

However, designability is determined by more than just
r. By definition, to be highly designable, a structure must
be the lowest-energy state for a large number of sequences
p. For each of the structures with large r, there is a kind of
“hyper-cone” of sequences p for which it is the lowest-
energy state11,30 (shown schematically by the shaded area
in Fig. 2). The volume of this cone, and therefore the
designability of the structure, depends on the density of
competing structures around it. This suggests that struc-
tures that lie farthest from other structures on the hyper-
plane will be most designable. For example, a structure
that is not the farthest out in its own direction will tend to
be less designable because a farther out structure will be
lower in energy for all sequences lying in the same
direction. Hence, an improved predictor for designability is
the distance of a structure from the center of the distribu-
tion of structures.29 We denote this distance from the
mean by

� � ��
j

�j
2 (5)

where

� � r � �r� (6)

and where �r� is the mean of the distribution of exposure
vectors in the plane,

�r� �
1

Stot
�

� � 1

Stot

r� (7)

with Stot the total number of structures in the set. One can
determine whether a structure is the farthest out in its
own direction by simply projecting all the other � values
onto its own �. Structures that have a large distance from
the mean and that also lie the farthest out in their own
direction are shown below to be highly designable. It has
been previously shown in lattice models that the designabil-
ity of a structure is inversely correlated with the density of
other structures in its local neighborhood.10 However, to
generate enough structures to adequately sample local
densities essentially requires complete enumeration of
structures. In contrast, the quantities r and � depend only
on a structure’s global position within the space and
require sampling of relatively few structures to compute.
Figure 2 illustrates the quantities of interest, r and �, for a
particular structure that lies far from the origin on the
hyper-plane. We now examine how these quantities corre-
late with designability for some specific cases.

Enumeration Studies of 15, 17, and 19mers

The complete set of all self-avoiding compact structures
was generated using the three-angle set described in the
section, Models and Methods, for lengths N � 15, 17, and
19. For each set of structures at a given length N, we
evaluated designability using the enumeration method
described in Models and Methods and ranked the struc-
tures from highest to lowest designability. Figure 3, shows
the histogram of designability for the 17mer is shown.
Consistent with other studies of designability, the histo-
gram has an exponentially decreasing tail of highly design-
able structures.10,14 Most structures in the representative
set have low designability, whereas only a few are highly
designable.

Distances r and � were also computed for all structures.
The difference between the in-plane distance r and the
distance from the mean � arises from the fact that the

Fig. 3. Histogram of designability for the 5,000 most compact, self-
avoiding 17mers. The histogram has an exponentially decreasing tail of
highly designable structures.
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mean exposure vector in the plane �r� is not zero. Figure 4,
shows the mean vector �r� for the case N � 17. The plot
clearly demonstrates that the ends of a 17mer are on
average more exposed to solvent than the central portion.
For the other lengths studied, the same behavior was
found, namely, averaged over the representative set, the
ends of the structures tend to be more exposed than the
central portion.

Before looking at how designability correlates with �
and r, we briefly show how they relate to a structure’s
compactness. Figure 5 shows a histogram of the in-plane
distances r for all self-avoiding 17mers (solid line) and the
5,000 most compact 17mers (dashed line). As shown in
Figure 5, our screen of structures for compactness removes
most structures that have low values of r, but it does not
remove those that have high values of r. Hence structures

that have a large in-plane distance r, i.e., large surface-
exposure variation, are also compact.

Figure 6 shows the correlation between the in-plane
distance r and the distance from the mean �, and how
these relate to designability for the N � 17 case. There is
a clear correlation between the two distances � and r, but �
is a better predictor of designability. The top 50 designable
structures are shown as black circles in Figure 6. Most of
the top 50 designable structures have values of � � 0.075,
and only a few less designable structures have � values
this high. In contrast, only about 10 of the 50 top design-
able structures have values of r � 0.075, and for lower
values there is a mixture of designable structures with less
designable ones. Hence, high � is a better discriminator of
high designability than high r. This difference between �
and r reflects the fact that distance from the mean � better
identifies the structures which are outliers from the distri-
bution, and are hence likely to have high designability.
Thus, we have found a quantity �, determined purely from
the surface-exposure pattern of a single structure that can
be used to identify highly designable structures.

The implication of having a quantity that can estimate
designability from the properties of a single structure is
that enumeration of a large set of competing structures is
unnecessary. This lifts the severe computational con-
straint that enumeration places on the size and complexity
of structures that can be considered. In the remainder of
this section, we study in more detail the relationship
between surface-exposure distance from the mean � and
the designability of structures. Our attention is focused on
the possibility of identifying highly designable structures
within a random sample, using either designability within
the sample or distance from the mean �.

Figure 7 shows the designability versus � for chains of
length N � 15, 17, and 19. More than 106 sequences were
generated to determine the designability of structures in
each case. The structures for each chain length were
binned according to �, and the average designability of the

Fig. 4. Normalized exposed surface area versus position of monomer
on chain, averaged over the 5,000 most compact, self-avoiding 17mer
structures. The dashed straight line corresponds to the uniformly exposed
structure (1/17, 1/17, . . . , 1/17). Also shown is a typical normalized
surface exposure pattern of a compact structure (dot–dash).

Fig. 5. Histogram of surface-exposure-variation magnitude r for all
self-avoiding 17mers (solid line) and for the 5,000 most compact,
self-avoiding 17mers (dotted line).

Fig. 6. Plot of distance from the mean � against in-plane distance r for
the 5,000 most compact, self-avoiding 17mers. Black circles correspond
to the 50 topmost designable structures and white squares to structures
that are less designable.
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structures in each bin is plotted. The correlation between �
and designability is clear, but there is an important
caveat. We have only plotted the designability of struc-
tures that are the farthest from the mean in their own
direction—this means that there are no other structures
whose �� has a greater projection onto the given struc-
ture’s direction �, i.e., � � �� 
 ���2, for all other structures
�. In this way, we have plotted only the “winners” in the
winner-take-all competition for sequences that occurs when
two or more structures have very similar patterns of
surface exposure. In part, this procedure is justified to
select only one member from every family of geometrically
closely related structures.14 Figure 8 illustrates the effect
of this winner-take-all competition for the case N � 17.
Figure 8(a) plots designability versus � for all structures,
whereas Figure 8(b) plots designability versus � for the
“winning” structures, which are the farthest from the
mean in their own direction. It can be seen that there are a
large number of structures that have low designability,
despite having a large distance from the mean. Their
designability has been reduced as a result of competition
with a structure that is farther out on the hyper-plane.
However, the structures with the largest values of dis-
tance from the mean � are all highly designable.

Figure 7, the marked vertical lines on each graph
indicate the values of � for the 10th, 100th, and 1,000th
ranked structures according to � in the entire set of
compact structures. To highlight the significance of this in
regard to random sampling, consider the following: if only
0.1% of the 17mer structures were sampled, the 1,000th
ranked structure would still be expected to occur in the
sample. From the graph of the 17mer, even the 1,000th
ranked structure still has a reasonably high designability
in that, on average, it is the ground state for a few hundred
sequences. It is interesting to note that the designability
versus � curves become steeper with increasing chain
length N. It is reasonable to conclude that for larger
protein structures, � improves as a predictor of designabil-
ity.

To emphasize how the location of a structure within fold
space influences its designability, Figure 9 presents histo-
grams of the number of nearby structures for the 1st,
100th, and least designable “winner” structures. To make
these plots, we calculated the projections of all � vectors
onto the selected structure’s � vector. The projections were
normalized by the magnitude of the selected structure’s �.
The histograms show the number of structures that have a
given projection onto the chosen structure. Figure 9(a)
shows the histogram for the most designable 17mer struc-
ture. There is a large distance between it and the next
nearest structure. However, for the less designable struc-

Fig. 7. Plot of designability versus distance from the mean � for
“winner” structures of length N � 15, 17, and 19. Error bars indicate the
uncertainty in designability for each bin. The vertical lines correspond to
the 10th, 100th, and 1,000th structures ranked according to � in the entire
sample.

Fig. 8. (a) Plot of designability versus distance from the mean � for all
structures of length N � 17. (b) Plot of designability versus distance from
the mean � for “winner” structures of length N � 17, i.e., those structures
that lie the farthest out in their own direction.
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tures in Figure 9(b) and (c), this distance is much shorter.
In fact, for the structure shown in Figure 9(c), there are
two other structures whose projections lie so close to the
chosen structure as to fall into its own bin, of size 0.1.
These near neighbors in fold space compete for sequences
and are responsible for the low designability value.

Random Sampling for 17mers

To show that highly designable structures can be identi-
fied within a sparse random sample, we performed the
following test. We randomly selected a set of 500 struc-
tures out of the complete set of 5,000 compact 17mers. A
designability calculation was then done for this small
random sample. Figure 10(a) plots the designability calcu-
lated using the complete set versus the designability in the
random sample, for those structures that were the farthest
out in their own direction. The correlation is good, with the
highest designability structure correctly identified. The
essential reason underlying the good agreement is the
close correlation between designability and � (cf. Fig. 7)
combined with the fact that � for the random sample is
effectively the same as � for the complete set. This last

relation is shown in Figure 10(b), in which we have
reevaluated the � values, using the new mean �r� of the
random sample. The logic of random sampling is
simple—we can identify highly designable structures from
their large � values, and only a small sample is required to
calculate these � values. In fact, the designability for the
complete set can be directly estimated from the � values in
the random sample, as shown in Figure 10(c). The correla-
tion is slightly better using the designability calculated
within the random sample, as shown in Figure 10(a), but
the practical consideration of avoiding designability calcu-
lations may, in some cases, favor the direct use of � values.

Random Sampling of Long-Chain Structures

We now show how to find candidates for highly design-
able long-chain structures by random sampling. For back-
bone configurations of length N � 30, complete enumera-
tion of structures is infeasible. However, according to the
results of the previous section, one can randomly sample
long-chain structures, evaluate their surface exposures,
and use the variation � to estimate which ones are likely to
be highly designable. Without the constraint of enumera-
tion, one is free to consider more complex backbone

Fig. 9. Histograms of the normalized projections of the �� values of all
17mer structures onto the � of the (a) most designable, (b) 100th most
designable, and (c) least designable “winner” structure. Note the change
of y-axis scale in c.

Fig. 10. (a) Plot of designability in the full set of 5,000 compact,
self-avoiding 17mers versus designability calculated for a random sample
of 500 of these structures. Of the sampled structures, only those that are
farthest out in their own direction on the hyper-plane are shown. (b) Plot of
surface-exposure distance from the mean � in the full set versus � for the
same random sample of 500 structures. (c) Plot of designability in the full
set versus � in the random sample.
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configurations, for example, using a larger number of (�, �)
angle pairs. In addition, the sampling of structures can be
biased to favor configurations with realistic secondary
structural elements.

To generate long-chain structures, we employed a set of
four (�, �) angle-pairs. The four pairs of angles were taken
from high-density regions of a Ramachandran plot: two
pairs from the �-helical region, one from the �-strand
region, and the last from the left-handed �-helical region.
The four (�, �) angles chosen were: �1 � (�45, �55), �2 �
(�70, �20), � � (�100, 100), and L � (50, 25) based on a
clustering method (J. Miller, private communication).
Structures were generated by randomly selecting a pair of
angles, weighted equally, and then randomly selecting
proceeding angles from a transition table (Table I), so that
�-helical angles tend to follow �-helical angles, and �-strand
angles follow �-strand angles. The matrix of transition
probabilities in Table I was adapted from an analysis of
transition probabilities between (�, �) pairs of naturally
occurring protein structures (J. Miller, personal communi-
cation). The transition probabilities involving the left-
handed �-helical angle were altered to include more turns
to generate compact 30mers and 40mers for this study. As
before, hard spheres were centered on each C� position and
self-avoidance was enforced by eliminating structures
with overlapping spheres. We found that the use of the
transition probabilities dramatically reduced the genera-
tion of self-intersecting structures.

We randomly sampled both 30mer and 40mer struc-
tures, using the above procedure. For each length, the 500
most compact, self-avoiding structures generated in ap-
proximately two days of computing time on a 600-MHz PC
were retained. Both the in-plane distance r and the
distance from the mean � were evaluated for the 500
structures in each random sample. Figure 11 shows the
top two 30mers and top two 40mers ranked by �. According
to the results of the previous section, these structures are
our best candidates for high designability. We compare
their values of � with those of naturally occurring struc-
tures in the section below, and show that their structural
characteristics are consistent with naturally occurring
proteins.

An important caveat to the random sampling approach
is that there could exist unsampled structures, with very
similar patterns of surface exposure, that would compete
for sequences with our top structures. Competing chain
configurations that are geometrically similar can be consid-
ered as fluctuations of a single structure.14 However, the

possibility of geometrically dissimilar structures with simi-
lar surface-exposure patterns is an unavoidable uncer-
tainty associated with random sampling. This competition
for sequences between geometrically dissimilar structures
has been recently studied in lattice models.30

Surface-Exposure Patterns of Naturally Occurring
Structures

We now examine the surface-exposure patterns of natu-
rally occurring proteins. From PDB, we selected groups of
unrelated structures of fixed length N, with N � 25 . . . 75,
and extracted their backbones. We then positioned uni-
formly sized spheres on the C� positions and evaluated
surface exposure exactly as was done for the small chains
studied above. Both the in-plane distance r and the
distance from the mean � were evaluated for the 71
natural occurring structures in the set.

Figure 12(a) shows the length dependence of r for the
selected set of natural protein structures using spheres
with radius 1.9 Å on the C� positions. (We have chosen to
plot r rather than �, since � depends on the evaluation of
�r�, which has a large error because of the small size of the
sample). For small chains, there is a broader variation
than for the longer chains. This can be attributed to the
fact that small proteins are often stabilized by disulfide
bridges, rather than by the formation of a hydrophobic
core.1 In particular, for the N � 25 proteins, most
structures had ill-defined cores, hence the lower values for
the variance r. For larger proteins, the distribution is
narrower. This suggests that for larger proteins the hydro-
phobic force plays a more consistent role in creating a
well-defined hydrophobic core. The average surface-
exposure variation r decreases slightly with chain length.
This could be anticipated from our normalization proce-

TABLE I. Transition Probabilities Between
Dihedral Angle Pairs*

angle1/angle2 �1 �2 � L

�1 0.65 0.30 0.0 0.05
�2 0.35 0.35 0.2 0.10
� 0.1 0.1 0.8 0.0
L 0.09 0.1 0.8 0.01

*Transition probabilities (column/row) for successive angle pairs for
the four (�, �) pairs used to generate 30mer and 40mer structures.

Fig. 11. Top structures ranked according to surface-exposure dis-
tance from the mean � in sparse random samples of 30mers and 40mers:
(a,b) Top two ranked 30mers according to �. (c,d) Top two ranked 40mers
according to �.
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dure: The total surface exposure for compact structures
grows as N2/3. If the variance of surface exposure of
individual C� spheres stays fixed, the normalization im-
plies ri

2 � N � 4/3, so r � N � 1/6 according to Eq. (4).
The highest r structures from the random sampling

study above are shown as filled circles in Figure 12(a).
These structures lie at the high end of the variances of the
naturally occurring proteins. This result is encouraging, as
it suggests that our best randomly generated structures
share properties similar to those of real protein folds.
However, the naturally occurring structures tend to be
more open than the randomly generated structures. Hence,
using small uniform spheres on the C� positions overesti-
mates the accessible regions of the natural structures. In
Figure 12(b), the in-plane distance of the selected 40mers
from the PDB is shown as a function of side-chain sphere
radius. The use of larger spheres increases the variance,
and thus the in-plane distance, of the natural structures.
Nevertheless, the top randomly sampled 40mer structure
still falls within the middle to high range of the variance
even when more realistic side-chain sphere sizes are used
for the naturally occurring structures.

CONCLUSIONS

We have shown that it is possible to estimate the
relative designabilities of protein structures based on their
exposed surface-area patterns, within an off-lattice model.
Specifically, the designability of a structure—defined as
the number of sequences with that structure as a unique
lowest-energy state—was found to closely correlate with
the surface-exposure variation of the structure. The ability
to estimate designability from the properties of a single
structure makes it unnecessary to enumerate structures
completely. Instead, a sparse sample of structures can be
generated, and relative designability can be assessed from
designability within the sample, or directly from the
surface-exposure variation of each structure. Random
sampling, in turn, allows consideration of longer chains
with greater structural complexity. We have demon-
strated the random sampling approach to designability for
30mers and 40mers. Our best candidates for highly design-
able structures were found to have surface-exposure varia-
tions similar to those of naturally occurring structures of
the same size. Random sampling thus offers a promising
way to find highly designable long-chain structures for ab
initio protein design and also may be useful in generating
decoys.
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