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Structure space of model proteins: A principal component analysis
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We study the space of all compact structures on a two-dimensional square lattice dbf=stze

X 6. Each structure is mapped onto a vectoNwtimensions according to a hydrophobic model.
Previous work has shown that the designabilities of structures are closely related to the distribution
of the structure vectors in thé-dimensional space, with highly designable structures predominantly
found in low density regions. We use principal component analysis to probe and characterize the
distribution of structure vectors, and find a nonuniform density with a single peak. Interestingly, the
principal axes of this peak are almost aligned with Fourier eigenvectors, and the corresponding
Fourier eigenvalues go to zero continuously at the wave-number for alternating patiermng .(

These observations provide a stepping stone for an analytic description of the distribution of
structural points, and open the possibility of estimating designabilities of realistic structures by
simply Fourier transforming the hydrophobicities of the corresponding sequence0®
American Institute of Physics[DOI: 10.1063/1.1541611

I. INTRODUCTION designable structures located in regions of low dertéityin
. ) » .. particular, within a hydrophobic model, Et al. showed that
_Proteins fold into specific structures to perform their bio-y,q gistribution of structures is very nonuniform, and that the
|99'0a| funct_lon. Despite the huge dl\{ersr[y in their func- highly designable structures are those that are far away from
tions, evc_)luponal paths, _structural details, and sequences, ﬂzﬁher structure$? However, identifying highly designable
vast majority of proteins adopt only a small numberstructures still remains a tedious task, requiring either full

—~ . ” 1—6 H H H -
Eri iggO)aorf]J?r:(tj)z(r tz?oalli?gor)é ar;lc-jhllst’aggs?()rv?rffncgr?semt ofnumeration or sufficiently large sampling of both the struc-
9 1710 . . . °Pt Oire and the sequence spaces, making studies of large sys-
designability*’~1°The designability of a structure is defined

to be the number of sequences that have that structure é%ms pr9h|b|t|ye. . : .
In this article, we investigate the properties of the struc-

their unique lowest-energy staf®lt has been shown in vari- . :
ous model studies that structures differ drastically in theirture space of the hydrophobic model of &i al, starting

designability; a small number of highly designable structureémr.n a prln'C|p'aI gomponent analys(ﬁ’QA). we S.hOW that
emerge with their associated number of sequences muéﬁh”e the qllstrlbutlon of the structurgs is not uniform, it can
larger than the averad&:'®Highly designable structures are be approximated as a cloud of points centered on a single
also found to possess other protein-like properties, such d&ak. The principal directions of this cloud are almost coin-
thermodynamic stabilit}? fast folding kinetics*” and ter- C|d.en.t with thpse obtained by rotation into Fouru_er space; the
tiary symmetry1®18These results suggest that there may bé:om_mdencg is in fact ex_act for the su_bset of cyclic structures.
a designability principle behind nature’s selection of proteinAn interesting feature is that the eigenvalues of PCA, de-
folds; these small number of folds were selected becauseeribing the extent of the density cloud along the principal
they are readily designed, stable against mutations, and the?Xis, vary continuously with the Fourier latgl with a mini-
modynamically stable. mum atg= # corresponding to alternating patterns. The con-
Why are some structures more designable than otherdinuity of the eigenvalues suggests an expansion arapund
How do we identify highly designable structures? Finkelstein= 7, Which leads to an analytical conjecture for the density
and co-workers argued that certain motifs are easier to stab®f structures in theN-dimensional binary space. Assuming
lize and thus more common because they either have lowéhe validity of this conjecture in more general models, it
(e.g., bendingenergies or have unusual energy spectra oveprovides a means of estimating density, and hence indirectly
random sequencés?®?° Govindarajan and Goldstein sug- designability, of structures by simply analyzing their se-
gested that the topology of a protein structure should be suctjuences, without the need for extensive enumerations of
that it is kinetically “foldable.”®'*?* More recently, it was other possible structures.
noted that an important clue resides in the distribution of  The rest of the article is organized as follows. In Sec. Il
structures in a suitably defined structure space, with highlyve review the hydrophobic model and the designabilities of
structures. In Sec. Il we discuss the methods and the results
dAuthor to whom correspondence should be addressed. Electronic maiﬁnc PCA applied to the structure space, and relate the density
tang@research.nj.nec.com and designability of a structure to its projections onto the
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FIG. 1. A possible compact structure on the 6 square lattice. The 16 sites - -
in the core region, enclosed by the dashed lines, are indicated by 1's; the 2( 100 . " . ‘
sites on the surface are labeled by 0’s. Hence this structure is represented t 0 0.2 0.4 0.6 0.8 9
the string 00110011000011000011001100K1(11100. Note thatach “un- Designability

directed” open geometrical structure can be represented by two “directed”

strings, starting from its two possible endsxcept for structures with  FIG. 2. Number of structures with a given designability vs relative design-
reverse-labeling symmetry where the two strings are ideptitals also  apility for the 6x 6 hydrophobic model. The data is generated by uniformly

possible for the same string to represent different structures which are foldeghmpling 5< 10 strings from the sequence space. The designability of each

differently in the core region. For the>66 lattice of this study, there are structure is normalized by the maximum possible designability.
26 929 such “degenerate” structures, which are by definition nondesignable.

principal axes. In Sec. IV we demonstrate that Fourier transfor each one of them found its unique lowest-energy struc-
formation provides a very good approximation to PCA, andture, if any, by evaluating its energy on all structures using
show that in fact the two procedures are equivalent for thdd. (1). In Fig. 2, we plot the histogram of designabilities,

subset of cyclic structures. In place of a comparison with real-€-, humber of structures Wlt_h a given deS|gr!ab|I|ty. Note

structures, in Sec. V we introduce and study an ensemble dhat we have normalized designability so that its maximum
pseudo-structures constructed by a Markovian process. F¥alue of 2981 is scaled to one. In this article, we define
nally, in Sec. VI we synthesize the numerical results of PCANighly designable structures to be the top 1% of designable

analysis, and develop a conjecture for the density of points igtructures (structures with nonzero designabilitywhich
structure space. means 307 structures with a designability larger than 0.47.

In the hydrophobic model, both sequences and structures
can be regarded as points in a 36-dimensional binary space,
or corners of a hypercube in a Euclidean space of similar

We start with a brief review of the hydrophobic model of dimension. In this representation, the lowest-energy state of a
Li etall? and the designabilities of structures. Model se-sequence is simply its nearest structure pHimesignabili-
guences are composed of two types of amino acids, H and Bes can then be obtained by constructing Voronoi polyhedra
Each sequencéh;} (for i=1,2,..,N) is represented by a around all points corresponding to structures in this space;
binary string or vector, witth;=0 for a P-mer andh;=1 for ~ the designability of each structure is then the number of se-
an H-mer. We take the polymer length=36, for which  quence points that fall within the corresponding Voronoi
there are 3% sequences. Each of these sequences can folgolytope (Fig. 3). Structures in the lower density regions
into any one of the many compact structures on 66 have larger Voronoi polytopes and higher designability. Un-
square latticgFig. 1). There are 57 337 such compact struc-derstanding how the structure points are distributed in this
tures unrelated by rotation and mirror symmetries. In the36-dimensional space can thus help us address questions
hydrophobic model, the only contribution to the energy for aconcerning designability. In the next section we examine the
sequence folded into a structure is the burial of the H-mers inlistribution of the structure points via the method of PCA.
the sequence into the core of the structure. So if one repre-
sents a structure by a binary string or vect{s;}, for i
=1,2,..,36, withs;=0 for the surface sites arsg=1 forthe  lll. PRINCIPAL COMPONENT ANALYSIS
core sitegFig. 1), the energy is

Il. THE HYDROPHOBIC MODEL

First, let us note that while sequences are uniformly dis-

N tributed in the 36-dimensional hypercube, structures are dis-
E= —Z hisi, (1) tributed on a 34-dimensional hyperplane because of the fol-
=t lowing two geometrical constraints. The first constraint on
whereh; is the sequence vector. structure vectors comes from the fact that all compact struc-

The designability of a structure is defined as the numbetures have the same number of core sites, and thus
of sequences that have the structure as their unique lowest- 5
energy state. To obtain an estimate for designabilities of s,=16. )
structures, we randomly sampled 50 000 000 sequences and i=1
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FIG. 3. Schematic representation of the 36-dimensional space in whiclrIG. 4. Covariance matri€;; of all compact structures of thex6s square.
sequences and structures are vectors or points. Sequences, represented by
dots, are uniformly distributed in this space. Structures, represented by

circles, occupy only a sparse subset of the binary points and are distributed L. . . .
nonuniformly. The sequences lying closer to a particular structure than t$tructures. This is attributed to the fact that highly designable

any other, have that structure as their unique ground state. The designabiligtructures tend to have more frequent transitions between

of a structure is therefore the number of sequences lying entirely within the.gre and surface sité&15:23

Voronoi polytope about that structure. For PCA of structure space, the matfy; is diagonal-
ized to obtain its eigenvectofg®}, and the corresponding
eigenvalueg\,} for k=1,2,..,36, which are shown in Fig.

The second constraint is that since the square lattice is bipap- The two zero eigenvalues\{=\,=0) result from the

tite, and any compact structure traverses an equal number 6fnstraints in Eqs2) and(3), with the corresponding eigen-

“plack” and “white” points, 22 vectors ofv(Y=1, andv(?=(—1)' fori=1,2,..,36, respec-
36 tively. The remaining 34 nonzero eigenvalues range
S (-1)is=0 3) smoothly from zero to one, making any further dimensional
=1 b reduction not obvious. For comparison, the 36 eigenvalues of

Next, let us define the covariance matrix of the structuret he umfo_rr?ly dl;trlbuted points of sequence space are all Fhe

space as same f=73). (It is easy to show that the covariance matrix
for the sequence space @; = §;;/4.) On the other hand, a

Cij=(sisj)) —(si)(sj) (4)  uniform distribution on the 34-dimensional hyperplane
where the structure points reside would result in 34 identical
eigenvalues of 360/137%70.262*

Identification of the principal axes and eigenvalues does
not necessarily provide information about the distribution of

wherei,j=1,2,..,36, and the average is over all the 57 337
possible §;,s,,...,53) for compact structures. The 3@6
covariance matrix is symmetric; ;=C; ;, and also satisfies
the condition C; j=Cs7_;37-;. The latter is due to the
reverse-labeling degeneracy of the structure ensemble, since
if the string (51,S5,---,53¢) IS in this ensemble, then its re-

verse 636,S35,...,5;) IS also included. This symmetry im- ! ' ' e
plies that if ©q,v,,...,v3¢) IS an eigenvector of the matrix

Cij, then @36,v3s,...,01) is also an eigenvector with the 0.8 & .
same eigenvalue. Therefore, for every eigenvect@@;qfwe o

have eithew;=v37_j orv;=—vg; ;.
As depicted in Fig. 4, the matri€;; is peaked along the
diagonal and decays off-diagonally with short range correla-

0-6‘ O 4
O

alues

>

tions. This feature reflects a general property of compaclé) 0.4¢ OO _
self-avoiding walks; if a monomer is in the cofen the g o)
surface, the neighboring monomers along the chain have ><><><><><><X><><><><><xxxxxxxxxxxé}Qxxxxxxxxxx

)

enhanced probability to be in the cof@n the surface An- 0.2
other characteristic o€;; is that it is almost a function of GM
li—j| only, i.e.,Cjj=F(|i—j|), barring some small end and 0 1

parity effects. We expect this feature of approximate transla- , , ,
tional invariance to be generic beyond the 6 lattice model 0 10 20 30 40
studied here. We also looked at the covariance matrix for the !

S!Jb_set _Of highly designable StrUCtl_Jres- While qualitativelygg, s Eigenvalues of the covariance matrix for the structure vectors
similar, it tends to decay faster off-diagonally than that of all(circles, and for all points in sequence spaceosses
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(a)  projection along 16th eigenvector (b)  Projection along 36th eigenvector

points in space. To examine the latter, we first project eachkity is in fact uniform in theN-dimensional space. The struc-
structure vector onto its components along the eigenvectorsure density can be approximated as the product of Gaussians
Using the rotation matriR; that diagonalizes the covari- along the principal projections, and thus
ance matrix, the componegy, of the structure vector along - 36 36 9
Psed ) 1 r{ Vi
o« xex 2

principal axisk is obtained as Desianabilit Y Yk
36 g . pslY) k=3 p(Yi) k=3 2\

yk:;1 (si—(si))Ri- (5) = M(Y). @)
Interestingly, we find that along each of the principal direc_We have neglected various proportionality constants in the

tions, the distribution of components is a bell-shaped funcgbove equation, leading to the quantif(y) which is our

tion with a single peak close to zero. Such distributions carﬁaSt'm""tc_)r for designability. _In F'g,',7’ the estlmm is plot-
then be well approximated by Gaussians whose variances a}%d against the actual designability for all designable struc-

the corresponding eigenvalugg, i.e.,

1 2 35
(Vi) =~ e Vi, (6) 10 . .
Pl Yk 2mn
In Fig. 6 we show the distribution of projectioyg on two 10%} 5
principal axesk=16 andk= 36, along with the correspond- '
ing Gaussian distributions. 10%°} |

Equation(6) provides a good characterization of the den-
sity of structures in th& dimensional space. Highly design- s 10%]
able structures are expected to lie in regions of this space
where the density of structures is small, while the number of
available sequences is large. Let us consider a structure cha !
acterized by a vectoy. If the density of structural points in
the vicinity of this point ispg{(y), the number of available 10"}
structures in a volum& around this point i8/pg(y). Ne-
glecting various artifacts of discreteness, the volume of the ¢4° - -

Voronoi polyhedror(see Fig. 3around this point is given by 107 10° 107 10°
V(Y)~1lpg(y). The designability is the number of struc- Designability

tures within this volume, and estimated as.{Y)/psu(Y). FIG. 7. The estimateV [Eq. (7)] vs scaled designability for all designable
wherepg.{Y) is the density of sequences. The sequence derstructures on the §6 square.
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FIG. 8. (a) The Fourier transformed covariance mat(rSg,S’q‘,) [Eq. (9)] and (b) its diagonal element§ Sq\z).

tures. There is a reasonably good, but by no means perfeare the diagonal elements of the diagonalized matrix in Eq.

correlation between the designability and the estimatbr
The structures with the top 1% value 68f include 39% of
the highly designable structures.

IV. FOURIER DECOMPOSITION AND CYCLIC
STRUCTURES

(10), and hence the eigenvalues ©f;. . Note that because
the matrix is real-symmetric, its eigenvalues appear in pairs,
ie.,

Ng=\_q- (12

Since our covariance matrix is not fully translationally
invariant,(SqSZ;Q is not diagonal. However, as shown in Fig.
8(a), its off diagonal elements are very small. As required by

In discussing Fig. 4, we already noted that the covari-symmetry, the diagonal elements form pairs of identical val-

ance matrixC;; is approximately a function dfi —j|, with

ues. These diagonal elements, plotted versus the indiex

corrections due to end effects. If this were an exact symmeFig. 8(b), should provide a good approximation to the eigen-
try, the matrix would be diagonal in the Fourier basis. Evenvalues obtained by PCA. This is corroborated in Fi¢a)9

in the presence of the end effects, Fourier decompositiowhere we comparé|8q|2> with the true eigenvalues of the
provides a very good approximation to the eigenvectors andovariance matrixCj; .

eigenvalues of PCA, as demonstrated below. For each struc-

Finally, we note that the end effects that mar the trans-

ture vector{s;}, the Fourier components are obtained from lational invariance of the covariance matrix are absent in the

1N
ST 2, ¢S (s, ®

subset otyclic structuresAny structure whose two ends are
neighboring points on the lattice can be made cyclic by add-
ing the missing bond. Any one of the=36 bonds on the
resulting closed loop can be broken to generate an element of

Whereq_= 2m7alN, with «=0,1,. ._,N— 1. The average valu_e the original set of structures, and the corresponding structure
of (sj) is subtracted for convenience. With this subtraction,strings are cyclic permutations of each other. Thus, the co-

the two constraints in Eq$2) and(3) correspond to two zero
modes in Fourier space, &=0 andS,=0, and sinces;}
are realS§=S_.

The covariance matrix in the Fourier space is

N
> elaiaine.,
o Ii

oy 1
<quq’>_ N (9)
and is both real and symmetrisinceC;;, =C;;). If C;;: is
translationally invariant, i.eCj;,=F(|j—j'|modN), Eq.(9)
becomes

(SgS5)=Bq.q'\q> (10
where
N—-1
Ng= 2, EF(K)=(|Sy? (12)
k=0

variance matrixC.qic(j,j ") of the set of all cyclic structures

is translationally invariant. In our model of>66 compact
polymers, there are a total of 3&76 cyclic structures. The
Fourier transform of their covariance matrix is diagonal as
expected, with diagonal elements depicted in Figp) 9The
corresponding Fourier eigenvalues are quite close to the ei-
genvalues of the full matrix obtained in the PCRg. 9b)].
Thus the end effects do not significantly modify the correla-
tions, and this is especially true for the smallest eigenvalues
which make the largest contributions to the density in Eq.

(@).
V. A MARKOVIAN ENSEMBLE
OF PSEUDO-STRUCTURES

The geometry of the lattice and the requirement of com-
pactness constrain the allowed structure strings of zeros and
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FIG. 9. (a) The diagonal eIemen(iSqF) (dots plotted together with the eigenvalues of the covariance mgttisses. (b) Diagonal elements of the Fourier

transformedC,,, which are also the eigenvalues of the covariance matrix of cyclic structpheseg. Eigenvalues of the covariance matrix for all
structures are indicated by stars.

ones in a nontrivial fashion. In our estimation of designabili-designability in Fig. 12 for all the artificial pseudo-structures
ties so far, we have focused on the covariance matrix whickvith nonzero designability. The pseudo-structures with the
carries information only about two point correlations alongtop 1% value ofM include 60% of the highly designable
these strings. In principle, higher point correlations may als@suedo-structures.
be important, and we may ask to what extent the covariance These results suggest that a considerable amount of in-
matrix contains the information about the structures’ designformation about the designability is indeed contained in the
abilities? As a preliminary test, we performed a comparativewo point correlations of the string. The designability estima-
study with an artificial set of strings, not corresponding totor, Eq.(7), in fact does a somewhat better job in the case of
real structures, but constructed to have a covariance matrigseudo-structures generated according to short-range Mar-
similar to true structures on thex@ lattice. kov rules.

Specifically, we generated a set of random stri{fgs of
zeros and ones of length 36, using a third order Markow| CONCLUSIONS
process as follows. For each string, the first elentgnis o )
generated with probabilitp(t, = 1)=(s,), where(s,) is the One of the most intriguing properties of_ compact stru.c-
fraction of the true structure strings with=1. The second Ures, Vgh'Ch emerged from early extensive enumeration
elementt, is generated according to a transition probabilitySt.Ud'?Sl' is that designabilities range over quite a broad dis-
P(t,—t,) which is taken to be the “conditional probability” tribution of values. Such allarge \{arlgtlop in designability is
P(s,|s,) extracted from the true structure strings. The third® consequence of a nonuniform distribution of structure vec-
point t; is generated according to a transition probability
P(tit,—t3) which is the “conditional probability”

P(s3]s;S,) extracted from the true structure strings. All the ' ' ' @
remaining pointst;, j=4,5,..,36, are generated according
to the transition probabilitie®(t;_st;_,tj_;—t;) equal to 0.8 -% .

the true “conditional probabilities™P(s;[s;_3S;-,Sj-1) Of 40
actual structures. Sequences that do not satisfy the globe
constrains of Eqg2) and(3) are thrown out. For every Mar- & 0.8 éo |
kov string generated, we also put its reverse in the pool,@ v}
unless the string is its own reverse. S04 O@ _
The above Markovian ensemble has a covariance matrixia o(-\z}
and corresponding eigenvalues, very similar to those of the
true structures, as shown in Fig. 10. We then calculated the
designabilities of these “pseudo-structures” using Eq.by
uniformly sampling 5< 10’ random binary sequences. The
histogram of the designabilitieFig. 11) is qualitatively
similar to that of the true structurdfig. 2. Next we con- 0 10 20 30 40
structed the designability estimato¥1 [Eq. (7)] for the i

psgudo-stryctures, USi_ng the eigenv_alue_s and eigenvectors g, 10. Eigenvalues of the covariance matrix for the structures generated
their covariance matrix. The quantityt is plotted versus by the Markov modelcircles, and that of the true structure spapiuses.
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™ ' ' ' of cyclic structures, and that for the latter PCA is equivalent
to Fourier decompositiorSecongdwe observe that the multi-
variable Gaussian approximation to structure density in Eq.
(7) is most sensitive to the eigenvalues that are close to zero.
In terms of Fourier components, these are eigenvalues corre-
sponding to values of] close tos, and related to the con-
straint of Eq.(3). There is also a zero eigenvalue fp+=0,
related to conditior{2). However, the latter global constraint
appears not to have any local counterpart, as there is a dis-
continuity in the eigenvalues close to zefdird, the conti-
nuity of the eigenvalues ag— 7, along with the symmetry
of Eqg. (12), suggests an expansion of the fong=K(q
— )2+ O((q—m)%. Indeed the numerical results indicate
that the importanfsmalley eigenvalues can well be approxi-
mated byK(q— 7)?, with K~0.062°

With this approximation, the designability estimate of
Eq. (7) becomes
FIG. 11. Number of pseudo-structures with a given designability vs design-

Number of Structures

10 0 0.2 0.4 0.6 0.8 1

Designability

ability for the pseudo-structure strings randomly generated using the Mar- SN E |Sq|2
kov model. The data is generated by uniformly sampling1®’ binary M({S})Wex 2K(q— 77)2
sequence strings. The designability of each pseudo-structure is normalized q
by the maximum possible designability. 1 N
—exg o 2 (—1)'sdn(li=iD(= D).
2K =1
tors, with highly designable structures typically found in re- (13)

gions of low density? However, our study of &6 lattice

structures using PCA indicates that the nonuniform densitﬂ—he first form in the above equation expresses the estimate in
actually has a rather simple form that can be well approxi{€rms of the Fourier modes of the structure string, while the

mated by a single multi-variable Gaussian, as in Ef second term is directly in terms of the elemef$s. The

Since this method of estimating structure designability isfunctionJy(|i—jl) is the discrete Fourier transform ofgt/

based only on the overall distribution of structures, it can beVhich for largeN behaves asi —j|. Equation(13) is thus

a useful tool in cases where there is not enough computgduivalent to the Boltzmann weight of a set of unit charges

tional power to enumerate the whole structure space and caf & discrete line oN points marked by parity. The charges

culate the designability. To obtain an accurate enough cova2 the sublattice of the same parity attract each other with a

riance matrix requires only a uniform sampling of the potential Jy(r), while those on different sublattices repel.

structure space. Such an interaction gives a larger weigahd hence design-
We can also attempt to use the numerical results as gbility) to configurations in which the charges alternate be-

stepping stone to a more analytical approach for calculatingVeen th‘fz 15%2@ and surface sites, as observed
the density of structuressirst, we note that the covariance empirically. ==

matrix for all structures is rather similar to that of the subset It would be revealing to see how much of the above
results, developed on the basis of a lattice hydrophobic

model, can be applied to real protein structures. One could

10% . . . use the exposure level of residues to the solvent in building

| up the structure vectors. Current methods deal with structure
strings of a fixed length, equal to the dimension of the struc-
ture space. Since real proteins have different lengths, there is
a need for a scaling method to handle them all together. Our
study shows that the two point correlations of structure vec-
tors are approximately translationally invariant, and can be
captured by Fourier analysis. This suggests the possibility of
casting the density of points in structure space in universal
functional forms dependent only on a few parameters encod-
ing the properties of the underlying polymers. If so, it would
be possible to provide good estimates for designability with
polymers of varying length, without the need for extensive
numerical computations.
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