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a-Helices stand out as common and relatively invariant secondary struc-
tural elements of proteins. However, a-helices are not rigid bodies and
their deformations can be significant in protein function (e.g. coiled
coils). To quantify the flexibility of a-helices we have performed a struc-
tural principal-component analysis of helices of different lengths from a
representative set of protein folds in the Protein Data Bank. We find three
dominant modes of flexibility: two degenerate bend modes and one twist
mode. The data are consistent with independent Gaussian distributions
for each mode. The mode eigenvalues, which measure flexibility, follow
simple scaling forms as a function of helix length. The dominant bend
and twist modes and their harmonics are reproduced by a simple spring
model, which incorporates hydrogen-bonding and excluded volume.
As an application, we examine the amount of bend and twist in helices
making up all coiled-coil proteins in SCOP. Incorporation of a-helix
flexibility into structure refinement and design is discussed.
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Introduction

Protein folds typically consist of two funda-
mental building blocks: a-helices and b-strands.
These secondary elements pack together to form
the final tertiary fold.1,2 However, the constraints
of packing may be inconsistent with idealized con-
formations of the helices and strands. To what
extent are these elements flexible?

One measure of flexibility is provided by a
Ramachandran plot of the probability distribution
of backbone dihedral angles.1,3 In such a plot,
a-helices appear as a high-probability peak around
f ¼ 250, c ¼ 250, while b-strands form a more
diffuse peak around f ¼ 2120, c ¼ 120. However,
the flexibility of helices and strands is due to
collective motion of many residues, and cannot be
adequately described by the distribution of single
{f,c} pairs.

Collective deformations have been considered
before in many biological contexts. Normal mode

analysis of protein structure has been performed
to extract the flexible modes of proteins.4 – 10 The
flexible motions identified in this way sometimes
correspond to functional motions that the protein
can perform.10 The flexibility of double-stranded
DNA plays an important role both in the packing
of DNA,11 and in regulation of gene transcription
via protein–DNA interactions.12 –14 Recently, a
principal-component analysis of database DNA
structures was used to characterize the average
deformation and deformability of all dinucleotide
pairs.15

We have employed a similar principal-com-
ponent analysis (PCA) to quantify the flexibility of
a-helices. Helices with lengths ranging from L ¼
10– 25 residues were extracted from a representa-
tive set of a, a þ b, and a/b folds from the Protein
Data Bank. We found that there are three dominant
modes of flexibility: two nearly degenerate bend
modes and one twist mode. It is natural to identify
these as the three lowest normal modes of an
a-helix, in particular since the distribution of ampli-
tudes is consistent with independent Gaussians.
According to elasticity theory, these low-lying
normal modes should be insensitive to details of
the interaction potential. Indeed, we found that a
spring model with only two parameters repro-
duced not only the main bend and twist modes,
but many higher-order modes as well.
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What relevance does a-helix flexibility have to
biology? An obvious case is the formation of coiled
coils of a-helices. A coiled coil is a domain of two
or more a-helices wound around each other to
form a superhelix. The a-helices typically interact
with each other via buried hydrophobic residues,
salt bridges, and interlocked side-chains.16,17 Such
superhelical domains often contribute to protein–
protein recognition, with helices from different
proteins coming together to form the coiled coil.
We have examined helices making up the known
coiled coils. For relatively short coiled-coil helices
we find that the deformations can be accounted
for primarily by the bend and twist modes. For
much longer helices, higher-order harmonics of
bend are required to describe the deformation.
In most of the cases examined, helices making up
coiled coils can be well described using a minimal
number of the lowest normal-modes of our spring
model.

The quantification of a-helix flexibility may
prove useful in structure refinement and protein
design. For instance, folding studies that rely on
rigid helical fragments may benefit from the
inclusion of collective flexible motions to further
optimize the energy of the sequence for the given

fold.18,19 A recent approach to protein design con-
siders all possible packings of secondary structural
elements;20 however, so far only idealized rigid
helices have been considered. Based on the current
results, the low-lying bend and twist modes of
helices can be incorporated to allow a more realis-
tic balance between packing and deformation
energies.

Results

Principal-component analysis of database
helix structures

Sets of a-helices of given length were extracted
from a representative set of protein structures (see
Methods). To quantify the flexibility of these
helices, we performed a structural principal-
component analysis (PCA). For each length L; i.e.
number of residues, we began by computing the
mean helix structure via an iterative procedure.
Starting with an ideal helix (periodicity 3.6 resi-
dues/turn, rise 1.5 Å/residue), we aligned the Ca

positions of each length-L fragment in the repre-
sentative set to the ideal helix†. A mean structure
was then obtained by averaging the position of
each Ca over these aligned structures. This pro-
cedure was then iterated, each time using the new,
mean structure as the basis for the alignments,
until the mean structure converged to within
1024 Å/residue. An example of a set of aligned
structures from the representative data set is
shown in Figure 1 for helices of length L ¼ 18:

The second step in the principal-component
analysis was to compute the structural covariance
matrix for each length L: The covariance matrix is
a measure of correlations between coordinates. In
our case, it is a square matrix of dimension 3L
(three spatial dimensions for each of L Ca atoms),
with element i; j defined as:

Ci;j ¼
1

N 2 1

XN

m¼1

ðxmi 2 kxilÞðxmj 2 kxjlÞ ð1Þ

where N is the number of helices of length L in the
data set, xmi is the ith coordinate of the mth struc-
ture, and kxil is the ith coordinate of the mean
structure.

We then computed the eigenvalues, {lq}; and
eigenvectors, {~vq}; of the covariance matrix. The
largest eigenvalues and corresponding eigenvec-
tors represent the directions in the 3L dimensional
space for which the data has the largest variance.
These directions are the “soft modes” of the
helices, i.e. those collective deformations that
appear with largest amplitude in the data set.
Figure 2(a) shows the top ten eigenvalues for
helices of length L ¼ 18: Each eigenvalue is given

Figure 1. Representative set of 47 aligned 18-mer
helices.

† Each structure was aligned so that the coordinate
root mean square (crms) distance between it and the
mean structure was minimized.
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in units of Å2 and measures the variance of the dis-
tribution for a particular mode. Three dominant
eigenvalues are evident in Figure 2(a). The first
two modes are nearly degenerate and correspond
to the bending of the helix in two orthogonal
planes. This near degeneracy of the bend modes
reflects the approximate cylindrical symmetry of
an a-helix†. The third mode is the overall twist of
the helix. These dominant modes are shown with
exaggerated amplitudes in Figure 3.

The scaling of the eigenvalues (i.e. variances) of
the first three modes as functions of helix length is
shown in Figure 2(b) for helices ranging from 10
to 25 residues. The eigenvalues of the bend modes
grow with helix length approximately as L4 while
the eigenvalue for twist grows approximately as
L2: This difference occurs because bend modes
induce displacements from the mean helix struc-
ture which grow quadratically with helix length,
while twist modes induce displacements which
grow linearly with helix length. A model for the
scaling of the eigenvalues based on an elastic rod
is presented later in the paper.

Next, we look at the actual distribution of the
data for the three dominant modes. For each helix
fragment its displacement vector d~x ¼ ~x 2 k~xl can
be expanded in terms of the eigenvectors giving
d~x ¼

P
q aq~vq: The amplitude aq is given by the

projection of the displacement vector onto mode q:
Figure 4(a)–(c) shows histograms of the projections
onto the two bend and one twist mode for helices

of length L ¼ 18: For both the two bend modes
and the one twist mode, the data have a nearly
ideal Gaussian distribution. Best x2-fits to
Gaussians are shown by continuous lines. By defi-
nition, the exact variance of each distribution is
equal to the eigenvalue lq for that mode. The var-
iances of the best-fit Gaussians, 1.55 Å2, 1.53 Å2,
and 0.71 Å2, for the two bend and one twist mode,
respectively, agree well with the exact variances,
1.53 Å2, 1.51 Å2, and 0.66 Å2‡.

By construction, the modes derived from the
principal-component analysis are uncorrelated to

Figure 2. (a) The ten largest
eigenvalues from the principal-
component analysis of 18-residue
a-helices from the representative
data set. (b) The scaling of the
three largest principal-component
eigenvalues as a function of helix
length L; i.e. number of residues.
The bend modes are fit to the
scaling form lbend ¼ ðkBTp=kÞL4

yielding kBTp=k ¼ 1:378 £ 1025 �A22:
The twist mode is fit to the scaling
form ltwist ¼ ðkBTp=cÞL2 yielding
kBTp=c ¼ 0:0022:

Figure 3. (a) Exaggerated bend mode of a helix
(average structure in blue, bent structure in green).
(b) Exaggerated twist mode of a helix (average structure
in blue, twisted structure in green). The helices are 18
residues long.

† If a-helices were actually cylinders, then our
alignment procedure would produce only a single bend
mode, since all the cylinders could be aligned to bend in
a single direction. However, the positions of the Ca

atoms of an a helix do not have cylindrical symmetry, so
our alignment based on Ca positions gives the direction
of bending of each helix unambiguously.

‡ The fitted values of the variances depend on the
binning of the data. The shown binning yielded results
that agree best with the exact variances of the
distributions.
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lowest order. That is, the expectations kaqaq0 l are all
zero, where aq and aq0 are amplitudes of different
modes for a single helix. (This is simply the state-
ment that the covariance matrix is diagonal in the
basis of the eigenmodes.) However, there is no
guarantee that the modes are uncorrelated at
higher order. To look for possible correlations, we
made scatter plots of the amplitudes of the three
dominant modes in all pairwise combinations,
shown in Figure 4(d)–(f) for the 1182 helices of
length L ¼ 18: The distributions of points in all
three scatter plots are roughly ellipsoids with axes
along x and y; indicating that there are no strong
higher-order correlations between modes. This
type of behavior was seen for all of the helix
lengths L ¼ 10– 25:

Normal-mode analysis of spring model
for a-helices

While the dominant modes derived above come
from studies of static structures, their properties
are suggestive of dynamical normal modes. We
show below that the two bend modes and one
twist mode can be obtained from a simple model
for the dynamics of a free a-helix. Moreover, the
eigenvalue scaling and the uncorrelated Gaussian
form of the distributions are characteristics of
modes in thermodynamic equilibrium.

From an energetic point of view, an a-helix
retains its helical shape due to two primary inter-
actions. The first is the backbone hydrogen-bond-
ing interaction between residues i and i þ 4: The
second is the excluded volume interaction between
backbone atoms. We model these two terms by
springs connecting nearby Ca atoms of an ideal
helix. Again, we take an ideal helix to have period-

icity 3.6 residues/turn and rise 1.5 Å/residue. The
potential energy for the spring-model of the helix
is given by:

V ¼
X

i

X
m¼1;2;3;4

1

2
Kmðl~ri 2 ~riþml2 d0

i;iþmÞ
2 ð2Þ

where ~ri is the position of the ith Ca atom, and d0
i;j is

the equilibrium distance between the ith and jth Ca

atoms. In equation (2), there are springs connecting
pairs of residues up to four apart along the chain,
and so there are four spring constants Km for m ¼
1; 2; 3; 4: However, we consider the limit K1 !1
which holds nearest-neighbor Ca atoms at a
fixed distance of 3.8 Å, and we set K2;3 ¼ K2 ¼ K3;
leaving only two spring constants, K2;3 and K4; as
parameters.

The normal modes of the model a-helix are
obtained by diagonalizing the 3L £ 3L spring
matrix:

Vi;j ¼
›2V

›xi ›xj
; ð3Þ

where xi is the ith member of the 3L coordinates
describing the helix. The eigenvalues ~Kq deter-
mined from the normal-mode analysis represent
effective spring constants for each of the normal
modes. The matrix has six zero eigenvalues, corre-
sponding to the six rigid-body rotations and trans-
lations, for which there are no return forces. The
lowest non-zero eigenvalues are the lowest-energy
normal modes of the helix. Over a broad range of
values for the spring constants, the first two non-
zero modes are bend modes and the third is twist
for helices up to length 33 (beyond this length,
higher order harmonics of bend occur before
twist), consistent with the dominant modes of

Figure 4. (a)–(c) Histograms of
projections onto the two bend
modes and one twist mode
obtained from the principal-com-
ponent analysis. Data are shown
for the 1182 18-residue a-helices
from the representative data set.
Continuous lines correspond to
Gaussian fits to the data. The fitted
variances are 1.55 Å2, 1.53 Å2, and
0.71 Å2, respectively, for the two
bend modes and one twist mode.
(d)–(f) Projections onto two-dimen-
sional subspaces spanned by the
two bend modes and one twist
mode, for the same 1182 18-residue
a-helices. The results are consistent
with uncorrelated modes.
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static helices found from the PCA. Typically for the
lengths studied, the top seven to ten modes from
the normal-mode analysis agree very well with
those obtained from PCA. At thermal equilibrium,
these dynamical modes would follow the Boltz-
mann distribution PðaqÞ < expð2 ~Kqa2

q=2kBTÞ;
where PðaqÞ is the probability of observing the
qth mode with amplitude aq and 1=2 ~Kqa2

q is the
potential energy of the mode.

A more detailed comparison between the PCA
and the spring model can be made by conjecturing
that the Gaussian distributions of PCA modes
represent equilibrium Boltzmann distributions at
some effective temperature Tp: (Below, we discuss
the use of Tp rather than room temperature T:)
With this conjecture, one has the relation:

exp 2
a2

q

2lq

 !
¼ exp 2

~KðPCAÞ
q a2

q

2kBTp

 !
ð4Þ

where the aq are the mode amplitudes. So the effec-
tive spring constants of the PCA modes are given
by ~KðPCAÞ

q ¼ kBTp=lq: In other words, the PCA
eigenvalues lq can be interpreted as inverse spring
constants, with a proportionality constant kBTp; i.e.
lq ¼ kBTp= ~KðPCAÞ

q : Figure 5 shows a plot of the
eigenvalues lq for the first three PCA modes, com-
pared with kBTp= ~Kq using the spring constants ~Kq

for the first three low-energy modes determined
from the normal-mode analysis of the spring
model. The real-space spring constants that give
this fit are K2;3 ¼ 20kBTp= �A2 and K4 ¼ 7kBTp= �A2:
The agreement between the PCA modes and the
normal modes of the spring model is striking for
both eigenvalues and eigenvectors (Figure 6).
Note that there are only two free parameters in
the spring model K2;3 and K4; and that the mode
shapes depend only on their ratio. Thus the domi-
nant modes of static a-helices extracted from the

Figure 5. The three largest principal-component eigen-
values for helices of length L ¼ 10– 25 (discrete data
points) compared to the inverse spring constants for the
normal modes obtained from the spring model (continu-
ous curves). To obtain this fit, we used real-space spring
constants K2;3 ¼ 20kBTp= �A2 and K4 ¼ 7kBTp= �A2:

Figure 6. Plots of x; y; and z components of eigenvectors for the two bend modes, (a) and (b), and for the twist mode
(c) for L ¼ 18: Shown is the overlap of eigenvectors from the principal-component analysis (filled squares) with those
from the spring model (red curves). The curves are not fits to the PCA eigenvector data; the curves are the eigenvectors
from the spring model with the same spring constants used in Figure 5.
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database can be identified with the normal modes
of simple spring model for a helix.

Scaling of the PCA modes

Guided by the interpretation of the PCA modes
as normal modes, the scaling of the PCA eigen-
values can be understood relatively simply in
terms of the bending and twisting of an elastic
rod. For a uniformly bent rod, the displacement
away from vertical goes as dx . l2=R; where l
is the length along the rod, and R is the radius of
curvature. The normalized eigenvector describing
this bending mode has the form ~v , ðR2=L5Þ1=2 �
ðL2=R;…; L2=RÞ: Within a principal-component
analysis, the eigenvalue for this bend mode is the
average square of the projection of the displace-
ment of the rod onto this mode. So the bend eigen-
value is given by:

lbend ¼ kld~x·~vl2l , k L
L4

R2

R

L5=2

����
����
2

l ¼ L5k
1

R2
l ð5Þ

At thermal equilibrium each normal mode has
kBT=2 of potential energy. For the bend mode, this
energy is put into the curvature of the rod:

1

2
kBT ¼

1

2
kLk

1

R2
l ð6Þ

Substituting this equilibrium relation for k1=R2l
into equation (5) for the bend eigenvalue gives:

lbend , L5k
1

R2
l ¼

kBT

k
L4 ð7Þ

Thus, from thermodynamic arguments, we find
that the principal-component eigenvalue of the
bend mode of an elastic rod scales as L4; as was
found in Figure (2) for the bend eigenvalue of
a-helices.

For twist, we assume that the rod twists uni-
formly by an angle du per unit length. The dis-
placement associated with twist along the rod is
given by dx , ldu; and hence the normalized vector

describing this mode is ~v , 1=ðdu2L3Þ1=2 �
ð2Ldu;…; LduÞ: Using the same formulation as
above, we find that the eigenvalue for the twist
mode goes as:

ltwist , k L
ðdu2L2Þ

ðdu2L3Þ1=2

����
����
2

l ¼ kdu2lL3 ð8Þ

At thermodynamic equilibrium, the energy associ-
ated with the twist mode is:

1

2
kBT ¼

c

2
kdu2lL ð9Þ

where c is a spring constant associated with twist.
Substituting this equilibrium result for kdu2l into
equation (8) for the twist eigenvalue gives:

ltwist , kdu2lL3 ¼
kBT

c
L2 ð10Þ

So, we find that the principal-component eigen-
value of the twist mode of an elastic rod scales as
L2; as was found in Figure (2) for the twist eigen-
value of a-helices.

Thus, the eigenvalues of bend and twist
extracted from the PCA of a-helices are seen to
scale with length in the same manner as those of a
fluctuating elastic rod at thermal equilibrium. The
difference between the scaling exponents, L4 for
bend and L2 for twist, can be traced to the length
dependence of displacements. For bend modes,
displacements grow quadratically with length,
dx . l2=R; while for twist modes displacements
grow linearly, dx , ldu:

Application to helices forming coiled coils

In this section we examine to what degree
helices making up coiled coils can be described
using the lowest-energy normal modes. We created
a database of 222 coiled-coil structures from the
coiled coil classification in SCOP.21 We then
extracted 680 helices from the above structures
and performed the analysis described below. The
results of the analysis are available as Supple-
mentary Material. Here we have chosen to focus
on three representative coiled-coil structures. The
first is a leucine zipper (2ZTA), which consists of
two interacting helices. The second is the tetramer-
ization domain of Mnt repressor which is repre-
sentative of coiled coils that form as a result of
protein–protein interactions (1QEY). Lastly, we
consider two long helices that form a part of a
coiled coil in the structural protein fibrinogen
from chicken (1M1J). The coiled coils that we have
chosen to focus on are shown in Figure 7.

For each coiled-coil helix we computed the
normal modes of an ideal helix of identical length
using our spring model. We then aligned the
coiled-coil helix to the ideal helix and computed
the displacement vector d~x; which by definition
can be expanded in terms of the spring-model
normal-mode eigenvectors d~x ¼

P
q aq~vq: We

then projected d~x onto each eigenvector yielding

Figure 7. (a) Helices making up coiled coil in the
leucine zipper (2ZTA). (b) Tetramerization domain of
Mnt repressor (1QEY). (c) Coiled-coil fragment from
chicken fibrinogen (1M1J).
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projection amplitudes aq: The percentage of the dis-
placement vector due to a single mode q is given
by a2

q=
P

q a2
q: In Table 1, we show the percentages

of the coiled-coil helix displacements captured by
the sum of the principal bend normal modes,
Bend, the first and second harmonics of bend,
Bend(2) and Bend(3) and lastly Twist (the complete
Table is available as Supplementary Material). For
the shorter helices in the leucine zipper and Mnt,
we find that the helical displacements are
described predominantly by the bend modes, with
some twist. Thus, coiled coils that are formed by
shorter helices can be described well using just the
bend and twist modes of the spring model. For
the larger helices making up fibrinogen, where
there is clear evidence of supercoiling, the second
harmonic of bend is required. The second helix of
the fibrinogen coil (green helix in Figure 6(c)) has
68% of its displacement captured by the two
second harmonics of bend. Thus helical supercoil-
ing is captured by higher-order harmonics of the

fundamental bend mode. For the helices of length
80, the second and third harmonics of bend are
lower in energy than the twist mode, so twist is
no longer the third lowest normal mode for longer
helices.

To gain further insight into the deformations that
helices undergo in coiled coils we have plotted the
average fraction of the deformation for each mode
(Bend, Bend(2), Bend(3), and Twist) as a function of
helix length in Figure 8. From above, we know
that the deformations of a helix at thermal equi-
librium are related to the effective spring constants
Kq of the normal modes via lq ¼ kBTp= ~Kq: Thus,
from the eigenvalues of the spring-model normal
modes we can estimate the fraction of the total
deformation that comes from each mode at thermal
equilibrium:

fractionq ¼
lqX

q0

lq0
: ð11Þ

In Figure 8, the actual fractions in the top modes
for coiled coils are compared with the fractions
expected at thermal equilibrium. For helix lengths
,60 the coiled-coil deformations are consistent
with an equilibrium distribution. However, for
longer helices, there is a departure from equi-
librium in favor of the higher harmonics of the
bend modes. This supports the conventional view
that hydrophobic forces along with specific side-
chain interactions cause super-coiling of helices in
long coiled coils.

Discussion

Connection between static and dynamical
modes of helices

Our principal-component analysis has shown
that a-helices of lengths up to 25 residues, have
three dominant independent “soft modes”: two
bend and one twist. These modes were determined
from static a-helix structures in the Protein Data
Bank. The principal modes determined from these

Figure 8. Average fraction of total deformation in top
normal modes as a function of helix length for 680
helices making up coiled-coil structures: principal bend
modes (open squares), first harmonics of bend modes
(filled diamonds), second harmonics of bend modes
(open triangles), and twist mode (filled circles). Curves
correspond to expected average fractions for helices in
thermal equilibrium.

Table 1. Results of projecting coiled-coil helices onto normal-modes of spring model

PDB ID Residues L Bend Bend(2) Bend(3) Twist Total

2ZTA A 1–30 30 75.68 4.20 3.97 3.31 87.16
B 1–30 30 73.18 0.99 0.00 17.59 91.76

1QEY A 54–81 28 76.01 1.56 2.72 9.61 89.90
C 54–81 28 76.03 1.55 2.72 9.61 89.91
B 54–80 27 86.25 1.07 0.00 6.75 94.07
D 54–80 27 86.23 1.07 0.00 6.75 94.05

1M1J A 82–161 80 61.00 16.77 3.49 10.23 91.49
B 85–164 80 1.18 65.36 1.68 17.74 85.96

Columns denote the percentage of the helical displacement accounted for by the specified mode. Bend is the sum of the percentages
for the two principal bend modes. Bend(2) and Bend(3) correspond, respectively, to percentages for the first and second harmonics
of bend. Twist is the percentage for the principal twist mode. L is the length of the coiled-coil helix. See Supplementary Material for
analysis of 680 helices in coiled-coil structures.
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static snap-shots agree extremely well with the
dynamical normal modes of an a-helix obtained
from a simple spring model. The projections of the
static a-helices onto these three principal modes
yield Gaussian distributions, which coincides
with the distribution expected for dynamical equi-
librium fluctuations. Why should an ensemble of
static a-helical structures be related to the normal-
mode fluctuations of a helix at thermal equi-
librium? This connection can be understood if the
ensemble of static a-helical structures has been
sampled from a system that is under the influence
of random forces. In a given protein structure,
helices adopt conformations so that the forces
acting on them add to zero. Over the entire
ensemble of protein folds it is reasonable to assume
that the forces that an a-helix experiences are
approximately random. An elastic objected acted
on by random external forces is equivalent to that
same object at thermal equilibrium at some effec-
tive temperature Tp: The fluctuations in the energy
of the ensemble of a-helical structures set the effec-
tive temperature Tp: (Since the forces, or more
precisely, energies involved in protein folding
(hydrophobic interactions, hydrogen bonding, van
der Waals etc.) all have the scale of the order of
kcal/mol, or a few kBT; with T being the room
temperature, the effective temperature Tp obtained
from PCA should be of the order of room tempera-
ture. Indeed, our fitted value of K4 ¼ 7kBTp= �A2; the
hydrogen bond spring constant, is quite consistent
with the hydrogen bond energy with Tp being
room temperature.) The distribution of static
helical structures sampled from a large ensemble
of proteins will therefore have a distribution that
is equivalent to a helix at thermal equilibrium at
some temperature Tp: If the forces that helices
experience within protein structures were system-
atically non-random then the resulting PCA distri-
butions would depart from those of a helix at
thermal equilibrium.

Incorporating helix bend and twist into models
of protein structure

The results presented here can potentially be
applied to structure refinement and structure
design. Most off-lattice structure models of pro-
teins fall into two classes: those with rigid secon-
dary elements,19,22 or those in which every atom is
free to move independently.23,24 The first has the
advantage of locking out many of the degrees
of freedom of the peptide chain. It has the dis-
advantage of potentially missing lower-energy
conformations which could be accommodated if
the secondary elements were flexible. The second
approach, allowing every atom to move inde-
pendently of the others, has the advantage that
each atom is in principal allowed to find its equi-
librium position within the fold. It has the great
disadvantage of allowing all possible degrees of
freedom, which greatly increases the complexity.
A model which fits somewhere in between the

two extremes, allowing only a few important
internal degrees of freedom, would be advan-
tageous in many cases.

The dominant low lying normal modes of a helix
can easily be incorporated into models of protein
structure that currently use rigid helical segments.
Each mode has an effective spring constant ~Kq;
and eigenvector ~vq ¼ ðxq;1; xq;2;…; xq;3LÞ; which can
be obtained by diagonalizing the spring matrix
(3). The energy cost (in kBTp) for exciting these
internal degrees of freedom is:

E ¼
X

q

1

2
~Kqa2

q ð12Þ

This prescription gives a simple way to include the
internal degrees of freedom, along with the appro-
priate energy term, into models of protein struc-
ture. For shorter helices, only the two bend and
twist modes need be incorporated. For longer
helices that might supercoil, including higher
order bend harmonics would be required. But
nevertheless, describing the possible deformations
of a helix can be described by adding relatively
few extra degrees of freedom.

In summary, we have shown that a-helices have
three prominent flexible modes: two bend and
one twist. The principal modes obtained from
static structures in the Protein Data Bank agree
extremely well with the dynamical normal modes
of a simple spring model of a helix. Moreover,
the static a-helices from the database have
independent Gaussian distributions of mode
amplitudes, consistent with a quasi-thermal equi-
librium. Use of these dominant soft modes may
provide an intermediate path between rigid secon-
dary-structures and independent all-atom models
for protein structure refinement and design.

Methods

To compile a set of protein structures containing
a-helices, we selected one representative of each fold in
the a, a þ b, and a/b families from SCOP release 1.55,21

yielding a total of 399 protein structures. Each of these
structures was then decomposed into its {f,c,V} angle
sequence, and backbone bond lengths. All backbone
atom coordinates could be reconstructed from this data.
The {f,c,v} angles for each of the 399 protein structures
from SCOP were calculated using the freely available
program Stride.25

Sets of a-helices of given length were extracted from
the above structure set as follows. We identified a-helices
by unbroken series of dihedral angles within a
square region {f,c ¼ 250 ^ 30, 2 50 ^ 30}. For
example, a sequence of 15 {f,c} angles all falling within
the defined region would be added to our helix set of
15mers. This same sequence would also contribute two
14mers, three 13mers, four 12mers, and so on, to the
data sets of these other lengths. For a given helix length,
we scanned all 399 structures, and extracted the a-helical
fragments. This yielded our representative set of
a-helices for lengths L ¼ 10– 25:
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The eigenvalues and eigenvectors of both the covari-
ance matrix and the spring matrix were computed using
the eigenvalue solver for real symmetric matrices in the
NAG numerical library. The elements making up the
spring matrix, equation (3), were evaluated by compu-
ting the second derivative of equation (2) numerically.
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