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Statistical mechanics of RNA folding: Importance of alphabet size
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We construct a base-stacking model of RNA secondary-structure formation and use it to study the mapping
from sequence to structure. There are strong, qualitative differences between two-letter and four- or six-letter
alphabets. With only two kinds of bases, most sequences have many alternative folding configurations and are
consequently thermally unstable. Stable ground states are found only for a small set of structures of high
designability, i.e., total number of associated sequences. In contrast, sequences made from four bases, as found
in nature, or six bases have far fewer competing folding configurations, resulting in a much greater average
stability of the ground state.
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[. INTRODUCTION structures. We find pronounced differences between two-
letter and four- or six-letter alphabets. For sequences con-
RNA plays a central role in molecular biology. In addition structed with two types of bases, only a small fraction of
to transmitting genetic information from DNA to proteins, sequences have thermodynamically stable ground-state struc-
RNA molecules participate actively in a variety of cellular tures; these structures are also highly designable, i.e., have a
processeqg1]. Examples are found in translatiomRNA, large number of associated sequences. Four- and six-letter
tRNA, and tmRNA, editing of mMRNA, intracellular protein Séquences are much more stable on average, but exhibit no
targeting, nuclear splicing of pre-mRNA, and strong correlation between designability and thermodynamic
X-chromosome inactivation. The RNA molecules involved Stability. We trace this difference to the greater likelihood of
in these processes do not code for proteins but act as fun€ompeting, alternatively paired configurations when a two-
tional products in their own right. In addition, RNA mol- letter alphabet is used.
ecules prepareth vitro can be selected to bind to specific ~ For RNA, there already exist algorithms that predict sec-
molecules such as AT[R]. In all these cases, the information ondary structurefs,7]. These algorithms are intended to ap-
encoded in the sequence of nucleotide bases of each RNy to real RNA and, consequently, involve a large number of
molecule determines its functional three-dimensional strucparameters for the different pairing and stacking combina-
ture. The nucleotide sequence is a kind of genotype, i.etions. Using one of these algorithms, Fontatal. [8] found
hereditary information, while the folded three-dimensional@ broad distribution of designabilities, i.e., number of se-
structure represents phenotype, the physical characteristi€¢lences per structure, after structures were grouped by to-
on which natural selection operates. The mapping fronPology. In this paper, we present, instead, a much simpler
genotype to phenotype bears on how biological systemgodel for RNA secondary structure designed to elucidate the
evolve, and RNA folding probably constitutes the simplestrole of alphabet size.
example of this mappinfB]. Since early life is believed to The organization of this paper is as follows. In Sec. Il, we
have been RNA basdd], RNA folding can provide us with Present a base-stacking model for RNA secondary structure
important clues about early life and evolution. and outline the recursive algorithm used to compute the par-
RNA is a polynucleotide chain consisting of the four tition function and ground-state structure. In Sec. IIl, we em-
bases: A, U, G, and C. Complementary base p@irt) and  Ploy our model to analyze the stability of folded structures.
G-C) can stack to form “stems” which are helical segmentswe find a Significant difference in Stabl'lty between two-
similar to the double helix of DNA. These helices, called letter and four- or six-letter sequences due to the greater
Secondary structures, are genera”y arranged in a thre@ke“hOOd of alternative folds in the two-letter case. As a
dimensional tertiary structure, stabilized by the much weaker
interactions between the helices. Representations of second-
ary structures are shown in Fig. 1. The energy contributions
of secondary and tertiary structures are hierarchi¢hlwith
secondary structures largely determining tertiary folding.
Secondary structure is frequently conserved in evolution, and
structural homology has been used successfully to predict
function[5].
In this paper, we investigate the role of alphabet size in
the statistical mechanics and selection of RNA secondary

FIG. 1. Representations of RNA secondary structures:
flattened-helix diagram of a 16-base structure, @mdainbow dia-
*Present address: Center for Physics and Biology, Rockefellegram of the same structure. The restriction that arches do not cross
University, New York, New York 10028, USA. in the rainbow diagram implies the absence of pseudoknots.
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consequence of these alternative folds, in the two-letter casef an isolated stack, with a minimum of two adjacent stacks
stability correlates with designability, i.e., total number of required to form a stable stem. Our results, however, do not
sequences associated with a structure. In addition, we findepend sensitively on the choice of these parameters.

that RNA sequences folding to a given structure form a per- In the secondary structure, any two base padifsj¢) and
colating neutral network. Finally, in Sec. IV, we summarize(i,,j,), with i;<i,, are either nestedi{<i,<j,<j;) or

our main conclusions. independenti(<j,<i,<j,). Other possibilities correspond
to “pseudoknots,” which are energetically and kinetically
Il. BASE-STACKING MODEL suppressed. It is customary to regard pseudoknots as part of

the tertiary structure, and we do not include them here.

We introduce a base-stacking model for RNA secondary- |n order to compute the ground-state structure and parti-
structure formation. It is known that, within a stem of basetion function for a given sequence, we make use of the hier-
pairs, the largest energy contribution is tstacking energy archical nature of secondary structufdae to the absence of
between two adjacent base pdirather than the base-pairing pseudoknots We use a recursive algorithm that is a gener-
energy itself and the total energy of the stem is the sum ofalization of the techniques described in Rd&] and [10].
stacking energies over all adjacent base ppdisA single  Consider the partition functiod; ; for a segment of bases
stack {,i+1;j—1,) is defined as two adjacent nonoverlap- from the positioni to j=i. The basgq is either unpaired or
ping base pairsi(j) and (+1j—1), wherei+1<j—1.  can be part of a stackk(k+1;j—1,j) with ke{i, ...

For this stack i,i+1;j—1,j) we assign an energy E; if —3}. ThusZ; ; obeys
(i,j) and (+1,j—1) are both complementary Watson-Crick

base pairs, and zero otherwise. We thus neglect differences in 13

energy between, for exampléA,A;U,U), (A,G;C,U), and Z j=aZjj_,+ kzi [ZiykileEs/kBT

(G,G;C,Q stacks. We also neglect energy contributions from

isolated base pairs that are not part of a stack, and, conse- X Po(kk+ 13— 1)) 2,2 2], 2.2
qguently, do not include isolated base pairs in the secondary

structure. where Py(k,k+1;j—1,j) equals 1 if both k,j) and

The |argest entropic Contrib.ution to an RNA StrUCtUre+ 11] _l) are Comp|ementary base pairS, and equa|s 0 other-
comes from stretches of unpaired bases. We incorporate gi... > | is defined to equal 1. We have introducid
simplified version of_th|_s polymer configurational ?”trop-‘/ n which :sl the partition function for the segment with']the
our ”.‘Ode' by associating degrees of frg_edom W't.h every boundary condition that sitds-1 andj+1 are paired, im-
unpaired base. Thus, the restricted partition function, Correﬁ)lying an energy— E. for the formation of a bond between
sponding to a]l microstates compatible with a given Second'Ehe bases at sitésamsjj. We thus require a second recursion
ary structure is relation for3:

nE A L2
Znicro™ au ex;{ k;TS ) (2.1 Zi,j = azi,j -1t eES/kBTPbU ) )Zi+l,j -1
i-3
wheren,, is the number of unpaired bases,is the number + 2 [Zi,k,leES’kBTPs(k,kJr 1;j— 1,j)2k+2;j—2]7
of stacks, and is the temperature. The restricted free energy k=i+l
IS Fmicro= = KgT IN Zpicro= —Esns—kgTnyIn e (2.3

In this model, since only complementary base pairs can
participate in a stack, only a fraction of possible structuregvherePy(i,j) equals 1if (,j) are complementary base pairs
are compatible with any given sequence. However, provide@nd O otherwise. The partition functiafyy can be com-
the structure is compatible with the sequence, its restricteguted recursively using Eqé2.2) and(2.3) in O(N®) steps.
free energy is independent of the sequence. We use a similar recursive algorithm to compute the ground-
The change in free energy due to the formation of arstate structures, y .
isolated stack is- Eg+4kgT In «; the first term corresponds
to the stacking energy and the second to the loss in configu- Il. RESULTS
rational entropy(since four bases participate in the stack
For every additional adjacent stack the change in free energy
is —Eg+2kgTIn e, since only two bases are added to the We have employed our model to analyze the stability of
stack. If, for example Es<4kgT Ina but 2E>6ksTIna  folded structures corresponding to two-, four-, and six-letter
(i.e., 3KgTIn a<E<4ksTIn @), then formation of an iso- sequences. The thermodynamic stability is defined as the
lated stack would be unfavorable but formation of a segmenprobability Pgsthat the sequence will be found in the ground
consisting of two or more adjacent stacks would be favoredtate,Pgg=e "es/*sT/Z, whereF g5 is the free energy asso-
by a net decrease in free energy. Thus, for an appropriateiated with the ground state. Figure 2 shows a histogram of
choice of parameters, the model correctly provides a nuclestability for 40-nucleotide-long sequences with ground states
ation cost to the formation of stems. For this paper wecontaining 12—15 stackg1]. We find four-letter sequences
choose Ine=1.5 andEg=5.5gT, which are physically mo- considerably more stable on average than two-letter se-
tivated and correspond to a nucleation cost for the formatiomuences.

A. Dependence on alphabet size
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letter sequences, arl) 40-nucleotide-long four-letter sequences. bound P, allowing only for breaking of base pairs, plotted for
40-nucleotide sequences.’s denote RNA sequences constructed
What is the origin of the difference in stabilities between from two types of base<)’s denote those constructed from four,
two-letter and four-letter RNA sequences? In order to adand X’s denote sequences constructed from six types of bases. The
dress this question, we classify the excited-state structures A§tual probability is averaged over sequences with the same pair-
(i) those formed by breaking existing pairs, afid those breaking stabilityP,,,, (Which is sequence independgent
formed by repairing, i.e., by forming new pairs in addition to
breaking existing pairs. Independent of alphabet size, all se-
guences folding into a given secondary structSireave the What determines the average stabili§ss) of two-letter
same set of “pair-breaking” excited states. Tsequencele-  sequences? We have seen that for four- and six-letter se-
pendence of stability for a given ground-state structure requences the average stability is close to the pair-breaking
sults entirely from repairingg’he crucial difference between stability which is determined largely by the number of stems
two-letter and four- letters sequences lies in the substantialland loops. Insight into the stability of two-letter RNA se-
greater likelihood of repaired excited states for two-letter quences comes from results in protein foldift2—17.
sequenceslhis follows because the number of pairs one carBased on solvation models with differing hydrophobicities of
form in a random sequence of two letters is typically muchamino acids, a principle of designability has emerged for
larger than for a four- or six-letter sequence of the sameyrotein folding. The designability of a structure is measured
length. For example, for a random four-letter sequence oby the number of sequences folding uniquely into that struc-
lengthN, the probability of forming a stem involving sités ture. A small class of protein structures emerges as being
toi+| andj—1 toj is lower by a factor of 2as compared to highly designable; remarkably, the same class of structures is
a random two-letter sequence of the same length. For thrighly designable whether two or all 20 amino acid types are
same reason, the fraction of sequences that have highlysed[17]. In a wide range of protein models, sequences as-
stacked ground states is much greater for two-letter sesociated with highly designable structures are thermody-
quences than for four-letter sequences, and much greater faamically more stablg¢13,18 and fold faster than typical
four than for six. sequencegl5]. This connection between the designability of
To demonstrate the importance of “repaired” excited a structure and the stability of its associated sequences is
states, we first calculate a pair-breaking stabilly,,, referred to as the designability principle. The designability
=e Fes/keT/ Z, whereZ is a pair-breaking partition function principle reflects a competition among structures. In solva-
calculated by considering only pair-broken excited statestion models, sequences will fold to structures which best
Pmax gives us an upper bound to the true stability, i.e., prob-match their hydrophobic amino acids to buried sites in the
ability in ground state,Pgs, which includes competition structure(shielded from watgr Highly designable structures
from repaired states. In Fig. 3, we plot the true average staare those with unusual patterns of surface exposure, and
bility (Pgg) against the pair-breaking stabiliB,,, for two-,  therefore few competitors. This lack of competitors also im-
four-, and six-letter sequences. As expected, the average stalies that the sequences folding to such structures are ther-
bility is much closer to the maximum set by pair breaking inmally stable. We will now show that the designability prin-
the case of four-letter sequences than in the case of two-letteiple also holds for two-letter RNA.
sequences. Thus, structures constructed with four-letter se- For two base typegsay, A and U), we enumerate all se-
guences are typically much more than stable than those couences and structures of length 24. We find that secondary
structed with two letters, and six-letter sequences are typistructures differ considerably in their designability; there are
cally more stable than four-letter ones. For foldkigetics it highly designable structures which are ground states of a
is these same repaired states that act as kinetic traps. Dueltmge number of sequences, and there are poorly designable
the lower likelihood of such states, we expect four- and six-structures which are ground states of only a few sequences
letter sequences to typically fold faster than two-letter se{cf. Fig. 4 insel. In this respect, the results for two-letter
guences. sequences are similar to those for protein modi&i 14.

B. Stability and designability

041904-3



MUKHOPADHYAY et al. PHYSICAL REVIEW E 68, 041904 (2003

—

w)

) [}

S ! &~
A~ H 2 + + + + -+ T
> 20 =
= F 5 + WEt eSS
:'—_: ?" o + L 2 L
3 £ 7 M

& © -
@ 2 osk - 1P q
Q g
.2 g

g 5 -

= el

=]

= E

o) ) 4 letters

E =

Eol F 0 | I 1ol 1 ool
() 6 9
= . 2 letters 10 10
= N

L L L L S

o

1 5
10 FIG. 6. Stability[20] vs designabilityN, (in logarithmic scale

for 24-base RNA sequences constructed with four types of bases.
FIG. 4. Stability[20] vs designabilityN (in logarithmic scalg ~ We find no significant correlation between designability and stabil-

for 24-base RNA sequences constructed with two types of bases. Ity for four-letter sequences.

the inset we plot fraction of compact structufd®] with design-

ability aboveNs vs N; for two- and four-letter RNA sequences.  states. Four- and six-letter sequences have far fewer compet-
ing repaired states, and hence do not demonstrate significant

However, the histogram is more noisy for RNA than it is for correlation between designability and stability.

proteins; so we plot the integrated distribution of designabili-

ties. The most designable structure consists of a stem with a C. Neutral networks

hairpin loop and a dangling end. We have also studied longer

sequences of lengths 40 and 50, for which we sample se-

guence space. For 40-nucleotide sequences, the most desi

able structures consist of a single hairpin loop and danglin

ends; a number of double hairpin structures are also highly ">
designabl€Fig. 5). For sequences of length 50, double hair- bility of RNA stru_ctures[8,22]. In our model, the netyvork
f sequences which fold to a particular structure is truly

pin structures emerge as the most designable. Finally, Wg .- i
find a pronounced correlation between designability and st heutral” in that all sequences have the same ground-state

bility of RNA structures. This is shown in Fig. 1] for Free energyFgs, albeit with different stabilities because of

24-nucleotide sequences. Thus, two-letter RNA sequencé’gpairing.(This contrasts with protein solvation models in

which fold into highly designable secondary structures aré’vr}:Ch’ independint of ﬁomﬁc)eting structu][es, thehre tis t¥pi-
unusually thermally stable, verifying the designability prin- cally an energy hierarchy of sequences for each Structure,

ciple determined by the match between hydrophobicity and

In contrast, for four-letter sequences the range of design§urface—exposure patterfidl.) In our model, RNA se-

abilities is narrower and there is only a weak correlationd4€nces that fold to a given structure form, in general, a
between designability and stability, with highly stable se-
guences existing for structures of both high and low design- @
ability (Fig. 6). The results for six-letter sequences are simi-
lar. We trace this difference between two- and four- or six-
letter sequences to the likelihood of competing repaired
states. For two-letter sequences, the correlation between des-
ignability and stability(as well as the nontrivial distribution

of designabilitieg arises primarily from competing repaired , e

B 111 e

0 12 24
Hamming distance

Finally we consider the “neutral network” of RNA se-
lences which fold to a particular structure. The connectivity
ithin a network and the shortest distance between networks
jas drawn considerable attention with respect to the evolv-

FIG. 7. For some given 24-nucleotide two-letter sequenge
we plot (a) a histogram of the distances to all two-letter sequences
with the same ground-state structure, dbil a histogram of the
distances to all two-letter sequences. Histogk@mis independent
of the choice ofo;. Histogram(a) is also roughly independent of
FIG. 5. A few highly designable structures for 40-nucleotide- sequencear,, provided its ground-state structure is highly design-
long two-letter RNA sequences. able.
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percolating and noncompact network in sequence space. ground states is much smaller for four-letter sequences than
particular, a histogram of the distances between sequencés two- and much smaller for six-letter than for four-letter

folding to the same highly designable structure is actuallysequences. It is tempting to speculate that four-letter se-
broader than a histogram of the distances betwaerse- quences optimizes the stability of structures while maintain-
quencegFig. 7) [23]. In this respect, the RNA model differs ing a reasonable probability that a random sequence folds

considerably from protein models. into a highly stacked structure. If, as has been postulated,
early life was indeed RNA based and double-stranded DNA
IV. CONCLUSIONS came later in evolution, our observations might plausibly

) _ ~ bear on nature’s choice of four-letter sequences for the ge-
To conclude, in this paper we developed and studied &gtic code.

minimalist base-stacking model of RNA secondary structure.

We found that sequences constructed with four or six types

of bases typically have fewer competing exmte_c_i states, and, ACKNOWLEDGMENT

consequently, have greater ground-state stability, compared

to sequences constructed with two types of bases. At the We thank David Moroz for useful discussions and sugges-
same time, the fraction of sequences with highly stackedions.

[1] The RNA Worldedited by Raymond F. Gesteland and John F.[15] R. Mdlin, H. Li, N.S. Wingreen, and C. Tang, J. Chem. Phys.

Atkins (Cold Spring Harbor Laboratory, Cold Spring Harbor, 110, 1252 (1999; S. Govindarajan and R.A. Goldstein,
NY, 1993, Vol. 2. Biopolymers36, 43 (1995.
[2] See, for example, A.D. Ellington, Curr. Bic}, 427 (1994. [16] E.L. Kussell and E.I. Shakhnovich, Phys. Rev. L&&, 4437

[3] B.M.R. Stadler, P.F. Stadler, G.P. Wagner, and W. Fontana, J.  (1999.
Theor. Biol. 213 241 (200)); L.F. Landweber, Trends Ecol. [17] H. Li, N.S. Wingreen, and C. Tang, Proteia8, 403 (2002.

Evol. 14, 353(1999. [18] J. Miller, C. Zeng, N.S. Wingreen, and C. Tang, Protedis
[4] I. Tinoco and C. Bustamante, J. Mol. Bi@93 271 (1999. 506 (2002.

[5] S.Y. Le and M. Zuker, J. Mol. Biol216, 729(1990.

[6] M. Zuker and D. Sankoff, Bull. Math. Biok6, 591 (1984).

[7] I.L. Hofacker, W. Fontana, P.F. Stadler, S. Bonhoeffer, M.
Tacker, P. Schuster, Monatsch. Cheifd5, 167 (1994).

[8] W. Fontana, D.A.M. Konings, P.F. Stadler, and P. Schuster,
Biopolymers33, 1389(1993.

[9] J.S. McCaskill, Biopolymerg9, 1105(1990.

[10] R. Bundschuh and T. Hwa, Phys. Rev. L&8, 1479(1999;
R. Bundschuh and T. Hwa, Phys. Rev6k 031903(2002. ' ) -

[11] We use a narrow range of stack numbers to emphasize th2ll In Fig. 4, we plot the 90th percentile of greatest stability,
dependence of stability on alphabet size. For a wider range of ~ Poos. rather than average stability of sequences folding to a
stack numbers, the increase in stability with stack numbers can  Structure. Since sequences folding to a structure have, in gen-

[19] For each structure, we generate a random sample of sequences

that are compatible with the structure and calculate the fraction

of such sequences that have this structure as the ground state.

We multiply the total number of compatible sequences by this

fraction to obtain the designability.

[20] In Fig. 4, we have kept only structures that are highly stacked,
in particular, those that have six or fewer unpaired bases. Our
results do not depend sensitively on this cutoff.

obscure the dependence on alphabet sizes. eral, a wide range of stabilities, the two can be quite different.
[12] H.S. Chan and K.A. Dill, J. Chem. Phy82, 3118(1990; E. Average stability shows a similar, but less pronounced corre-
Shakhnovich and A. Gheutibid. 93, 5967 (1990. lation with designability tharPgge, .
[13] H. Li, R. Helling, C. Tang, and N.S. Wingreen, ScierZe3 [22] W. Fontana and P. Schuster, J. Theor. Bid4, 491 (1998.
666 (1996. [23] A “Hamming” distance between RNA sequences can be de-
[14] H. Li, C. Tang, and N.S. Wingreen, Proc. Natl. Acad. Sci. fined as a distance of 1 between nonidentical bases at a site and
U.S.A. 95, 4987(1998. 0 between identical bases.

041904-5



