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Abstract

Hydrophobicity is thought to be one of the primary forces driving the folding of proteins. On average,
hydrophobic residues occur preferentially in the core, whereas polar residues tend to occur at the surface of
a folded protein. By analyzing the known protein structures, we quantify the degree to which the hydro-
phobicity sequence of a protein correlates with its pattern of surface exposure. We have assessed the
statistical significance of this correlation for several hydrophobicity scales in the literature, and find that the
computed correlations are significant but far from optimal. We show that this less than optimal correlation
arises primarily from the large degree of mutations that naturally occurring proteins can tolerate. Lesser
effects are due in part to forces other than hydrophobicity, and we quantify this by analyzing the surface-
exposure distributions of all amino acids. Lastly, we show that our database findings are consistent with
those found from an off-lattice hydrophobic–polar model of protein folding.
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One of the most persistent challenges in modern molecular
biology is to understand how proteins fold into their unique
conformations (Anfinsen 1973). The challenge lies in the
fact that there are a variety of forces that contribute to the
folding process and that these act over a range of length
scales. Despite the many interactions, it is known that a
wide variety of different protein sequences can adopt very
similar folds. Analysis of the >20,000 known structures in
the Protein Data Bank (PDB) resulted in only a few hundred
different folds (Murzin et al. 1995). Although the number of
determined sequences and structures increases rapidly, the
number of “new folds” increases only slowly, which indi-
cates that the total number of possible structures is ex-
tremely small (Chothia 1992). What leads to this many-to-
one mapping of sequence to structure?

Of the many forces involved, it is argued that the hydro-
phobic interaction plays a central role in determining the

overall fold of a protein (Kauzmann 1959; Tanford 1978).
Each of the 20 amino acids has a characteristic hydropho-
bicity—a measure of the nonpolarity (insolubility in water)
of a molecule. On average, hydrophobic residues tend to be
in the core of a protein, where solvent accessibility is low,
whereas polar residues tend to reside on the surface, where
solvent accessibility is high (Rose et al. 1985; Miller et al.
1987; Lesser and Rose 1990; Lins et al. 2003). Many at-
tempts based on different approaches have been made to
determine the hydrophobicity of the amino acids (Nozaki
and Tanford 1971; Kyte and Doolittle 1982; Engelman et al.
1986; Nauchitel and Somorjai 1994; Miyazawa and Jerni-
gan 1996, 1999; DeVido et al. 1998; Branden and Tooze
1999). However, the various scales in the literature some-
times disagree as to these hydrophobicity rankings (Nauchi-
tel and Somorjai 1994), which has been attributed to the fact
that hydrophobicity is a relative quantity that depends on the
environment and reference molecules used in the measure-
ment (DeVido et al. 1998). Empirical hydrophobicity mea-
surements may not truly reflect the energetics of solvation
in protein folding (Lee 1993). Statistical scales may better
reflect the role of solvation in folding.
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Although on average there is a correlation between hy-
drophobicity and surface exposure (Chothia 1974; Rose et
al. 1985; Miller et al. 1987), the extent to which a fold of a
protein, and hence its specific surface-exposure pattern, cor-
relates with the hydrophobic pattern dictated by its amino
acid sequence remains unclear. If the average hydrophobic
behavior of amino acids is generally true, one might expect
that there should be a statistically significant correlation
between the hydrophobicity sequence and the correspond-
ing surface-exposure pattern. However, theoretical studies
of protein folding using only hydrophobicity models (Dill
1985; Lau and Dill 1989) have shown that there can be
significant variations among hydrophobic–polar sequences
that adopt a given structure (Li et al. 1998). This translates
into the theoretical structures having a large degree of mu-
tational stability (Li et al. 1996). Do real proteins also dis-
play this behavior? Quantifying the degree of variation be-
tween sequence and structure will be relevant to protein
design based purely on hydrophobic–polar (HP) patterning,
in which the hydrophobicity sequence is assumed to dictate
the final fold (Kamtekar et al. 1993).

In this article, we analyze on a structure-to-structure basis
the correlation between hydrophobicity sequence and sur-
face-exposure pattern for several commonly used hydropho-
bicity scales. We find that all the scales yield similar dis-
tributions of correlation coefficients, and that these distri-
butions are statistically significant when compared with a
null model in which the amino acid sequences are random-
ized. However the distributions are broad, and the means are
far from the fully correlated limit. We explore various fac-
tors that influence this less-than-optimal correlation be-
tween sequence and surface-exposure pattern. This encom-
passes looking at how the degree of mutational stability
(i.e., sequence entropy/designability) affects the correlation,
along with other lesser effects such as the actual surface-
exposure propensities of the amino acids and secondary-
structural influences. We show that the less-than-optimal
correlation between sequence and structure for naturally oc-
curring proteins is a manifestation of designability, and may
also be selected for to “design out” competing folds.

Results

Testing hydrophobicity scales

In this section we compute the correlation coefficient be-
tween the hydrophobicity sequence and surface-exposure
pattern of 3242 representative protein folds (see Materials
and Methods), where the hydrophobicities of the amino ac-
ids are taken from several widely used hydrophobicity
scales. The scales that we have chosen to analyze are based
on different approaches: measurements of water-vapor
transfer free energies and analysis of side-chain distribu-
tions (Kyte and Doolittle 1982), semitheoretical approaches

determining transfer free energies for �-helical amino acid
side chains from water to a nonaqueous environment (En-
gelman et al. 1986), determination of transfer free energies
by measuring solubilities in water and ethanol relative to the
reference amino acid glycine (Nozaki and Tanford 1971),
calculating residue–residue potentials with pairwise contact
energies (Miyazawa and Jernigan 1996), and a refined study
of the latter using the Bethe approximation for determina-
tion of relative contact energies with respect to the native
state (Miyazawa and Jernigan 1999). These scales cover a
broad range of methods used to characterize hydrophobic-
ity, ranging from empirical to statistical approaches.

Figure 1 shows the distributions of computed correlations
between the hydrophobicity sequences and surface-expo-
sure patterns of the 3242 structures in our data set using the
above scales. The black histograms were computed using all
the amino acids. None of the means exceed 0.5, with the
highest being �data � 〈 cS〉 database � 0.454 for the scale in
Miyazawa and Jernigan 1999. Nevertheless, the computed
distributions are significantly different from the null model,
which considers the same set of structures but uses random-
ized versions of their amino acid sequences. (For each rep-
resentative structure, we computed the correlation coeffi-
cient between its surface-exposure pattern and 25 random
versions of its hydrophobicity sequence.) The distribution
of correlation coefficients computed for the null model is
shown in blue for each scale. Despite several discrepancies
in classification between the scales, it can be seen that all
yield similar distributions of correlation coefficients and
that all have similar scores Z � (�data − �null)/�null when
compared with their null models, with values between
Z � 2.46 and Z � 2.91 (see Table 1).

The above results show that a protein fold’s hydropho-
bicity sequence and its surface-exposure pattern are far from
being completely correlated. We now explore potential rea-
sons for this finding. In Figure 2, we show that the corre-
lation between hydrophobicity sequence and surface-area
pattern can be improved if limits are placed on either the
sequence or the structure. For each representative structure,
we have a set of aligned structures whose sequences also
adopt the same/similar fold (see Materials and Methods).
From these sequences and structures, we are able to com-
pute an average hydrophobicity sequence and surface-expo-
sure pattern. We find a significant improvement in the com-
puted correlation coefficients if the average sequences and
surface patterns are used (Fig. 2D; Table 1). Using averag-
ing over sequences to help improve structural predictions
was suggested by Finkelstein (1998) and later shown theo-
retically for an HP model (Cui and Wong 2000). In both
those papers, it was argued that averaging was helping to
reduce the noise in the energy parameter set. With respect to
sequence–structure correlation, by averaging, one is reduc-
ing the noise contributed by sites that are not essential to
dictating the final fold. The poor correlation seen at the
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single sequence level is evidence of naturally occurring pro-
teins having significant mutational stability or designability.
We discuss this further in the context of a model below.

A second contributing factor is that there are amino acids
for which hydrophobicity is not the prime factor in deter-
mining exposure: As examples, amino acids such as glycine
can appear either on the surface or in the core, and charged
amino acids can form salt bridges. Including such amino
acids can only lessen the correlation between hydrophobic-
ity and surface exposure. We find that further statistical
significance can be achieved if only a subset of the most
hydrophobic and polar amino acids is chosen. We have
found that taking the set of amino acids [ILFVRENQ] re-
sults in an appreciable improvement in the Z score (Fig. 2B;
Table 1). The four hydrophobic residues were chosen be-
cause they are the largest, and adding others reduced Z. The
four polar residues were selected because they have the
largest ratio of polar surface area to hydrophobic surface
area. Hence, including those amino acids for which hydro-
phobicity is most likely to be the dominant force in deter-

mining their surface exposure within a protein fold indeed
improves the correlation. In the next section we explore in
much more detail the propensities for surface exposure of
each of the amino acids.

Lastly, we consider the improvements to the correlation
between sequence and structure if only residues that form
secondary-structural elements are used. Many helices and
strands have one side that is hydrophobic and hence tends to
be in the core, whereas the other side is polar and tends to
be exposed on the surface. Turns tend to be flexible and
irregular. Including turns may increase the noise in the data.
Figure 2C shows that a slight improvement is gained by
only considering helices and strands. We further break
down the connection to secondary-structural elements and
surface exposure for the various amino acids below.

Surface-exposure distributions of the amino acids

As shown above, the known hydrophobicity scales yield
statistically significant correlations between a protein’s pat-

Figure 1. Histograms of correlation coefficients between single surface-exposure sequences and hydrophobicity sequences (white bars) for the 3242
representative structures obtained using the following hydrophobicity scales: (A) Kyte and Doolittle (1982), (B) Engelman et al. (1986); (C) Nozaki and
Tanford (1971); (D) Miyazawa and Jernigan 1996; (E) Miyazawa and Jernigan 1999; and (F) ASA. Also shown are the histograms for the correlation
coefficients of random amino acid sequences (black bars). The average correlation coefficients and the Z scores are (a) �data � 0.421, Z � 2.7; (B)
�data � 0.384, Z � 2.46; (C) �data � 0.384, Z � 2.46; (D) �data � 0.397, Z � 2.55; (E) �data � 0.454, Z � 2.91; and (F) �data � 0.492, Z � 3.15.
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tern of surface exposure and the hydrophobicities of its
amino acid sequence. However, despite this statistical sig-
nificance, the correlations are far from the case in which
hydrophobicity and exposure patterns are completely cor-
related. In this section, we show that this departure from
optimal correlation can be partly attributed to the broad
distribution of surface exposures that some amino acids tol-
erate. In the spirit of the work by Rose et al. (1985), for each
amino acid we have computed its surface-exposure distri-
bution within the representative set of structures. From the
distributions we derive a surface-exposure propensity that
reflects the tendency of each amino acid to be either ex-
posed or buried in the core, and show that this scale leads to
a better correlation between sequence and surface pattern.

Before considering the surface-exposure distributions of
each amino acid, we examine the probability distributions
for surface exposure and amino acid occurrence within the
database of structures. Folded proteins are dense, three-di-
mensional (3D) clusters of amino acids. The core thus rep-
resents a considerable portion of the whole protein, whereas
only a relatively small number of amino acids are to some
extent exposed to the aqueous solvent. In Figure 3A we
show the probability p(A) for a given surface exposure A
using all of the side-chain exposures from the 3242 repre-
sentative structures. It is clear that a large fraction of resi-
dues reside in the core, where surface exposure is low. The
probability of occurrence for the individual amino acids,
p(a.a.), is also nonuniform. Figure 3B shows the occurrence
frequencies of the amino acids within the sequences used in
the data set. These distributions will be used to examine

whether the occurrence of an amino acid with a given sur-
face exposure is correlated or independent.

For each amino acid, we compute the joint probability of
observing a given surface exposure, p(a.a. & A). To extend
the analysis of Rose et al. (1985) and to better characterize
the propensity of a given amino acid to appear with a given
surface exposure, we compare the joint probability with the
null model in which the occurrence of an amino acid and the
surface exposure are independent. This is expressed by the
ratio,

P =
p�a.a.&A�

p�a.a.�p�A�
, (1)

where values >1 indicate favored for the given surface ex-
posure, whereas those <1 are less favored.

Figures 4–6 show the distributions of P for the 20 amino
acids. The distributions are rather broad. Tests using only a
half of the database, and others using only a half of the
length of the sequences, led to very similar results. As was
found by Rose et al. (1985), our distributions are also sug-
gestive of three classes of amino acids: core amino acids (C)
with a peak at low surface exposure, surface amino acids (S)
with a peak at high surface exposure, and intermediate
amino acids (M) with relatively flat distributions. We are in
agreement with Rose et al. regarding core amino acids;
however, there are discrepancies between our classification
of intermediate and surface amino acids. Nominally some of
our intermediate amino acids show preferences for being on
the surface when only secondary structure is considered—
this is discussed below.

For each amino acid, the mean of the P distribution gives
a weighted average surface accessibility (ASA) for each
amino acid. Table 2 shows the computed ASAs of the 20
amino acids. Although the surface-exposure scale ranges
from 0 (completely hidden in the core) to 1 (100% exposed
to water), the averages do not take extreme values. Eleven
amino acids have rather moderate tendencies to prefer the
core of proteins, whereas nine are more polar. Tyrosine
occurs mostly in the core, and thus shows quite hydrophobic
properties in a protein environment. Charged amino acids
including aspartic acid, glutamic acid, lysine, and arginine,
not surprisingly, tend to occur on the surface. Cysteine is the
monomer most frequently found in the core, and thus rep-
resents the most markedly hydrophobic amino acid. Thus,
despite cysteine having a polar group, it has a strong ten-
dency to be buried in the core, which can be attributed to its
ability to form disulfide bonds within the cores of protein
structures.

Comparison to the hydrophobicity scales shows that the
ASA scale agrees in large part with the method of Miya-
zawa and Jernigan (1999) as regards the broad distinction
between hydrophobic and polar amino acids. However, the

Table 1. Summary of correlation analysis

Scale a b c d e f

No average:
�data 0.421 0.384 0.384 0.397 0.454 0.492
Z 2.7 2.46 2.46 2.55 2.91 3.15

ILVFRENQ:
�data 0.52 0.494 0.428 0.486 0.499 0.516
Z 3.3 3.16 2.75 3.11 3.19 3.3

Helices + strands:
�data 0.47 0.467 0.443 0.417 0.458 0.499
Z 3.01 2.99 2.84 2.67 2.93 3.19

Averages:
�data 0.572 0.535 0.555 0.579 0.591 0.613
Z 3.65 3.42 3.55 3.69 3.77 3.91

The scales used are (a) Kyte and Doolittle 1982; (b) Engelman et al. 1986;
(c) Nozaki and Tanford 1971; (d) Miyazawa and Jernigan 1996; (e) Mi-
yazawa and Jernigan 1999; and (f) ASA. The mean correlation coefficient
(�data) of each distribution is given along with the Z � (�data − �random)/
�random for several different conditions. No average corresponds to using
just individual sequences and structures. ILVFRENQ considered only
those positions with the given amino acids. Helices + strands used only
those residues that formed secondary structural elements. Finally, averages
computed the correlation coefficient using an average sequence computed
from the set of aligned sequences for a given representative structure.
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specific rankings are rather different. Correlations between
the ASA values for the 20 amino acids and their hydropho-
bicity values determined using the scales under consider-
ation are shown in Figure 7. The three scales based on the
transfer free energies of amino acid side chains from water

into either vapor or nonaqueous solvents have the lowest
correlation with the ASA scale. An improvement is ob-
served for the scales obtained by determination of the pair-
wise interaction between amino acids. Thus, the database-
derived hydrophobicity scales correlate best with our statis-
tically derived surface-exposure propensities. The lesser
correlation to empirical scales highlights the context depen-
dence of hydrophobicity, and that there are departures be-
tween how an amino acid behaves in liquid solution versus
the environment of densely packed protein. This highlights
how energetics depends on the reference state whose effects
on the correlation between a similar set of parameter sets
was discussed by Godzik et al. (1995).

We conclude this section by re-examining the correlation
between the amino acid sequence and surface-exposure pat-
tern of a protein. Using the ASAs in Table 2, we assign to
each amino acid sequence a most probable surface-exposure
pattern. Table 1 shows the results of the correlation analysis
using this scale. These database-derived mean surface ex-
posures for each amino acid consistently yield better corre-
lation coefficients than the hydrophobicity scales. Thus, us-
ing the above surface-exposure distributions to derive sta-
tistical surface propensities may offer a better alternative to
the hydrophobicity scales that we have examined.

Secondary-structure analysis

The native configuration of a folded protein is characterized
by secondary-structure elements, �-helices and �-strands,

Figure 3. (A) Probability of finding a residue at a given degree of surface
exposure A (A � 0, core; A � 1, surface) compared with the probability of
finding an �-helix residue and a �-strand residue at a given degree of
surface exposure A. (B) Probability of finding a residue in an �-helix and
in a �-strand compared with the probability of finding it at any position in
a protein. The total number of residues in proteins is 352,707, in �-helices
129,643, and in �-strands 74,543.

Figure 2. Correlation between hydrophobicity sequence and surface exposure for the 3242 representative structures using the scale of Miyazawa and
Jernigan 1999 as a function of different factors. (A) No sequence averaging (white); randomized data (black). (B) Subset of amino acids (ILVFRENQ;
white); all amino acids (black). (C) Only secondary structure (white); whole proteins (black). (D) Average over sequences that adopt the same fold (white);
no averaging (black).
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which are connected by turns (Levitt and Chothia 1976). It
was shown above that considering only the sequence and
surface patterns of secondary structural elements led to a
slight improvement in the correlation between hydrophobic-
ity and exposure. In this section, we break down the occur-
rence of the 20 amino acids in these structural elements and
their corresponding surface-exposure patterns. We first con-
sider the distribution of surface exposures within secondary

elements irrespective of amino acid: Figure 3A shows that
most of the residues in �-helices and �-strands occur in the
interior of native protein configurations. However, this ef-
fect is much stronger for �-strands indicating that residues
making up �-strands have a higher tendency to be in the
core than those making up helices.

It is well known that the various amino acids have dif-
ferent propensities to form either �-helices or �-strands

Figure 5. Histograms of degree of surface exposure of the intermediate amino acids (M) in the entire database, only in �-helices, and
only in �-strands.

Figure 4. Histograms of degree of surface exposure of the core amino acids (C) in the complete database, only in �-helices, and only
in �-strands. Legend as in Figure 5.
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(Munoz and Serrano 1994). Figure 3B shows the frequency
of occurrence of each amino acid in �-helices and �-strands
compared with the frequency of occurrence over the whole
database. The amino acids are arranged according to their
ASA values in increasing order. Compared with the total
database, �-strands tend to be composed of a high portion of

amino acids with low ASA and rather large side chains,
such as V, I, and T, or with an aromatic ring as in F, Y, and
W, whereas charged amino acids occur less frequently than
expected. For �-helices, strong helix-formers such as ala-
nine are particularly prominent, and the residues that are
found more frequently in other parts of the proteins are
divided into comparable numbers of amino acids with low
and high ASA.

Figures 4–6 show the surface-exposure distributions P of
the 20 amino acids in �-helices and in �-strands, juxtaposed
with the distributions for the entire database. For the core

Table 2. ASAs of amino acids obtained by analysis of the
complete structure and sequence database, and their
classifcation based on surface-accessibility distribution
(Figs. 4–6)

Amino acid ASA � Class

Cystein C 0.268 0.248 C
Isoleucine I 0.273 0.247 C
Tryptophan W 0.279 0.236 C
Phenylalanine F 0.290 0.261 C
Valine V 0.306 0.252 C
Tyrosine Y 0.319 0.250 C
Leucine L 0.321 0.266 C
Methionine M 0.364 0.288 C
Alanine A 0.405 0.288 C
Histidine H 0.425 0.274 M
Threonine T 0.480 0.274 M
Proline P 0.502 0.268 M
Arginine R 0.539 0.255 M
Asparagine N 0.568 0.275 M
Serine S 0.568 0.288 S
Glutamine Q 0.573 0.254 S
Glutamic Acid E 0.586 0.247 S
Glycine G 0.588 0.295 S
Lysine K 0.607 0.231 S
Aspartic Acid D 0.615 0.265 S

The variances, �, of each distribution are also given.

Figure 7. Correlation between ASA values of the 20 amino acids (Table
2) and their hydrophobicity values deduced from the scales of (A) Kyte and
Doolittle (1982); (B) Engelman et al. (1986); (C) Nozaki and Tanford
(1971); (D) Miyazawa and Jernigan 1996; and (E) Miyazawa and Jernigan
1999.

Figure 6. Histograms of degree of surface exposure of the surface amino acids (S) in the complete database, only in �-helices, and
only in �-strands. Legend as in Figure 5.
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(C) amino acids, the differences are rather small. However,
for the intermediate (M) amino acids, both arginine and
asparagine (which are nominally polar) appear prominently
as being exposed in �-strands. Arginine is also seen to have
a tendency to appear on the exposed surfaces of helices. For
those nominally polar amino acids (S) classified as residing
on the surface, the propensity to be exposed is further in-
creased within secondary structures when compared with
the results obtained from the whole database. These slight
enhancements in surface-exposure propensity for certain
amino acids while in secondary-structural elements leads to
the marginal improvement in correlation between sequence
and surface exposure seen above when only secondary el-
ements were included.

Model

Theoretically, hydrophobic–polar (HP) models have been
studied for some time to help clarify the nature of the hy-
drophobic force in the folding process. Correlations have
been studied in the context of sequence (White and Jacobs
1990), and nonrandomness has been detected both in real
protein sequences and theoretical models (Irbäck et al.
1996; Irbäck and Sandelin 2000). Here, we consider the
correlations between hydrophobicity sequences and surface-
exposure patterns that emerge in a protein-folding model
based solely on hydrophobicity. Does the less than perfect
correlation between hydrophobicity sequence and surface
pattern still remain when only solvation energy is consid-
ered? If so, is it caused by the large variation of sequences
that can be tolerated by highly designable structures (Li et
al. 1996)? How does averaging improve the correlation in
the model results?

We study the folding of random amino acid sequences
using an HP model (see Materials and Methods), in which
the single energy entering the analysis is a solvation energy
dependent only on the hydrophobicities of the side chains
and their corresponding surface exposures in a fold. Be-
cause it is not computationally feasible to consider the con-
tinuum of possible structures that a large set of random
sequences could adopt, we choose to use only a finite num-
ber of compact representative folds, formed in this case by
a statistically complete set of four-helix bundles. The de-
signability of this set of structures has been studied previ-
ously, and many of the top designable helix structures in this
set correspond to naturally occurring four-helix bundles
(Emberly et al. 2002). The set has the following advantages:
(1) The folds are 60-mers and hence are much longer than
structures generated by enumerating all possible structures
using a finite set of dihedral angles (Miller et al. 2002); (2)
it is more diverse than decoy sets generated from a specific
native fold. A set of random amino acid sequences was
folded onto the above set of structures using the HP model
(see Materials and Methods). We chose the top 250 design-

able structures and their corresponding sequences to form
the database on which to perform the correlation analysis.
These structures represent plausibly thermodynamically
stable folds and their corresponding sequences, although
just a mere sample of the sequences that actually fold into
these structures are assumed to be good folders. Lattice
studies have shown that removing the compactness con-
straint can lead to a different set of designable structures
(Chan and Bornberg-Bauer 2002), but the correlation find-
ings below undoubtedly would not change.

Figure 8 shows the distribution of correlation coefficients
between the hydrophobicity sequences and surface-expo-
sure patterns of the model. The green histogram was com-
puted using only a single sequence, randomly selected from
the pool that fold to the corresponding structure, for each
structure. This is nearly identical to what was found from
the database, namely, that the correlation between a hydro-
phobicity sequence and its structure is less than optimal.
The red histogram is for a randomized version of the data.
Thus, as before the correlation between sequence and struc-
ture is not random and has some statistical significance.
Because for each of the 250 designable structures we have
several hundred sequences that fold into them, we can as-
sess the effects of sampling. As in the analysis for the real
protein structures, the mean hydrophobicity sequence was
computed for each set of sequences that adopt the same fold.
Although the mean is somewhat greater than those of the
database distributions, the model distribution remains simi-
lar to the results computed from the database structures and
sequences. Reducing the number of sequences used to com-
pute the average (10%) still leads to an improvement in the
correlation and is more in line with the improvement seen in

Figure 8. Histograms of correlation coefficients computed for the average
hydrophobicity sequences and surface-exposure patterns of the top 250
designable model four-helix bundles. The distribution of correlation coef-
ficients for the null model where the sequences were randomized is also
shown. The scale of Nozaki and Tanford (1971) was used.
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the database analysis. We discuss the implications of the
theoretical findings in light of the database results below.

Discussion

Hydrophobicity has long been considered as one of the pri-
mary driving forces in the folding of proteins. It has been
shown, and reconfirmed by our results, that the hydropho-
bicity of an amino acid is, indeed, correlated with its aver-
age surface exposure. However, the degree to which this
correlation extends to the relationship between specific
amino acid sequences and surface patterns has received
little investigation. We have now quantified this correlation
for several widely used hydrophobicity scales, and have
shown that amino acid hydrophobicity does play a statisti-
cally significant role in shaping the surface-exposure pattern
of a structure. However the distributions of correlation co-
efficients are broad, and remain far from the optimal case in
which the surface-exposure pattern would show a perfect
correlation with the hydrophobicity pattern.

The origin of this suboptimal correlation may lie in the
fact that there are factors other than hydrophobicity that
contribute to the determination of a protein’s final fold.
There are clearly other forces at work in determining a
protein’s ultimate fold, for example, a recent study sug-
gested that hydrophobicity alone cannot account for the ob-
served thermodynamics of protein folding (Chan 2000).
Thus, some residues’ behavior may not be solely dictated by
hydrophobicity. Using updated data, we carried out an
analysis similar to Rose et al. (1985) to determine the sur-
face-exposure distributions of each of the amino acids, and
found that many were rather broad. Indeed, several amino
acids have essentially flat distributions, and hence their ex-
posure seems to be uncorrelated with their hydrophobicity.
Such broad distributions are in part responsible for the less
than optimal correlation, and we showed that using only a
subset of amino acids that have more peaked distributions
led to improved correlations. The exposure distributions re-
flect all of the forces that are involved in the folding pro-
cess, and we have found several discrepancies between the
most likely exposure of an individual amino acid and its
hydrophobicity. An example is provided by cysteine, for
which the ability to form disulfide bonds with other cysteine
residues constitutes a factor independent of hydrophobicity
that influences surface exposure. From the distributions we
computed a scale that reflects the surface-exposure propen-
sities of the amino acids. This goes beyond just hydropho-
bicity and leads to an improvement in the correlation be-
tween sequence and the surface-exposure pattern of a fold.
Hence, for folding studies that use energy models that are
based solely on side-chain solvation, using these database-
derived distributions (or the ASAs computed from them)
over the empirical hydrophobicity scales should lead to a
better performance.

By far the greatest improvement was achieved when we
computed the correlation coefficients between average hy-
drophobicity sequences and structures. The average hydro-
phobicity sequence gives a better measure of the sequence
that best matches the structure (Finkelstein 1998). The low
correlation observed at the single-sequence level shows that
there can be a broad variation from that of the “best match”
sequence. From theoretical models, it is predicted that ther-
modynamically stable folds are those that are also highly
designable; that is, they have a large number of sequences
that fold into them (Li et al. 1996; Emberly et al. 2002;
Miller et al. 2002). This large degree of mutational stability
for designable folds means that there can be significant
departures from the lowest energy sequence. In fact, if se-
quences were selected at random from a large pool of se-
quences that fold into a designable structure, it would be
more likely to select a sequence far from the central “best
match” sequence than not. Even if a sequence started near
the “center” (best match sequence), its “neutral” evolution
would lead it to somewhere farther away from the center in
the sequence space owing to the sequence entropy (Li et al.
1998; Taverna and Goldstein 2002a). Hence, the lack of
strong correlation between sequence and structure found in
the database could be a signature of designability in nature.
It has also been postulated that it may even be advantageous
for sequences to select against being near the “best match,”
as such selection helps to improve plasticity in sequence
space (Taverna and Goldstein 2002b).

We have shown that the correlation improves when one
uses the average hydrophobicity sequence; however, we
have also found that even the average sequence is not per-
fectly correlated with the surface-exposure pattern. This
could simply be because of insufficient sampling of se-
quence space or could be evidence of something more
fundamental. It has been argued that having a suboptimal
correlation between a protein’s amino acid sequence and
surface-exposure pattern may help to improve the thermo-
dynamic stability of the fold and “design out” competing
folds (DeGrado 1997). All of the average hydrophobicity
patterns for the most designable model helix structures have
“misspellings” at various locations, where a misspelling in-
volves the placement of a hydrophobic residue on an ex-
posed site or a polar residue in the core. These departures
from the optimal pairing of hydrophobicity with exposure
have been shown in other theoretical studies (Emberly et al.
2002) to help increase the energy gap between the ground
state and competing structures. If the hypothesis of design-
ing out competing structures through suboptimal correlation
is valid, this has important consequences for structural de-
sign based on binary patterning (Kamtekar et al. 1993). The
surface pattern of the structure may act as a starting point
for the selection of an amino acid sequence, but it may then
prove advantageous to depart from this blueprint to improve
thermodynamic stability. Database analysis of the type per-
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formed here may form the basis for advanced techniques to
detect further correlations between sequence and structure
that would help to better design sequences in protein design.

Materials and methods

Representative set of database structures

To have a nonredundant set of protein structures for analysis, we
have chosen to use the 3242 representative structures from the
FSSP database (Holm and Sander 1996). The FSSP database is the
result of an all-against-all structure analysis that groups protein
structures into a hierarchical tree based on their level of structural
similarity. All residues of the known protein structures are com-
pared in three dimensions, and the results are reported in the form
of alignments of equivalent residues. Redundancy is eliminated by
removing proteins with mutual sequence identity >25%, because
they result in almost complete structural overlap. There are 30,624
known protein chains grouped to one of the representative struc-
tures in the FSSP. Each representative structure has a set of aligned
structures. Each structure, in turn, has a corresponding amino acid
sequence. Thus, for each representative structure in the FSSP, we
have a list of aligned structures along with a corresponding set of
amino acid sequences, all of which are assumed to fold into a
similar fold as the representative structure in the aligned regions.

Correlation analysis

A hydrophobicity scale s assigns a hydrophobicity value ha.a.
s to

each amino acid (a.a.). hi,j
s is the hydrophobicity of the i-th aligned

residue of sequence j that is aligned with a representative structure,
based on the hydrophobicity scale s. For the set of amino acid
sequences that fold into a given structure, we wish to consider
what the average hydrophobicity sequence for the set is. We con-
sider the average sequence because it gives a good characterization
of the hydrophobicity sequence that adopts the given representa-
tive structure (Finkelstein 1998; Cui and Wong 2000). The average
hydrophobicity value hi

s at position i within this representative
structure using scale s is:

hi
s =

1

M�
j= 1

M

hi, j
s , (2)

where M is the number of sequences in the alignment at residue i.
Calculating this average for all residues of the representative struc-
ture with length N gives the average hydrophobicity sequence of
this structure: (hi

s)i�1..N � (h1
s , hs

2, � � � , hs
N).

The surface exposure ai of residue i in a structure is quantified
as the amount of surface area of the side chain atoms (represented
as spheres) that is accessible to water (represented by a sphere of
radius 1.4 Å). For each structure, we obtain the surface exposures
of each of its residues from the FSSP file. We normalize each
surface exposure by the total surface area of the side-chain atoms
making up the given residue (Creighton 1993). This yields a frac-
tional exposure for each residue in a structure. We compute an
average surface-exposure pattern for a structure using its FSSP
alignment:

ai =
1

L�j= 1

L

ai, j
� , (3)

where L is the number of known structures that have a residue
aligned with residue i and ai,j denotes the surface-accessible area
of residue i in structure j of the alignment. Performing this proce-
dure for each residue i of the representative structure leads to a
sequence of surface accessibilities (ai)i�1..N � (a1, a2, � � � , aN).

The correlation coefficient cs between the hydrophobicity se-
quence (hi

s)i=1..N and the accessible surface-area sequence
(ai)i�1..N of a structure is given by:

cs =
�i

N
�ai − a ��hi

s − hs �

��i

N
�ai − a �2�i

N
�hi

s − hs �2
. (4)

Hydrophobic–polar model

In hydrophobic–polar (HP) models, hydrophobicity is the sole
force driving the folding process (Dill 1985; Lau and Dill 1989).
For an amino acid sequence that corresponds to a sequence of
hydrophobicities {hi}, the solvation energy of the sequence on a
given structure � is

E� = �
i= 1

N

hi�1 − ai
�) (5)

where ai
� is the surface exposure of residue i in structure �. The

native fold of a sequence is the one that minimizes this energy.
We use a representative set of structures to act as the space of

potential folds. For a given amino acid sequence, we then use the
above energy equation to determine the structure that has the low-
est energy within the set of competing structures. We deem this to
be the native fold of the sequence. Studies have shown that folding
numerous random amino acid sequences in this way results in a
nonuniform mapping of sequences to structures: Some structures
turn out to be native folds far more often than others, and have
been designated “designable” structures (Li et al. 1996).

Here we consider a representative set of 203,282 four-helix
bundles for the competing set of structures (Emberly et al. 2002).
This set was shown to cover the space of all possible four-helix
folds at the 95% confidence level, and hence represents a relatively
complete set of compact folds on which an HP sequence can
compete. Then 106 random amino acid sequences (the hydropho-
bicity scale based on transfer free energy between water and etha-
nol was used; Nozaki and Tanford 1971) were folded by selecting
the ground-state structure for each sequence. The top 250 design-
able structures (each with several hundred sequences that fold into
it) and their corresponding hydrophobicity sequences formed the
model database on which the correlation analysis was performed.
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