
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 7 2005, pages 1172–1179
doi:10.1093/bioinformatics/bti096

Systems biology

Finding regulatory modules through large-scale
gene-expression data analysis
M. Kloster1,2, C. Tang2,3,∗ and N.S. Wingreen2,4

1Department of Physics, Princeton University, Princeton, NJ 08544, USA, 2NEC Laboratories
America, Inc., Princeton, NJ 08540, USA, 3Center for Theoretical Biology, Peking University,
Beijing 100871, China and 4Department of Molecular Biology, Princeton University,
Princeton, NJ 08544, USA

Received on May 12, 2004; revised on September 27, 2004; accepted on October 11, 2004

Advance Access publication October 28, 2004

ABSTRACT
Motivation: The use of gene microchips has enabled a rapid accu-
mulation of gene-expression data. One of the major challenges of
analyzing this data is the diversity, in both size and signal strength, of
the various modules in the gene regulatory networks of organisms.
Results: Based on the iterative signature algorithm [Bergmann,S.,
Ihmels,J. and Barkai,N. (2002) Phys. Rev. E 67, 031902], we present
an algorithm—the progressive iterative signature algorithm (PISA)—
that, by sequentially eliminating modules, allows unsupervised identi-
fication of both large and small regulatory modules. We applied PISA
to a large set of yeast gene-expression data, and, using the Gene
Ontology database as a reference, found that the algorithm is much
better able to identify regulatory modules than methods based on high-
throughput transcription-factor binding experiments or on comparative
genomics.
Contact: tang@nec-labs.com

1 INTRODUCTION
The introduction of DNA microarray technology has made it possible
to acquire vast amounts of gene-expression data, raising the issue of
how best to extract information from this data. While basic clustering
algorithms have been successful at finding genes that are coregulated
for a small, specific set of experimental conditions (Alon et al., 1999;
Eisen et al., 1998; Tamayo et al., 1999), these algorithms are less
effective when applied to large data sets due to two well-recognized
limitations. First, standard clustering algorithms assign each gene to
a single cluster, while many genes in fact belong to multiple tran-
scriptional regulons (Bittner et al., 1999; Cheng and Church, 2000;
Gasch and Eisen, 2002; Ihmels et al., 2002). Second, each tran-
scriptional regulon may only be active in a few experiments, and the
remaining experiments will only contribute to the noise (Getz et al.,
2000; Cheng and Church, 2000; Ihmels et al., 2002).

A number of approaches have been proposed to overcome one
or both of these problems (Califano et al., 2000; Cheng and Church,
2000; Getz et al., 2000; Gasch and Eisen, 2002; Lazzeroni and Owen,
2002; Owen et al., 2003). A particularly promising approach, the sig-
nature algorithm (SA) was introduced in Ihmels et al. (2002). Based
on input sets of related genes, SA identifies ‘transcription modules’

∗To whom correspondence should be addressed.

(TMs), i.e. sets of coregulated genes along with the sets of conditions
for which the genes are strongly coregulated. SA is well grounded
in the biology of gene regulation. Typically, a single transcription
factor regulates multiple genes; a TM naturally corresponds to a set
of such genes and the conditions under which the transcription factor
is active. The authors tested the algorithm on a large data set for the
yeast Saccharomyces cerevisiae. By applying SA to various sets of
genes that were known or believed to be related, they identified a
large number of TMs.

Soon after, Bergmann et al. (2003) introduced the iterative sig-
nature algorithm (ISA), which uses the output of SA as the input
for additional runs of SA until a fixed point is reached. By applying
ISA to random input sets and varying the threshold coefficient tG (see
below), the authors found almost all the TMs that had been identified
using SA, as well as a number of new modules. Many of these mod-
ules proved to be in excellent agreement with existing knowledge of
yeast gene regulation.

While ISA can identify many transcriptional regulons from gene-
expression data, the algorithm has significant limitations. The
recovered modules depend strongly on the value of a threshold co-
efficient tG used in the algorithm. To find all the relevant modules,
this threshold must be varied by more than a factor of 2, and for high
thresholds many of the modules appear to be due to noise. While the
largest, strongest modules are easily identified, among the smaller,
weaker modules it is a major challenge to identify the real transcrip-
tional regulons. Weak modules can even be completely ‘absorbed’
by stronger modules.

One clear conceptual limitation of ISA is that it only considers
one transcription module at a time; the algorithm does not use know-
ledge of already identified modules to help it find new modules.
ISA may find a strong module hundreds of times before it finds a
given weak module, or it may be unable to find a weak module
at all. A simple way to ensure that the same module is not found
repeatedly is to directly subtract the module from the expression data
(this approach is used in Lazzeroni and Owen, 2002). A more robust
approach is to require the condition vector, i.e. the weighted condi-
tion set, of each new transcription module to be orthogonal to the
condition vectors of all previously found modules. In essence, this
procedure corresponds to successively removing transcription mod-
ules to reveal smaller and weaker modules. The successive removal
of condition vectors is the central new feature in our approach.

1172 © The Author 2004. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

 at T
he L

ibrary of Peking U
niversity on O

ctober 17, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Large-scale analysis of gene-expression data

We call the modified algorithm the progressive iterative signature
algorithm (PISA).

2 METHODS AND ALGORITHMS

2.1 Motivation
To a first approximation, the expression level of a gene is determined by the
activity of the various transcription factors in the cell.1 If we assume that
different transcription factors act multiplicatively on the expression level,
i.e. additively on its logarithm (Bussemaker et al., 2001), then the relative
expression levels of all the genes under a set of experimental ‘conditions’ are
given by

E =
∑

t

gt cT
t + η, (1)

where Egc is the logarithmic expression ratio of gene g under condition c,
relative to a reference condition. The ‘gene vector’ gt specifies to what extent
each gene is regulated by transcription factor t , and the ‘condition vector’ ct

specifies the activity of transcription factor t in each condition (specifically,
each element of ct is the log ratio of t activity in a particular condition relative
to its reference condition); η indicates noise. Together, we call corresponding
gene vector gt and condition vector ct a TM.

The assumption of multiplicative activities may be approximately true for
single-celled organisms2, but certainly does not capture the highly combinat-
orial regulation present in multicellular organisms. Nevertheless, Equation (1)
is a useful model for the role of transcription modules in gene expression.

Ideally, for a given gene-expression data set we would like to extract the
full set of gene vectors and condition vectors. The gene vectors describe the
sets of genes that are coregulated at the most basic level, while the condition
vectors describe how the cell responds to the different experimental condi-
tions. Unfortunately, the decomposition of the matrix E given by Equation (1)
is not unique, even in the absence of noise.

There are ways to find unique decompositions of E by requiring additional
properties of the gene vectors and condition vectors. One such approach
is singular value decomposition (SVD; see e.g. Alter et al., 2000), which
leads to gene vectors (eigenarrays) that are all orthogonal to each other, as
are the condition vectors (eigengenes). However, these orthogonal proper-
ties do not match our biological expectations—different transcription factors
may control substantially overlapping sets of genes, and may also be active
under many of the same experimental conditions. In addition, as shown by
Bergmann et al. (2003), SVD is sensitive to noise.

In order to find a biologically relevant decomposition, one should use the
properties we expect the ‘real’ solution to have. In particular, each transcrip-
tion factor typically controls only a small subset of the genes in a cell. Thus,
we expect the gene vectors to be sparse. A reasonable goal is to find the
simplest (i.e. small number of TMs) decomposition for which the gene vec-
tors are sufficiently sparse. A natural way to enforce sparse gene vectors is to
introduce a threshold, such that no element of a vector can be close to—but
different from—zero.

While it is possible to search directly for a full decomposition of E with the
desired properties, such an approach is very computationally challenging. A
more practical approach is to search for transcription modules one at a time,
although correlations between different TMs make this also a challenging
problem. Ideally, in order to find the genes associated with a given transcrip-
tion factor t in Equation (1), we would look for a condition vector that has
a large component along ct , but is orthogonal to the condition vectors of all
other transcription modules, thus avoiding interfering signals. In practice,

1Post-transcriptional regulation by specific degradation of mRNA may also
be considered to be a ‘transcription factor’ effect in this context.
2Moreover, even for single-celled organisms, the ascription of one transcrip-
tion module to each transcription factor is only approximate. For instance, a
transcription factor may regulate some genes on the basis of its concentration
only, while it may regulate others depending on its phosphorylation state.

however, we can only ask that condition vectors be orthogonal to TMs we
already know about.

2.2 The algorithms SA/ISA
We briefly review the algorithms SA and ISA. A transcription module M
can be specified by a condition vector (experiment signature) mC and a gene
vector (gene signature) mG, where non-zero entries in the vectors indicate
conditions/genes that belong to the TM.

Given an appropriately normalized3 matrix E of log-ratio gene-expression
data and an input set GI of genes, SA scores all the conditions in the data
set according to how much each condition upregulates the genes in the input
set (downregulation gives a negative score). The result is a condition-score
vector sC:

sC ≡ ETmG
in∣∣mG

in

∣∣ , (2)

where ET is the transpose of E and

(
mG

in

)
g

=
{

1 g ∈ GI

0 g /∈ GI

(3)

is the gene vector corresponding to the input set. The entries of sC that are
above/below a threshold ±tC constitute the condition vector mC:(

mC
)

c
≡

(
sC

)
c
· �

(∣∣∣(sC
)

c

∣∣∣ − tC

)
, (4)

where �(x) = 1 for x ≥ 0 and �(x) = 0 for x < 0.
Similarly, the gene-score vector sG measures how much each gene is

upregulated by the conditions in mC, using the entries of mC as weights:

sG ≡ E mC∣∣mC
∣∣ . (5)

The entries of the gene-score vector sG that are more than tG standard devi-
ations σ

sG above the mean gene score in the vector sG constitute the gene

vector mG:

(
mG

)
g

≡
(

sG
)

g
· �

((
sG

)
g

−
〈(

sG
)

g′

〉
g′

− tGσ
sG

)
(6)

ISA starts from a random set of genes and repeatedly applies SA, using mG

as the input mG
in for the next iteration, until a fixed point is reached. For a true

fixed point, the output mG would be identical to the input mG
in; in practice ISA

stops when the same set of genes is selected in two consecutive iterations.
Both SA and ISA apply thresholds to both gene scores and condition

scores. According to our discussion in Section 2.1, thresholding corresponds
to requiring that both gene vectors and condition vectors be sparse. However,
the two thresholds are very different: the gene threshold is specified in terms
of standard deviations of the observed gene-score distributions, and thus sets
an absolute (tG-dependent) limit on the fraction of genes that can be included
in a module. The condition threshold, on the contrary, compares each score
to the expected distribution (if the data was uncorrelated noise), thus there
is no limit on the number of conditions that can be included. Indeed, few
transcription modules found by ISA contain <10% of the conditions, and
some contain >80%.

As mentioned in Section 2.1, different TMs are often correlated. This can
contribute to the hierarchical clustering by ISA: for a low gene-threshold
coefficient tG, correlated modules may appear to be a single, large module,
while at higher thresholds the individual modules are resolved (Bergmann
et al., 2003; Ihmels et al., 2004). However, it may be impossible for SA/ISA
to resolve correlated modules regardless of the value of tG. This is illustrated
in Figure 1 for a synthetic data set with only two TMs: E = g1cT

1 +g2cT
2 +η,

where the elements of η are independently drawn from a normal distribution.

3SA actually uses two matrices with different normalizations (Ihmels et al.,
2002).

1173

 at T
he L

ibrary of Peking U
niversity on O

ctober 17, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

M.Kloster et al.

Condition A

C
on

di
tio

n
B

-10 0 10 20 30
Gene scores

(a) (b) Condition A

Conditions A+B

2

1

Fig. 1. A toy model with only two transcription modules (synthetic data).
(a) Module 1 is upregulated under condition A, while module 2—a larger,
stronger module—is upregulated under conditions A and B. The remaining
(background) genes only show Gaussian noise. (b) Normalized histograms
of the gene scores given by the signature algorithm (SA) for the background
(solid fill), module 1 (solid line) and module 2 (dotted fill), when using the true
condition vector for either module 1 (condition A) or module 2 (conditions
A+B). Even starting with the true condition vectors, SA does not resolve the
two modules. Nor can the iterative signature algorithm (ISA) resolve module
1, even if it receives the module itself as input gene set, as the genes from
module 2 have higher scores also for condition A (there is only one fixed point
of ISA). Due to the noisy data, it is also impossible to separate the modules
by varying the ISA gene threshold coefficient tG.

Condition A

C
on

di
tio

n
B

-5 0 5 10
Gene scores

(a) (b)

2

1

Fig. 2. Once the progressive iterative signature algorithm (PISA) has elim-
inated the combined module 1+2 from Figure 1 (dashed line), the remaining
signal makes it easy to separate the genes of module 1 from the genes of
module 2. (a) Remaining signal for each module. (b) Actual gene scores for
the new fixed point found by PISA. Genes of module 1 (solid line) have been
separated from genes of module 2 (dotted fill) and the background (solid fill).

2.3 The algorithm PISA
2.3.1 Orthogonalization Within PISA, each condition-score vector sC

is required to be orthogonal to the condition-score vectors of all previously
found TMs, as illustrated schematically in Figure 2. Therefore, whenever
PISA finds a TM and its associated condition-score vector sC, the compon-
ent along sC of each gene is removed from the gene expression matrix (see
Section 2.3.3). For example, in the toy model in Figures 1 and 2, one finds that
PISA can easily identify both TMs: it first finds the strong module, removes
its condition vector, and then the only signal left is that of the weak module.

Progressively eliminating TMs à la PISA can also improve the prospects
for finding unrelated modules. The gene regulation from one module will
contribute to the background noise for all unrelated modules. Therefore, elim-
inating large, strong modules can significantly improve the signal to noise
ratio of the remaining modules. This is in contrast to the situation for SVD:
the initial modules found with SVD will typically be a mixture of many real
transcription modules, and removing them will not significantly improve the
signal for weak modules. In PISA, the gene-score threshold ensures that only
a few, typically highly correlated, TMs will be combined.

The requirement of orthogonality in PISA conflicts with the condition-
score threshold as used in ISA. If we make the condition-score vector
orthogonal first and then apply the threshold, the vector will no longer be

-4 -2 0 2 4 6 8 10
0

100

200

300

400

500

600

Ideal: < x >
bg

 +/- 4.0 σ
bg

PISA: < x >
70%

+/- 7.0 σ
70%

ISA: < x > +/- 2.5 σ

Non-module genes: Noise
Module genes (x10)

Shortest 70% interval

Fig. 3. Gene-score thresholds as used in ISA and in PISA algorithms (see
text); for a synthetic gene-score distribution for 6206 genes, 300 of which
belong to a module; calculated using all the genes (top, solid bars) or only the
non-module genes (bottom, dashed bars). In ISA, the value tG ≈ 2.5 that gives
the desired (for PISA) threshold ±4.0 in the presence of the module (solid
bar) gives a much too low threshold if there is no strong module (dashed bar).
In contrast, the threshold definition used in PISA is only weakly module-
dependent. The non-module (background) genes’ scores follow a normal
distribution; 〈x〉bg = 0, σ bg = 1.

orthogonal, whereas if we apply the threshold first, orthogonalization will
give non-zero weight to all conditions, eliminating the noise-filtering benefit
of thresholding. We have chosen to eliminate the condition-score threshold
completely. In any event, conditions that in ISA would fall below the threshold
will have low weight and will give only a small contribution to the noise.

This orthogonalization procedure gives good estimates for the gene vectors
in Equation (1), but the resulting condition vectors are of course all ortho-
gonal. A condition vector calculated from the final gene vector using the
initial value of the gene-expression data matrix, as given in Section 2.3.6,
gives a much better description of the ‘real’ TM.

2.3.2 The gene-score threshold In ISA, the gene-score threshold is
tGσSG , where the standard deviation σSG is computed using the full distribu-
tion of gene scores and includes contributions both from the background and
from the module of interest (Fig. 3). For large, strong modules, the module
contribution may be larger than the background contribution. As a result, σSG

is module dependent, and tG must be adjusted to prevent false positives from
the background: at low thresholds, a small module would be lost among false
positives; while at high thresholds, it is mathematically impossible to find a
large module. One can run ISA with many different threshold coefficients tG
in order to find more modules than available at any single threshold, however
this results in a large number of false positives.

Within PISA, we eliminate the need to use multiple gene-score thresholds
by specifying the threshold relative to the background alone, which we estim-
ate using the mean, 〈x〉70%, and the standard deviation, σ 70%, of the gene
scores within the shortest interval that contains at least 70% of all the gene
scores. By excluding extreme gene scores in this way, we minimize the influ-
ence of the module of interest itself on the means and standard deviations of
gene scores (Fig. 3). As a test, we used σ 70% in place of σ in ISA and found
both very large and very small modules with a single value of tG.4

We need to be conservative when selecting the gene-score threshold
because, if PISA misidentifies a module, elimination of its condition vector
can lead to errors in other modules. Therefore, the number of genes included
in modules due to noise should be very low. We have used a threshold of
7.0σ 70%, which for a Gaussian distribution corresponds to about 3.9σ . The

4However, it is still necessary to use a large range of thresholds to find all the
ISA modules; this is not just an artifact of the threshold definition.

1174

 at T
he L

ibrary of Peking U
niversity on O

ctober 17, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Large-scale analysis of gene-expression data

chance of including a gene due to noise is about 10−4 per gene, e.g. with the
6206 genes in the yeast data set, the average number of genes included by
mistake in each module would be about 0.62. Using a high threshold means
that we may miss genes that should belong to a module, however this is
less risky than including genes by mistake. As PISA proceeds by eliminating
condition-score vectors, it does not matter whether we identify all the genes in
a module, as long as the condition-score vector is accurate. Potentially, once
PISA has finished, one could easily see which genes would be included when
using various gene-score thresholds for the same condition-score vector.

ISA only considers sets of genes that have high gene scores, i.e. positive
signs. As discussed in Ihmels et al. (2002), this can lead to two modules that
are regulated by the same conditions but with opposite sign. In contrast, PISA
includes all genes with sufficiently extreme scores in a single module, and
the relative signs of gene scores specify whether the genes are coregulated or
counter-regulated.

2.3.3 Implementation of PISA To begin, PISA requires a matrix E of
log-ratio gene expression data, with zero average for each condition. Two
matrices are obtained from E: The first EG is normalized for each gene

〈(EG)gc〉c = 0, 〈(EG)2
gc〉c = 1 ∀g ∈ G.

Normalization of EG is essential so that the gene-score threshold can be
applied to all genes on an equal footing. The second matrix EC is obtained
from EG by normalizing for each condition, 〈(EC,0)

2
gc〉g = 1, where EC,0

denotes the initial EC. (Note that this is essentially the opposite of the nota-
tion used in Bergmann et al., 2003.) PISA consists of a large number of
steps (typically 10 000). In each step, we apply a modified version of ISA
(PISAstep, see below), and if a module is found during the step, we remove
from EC the components along the module’s condition-score vector sC:

Enew
C ≡ EC − EC

sC
(
sC

)T∣∣sC
∣∣2

. (7)

As PISA progresses, new modules are found less and less frequently. For
example, one run of 10 000 steps found 779 preliminary (see below) modules,
and 442 of them were found in the first 1000 steps. As the later modules are
also generally smaller and less reliable, the exact number of steps is not very
important.

2.3.4 PISAstep As input, a step of PISA requires the two matrices EC

and EG. We start each application of PISAstep by generating a random set of
genes G0 and a corresponding gene vector mG

0 :

(mG
0)g =

{
1 g ∈ G0

0 g /∈ G0.

Each iteration i within PISAstep consists of multiplying the transpose of EC

by the gene vector mG
i to produce the condition-score vector sC

i :

sC
i ≡ ET

CmG
i ,

and then multiplying EG by the normalized condition-score vector to produce
the gene-score vector sG

i :

sG
i ≡ EGsC

i∣∣sC
i

∣∣ .

From sG
i , one calculates the gene vector mG

i+1 for the next iteration:

(mG
i+1)g ≡

(
sG
i

)
g

�

(∣∣∣∣∣
(

sG
i

)
g

−
〈(

sG
i

)
g′

〉70%

g′

∣∣∣∣∣ − tGσ 70%
sG
i

)
.

We iterate until one of three conditions is met: (1) (mG
i)g and (mG

i+1)g
have the same sign (0, + or −) for all g, (2) the iteration number is i = 20,
or (3) fewer than two genes have non-zero weight. Criterion (1) indicates
convergence to a fixed point,5 (2) handles limit cycles (see Section S.2), and

5We find that if the gene set does not change, the distance to a true fixed point
is very small; further iteration generally only gives minimal changes.

(3) indicates failure to find a module. If fewer than five genes have non-
zero weight, the result is discarded, otherwise we have found a module with
condition-score vector sC = sC

i , gene-score vector sG = sG
i , and gene vector

mG = mG
i+1. The module is then stored as a ‘preliminary module’ (see

below), and EC is updated according to Equation (7).
We chose a threshold coefficient tG = 7.0 so that the expected number

of genes included in each module due to background noise would be less
than 1. However, with this high threshold, starting from a random set of
genes there was only a very low chance that two or more genes would score
above the threshold in the first iteration.6 To increase the chance of finding a
module, we used a different formula for mG

1 , i.e. for the first iteration only.
Instead of selecting just those genes with scores above the threshold, we kept
a random number 2 ≤ n ≤ 51 of the genes with the most extreme scores.7

This procedure was generally adequate to produce a correlated set of genes
for the next iteration.

PISAstep is very similar to an application of SVD to find an eigenar-
ray/eigengene pair. The key difference is the gene threshold in PISA which
requires the gene vector (eigenarray) to be sparse.

2.3.5 Consistent modules ISA typically finds many different fixed
points corresponding to the same module, each differing by a few genes.
PISA only finds each module once during a run, but the precise genes in the
module depend on the random input set of genes and also on which mod-
ules were already found and eliminated. Furthermore, PISA sometimes finds
a module by itself, while other times it may find the module joined with
another module, or PISA may find only part of a module, or not find the
module at all. To get a reliable set of modules, it was necessary to perform a
number of runs of PISA and identify the modules that were consistent from
run to run.

To identify consistent modules, we first tabulated preliminary modules—
transcription modules found by individual runs of PISA. A preliminary
module P contributes to a consistent module C if P contains more than half
the genes in C, regardless of gene-score sign, and these genes constitute at
least 20% of the genes in P. (|P ∩ C| > 0.5 |C| ∧ |P ∩ C| > 0.2 |P|) A
gene is included in the consistent module if the gene occurs in more than 50%
of the contributing preliminary modules, always with the same gene-score
sign.8 We found the consistent modules by iteratively applying these criteria
until we reached a fixed point, starting from all pairs of preliminary modules.9

2.3.6 Correlations between condition-score vectors Once we iden-
tified a consistent module, mG, we calculated the raw condition-score vector
r = ET

C,0mG, using the initial value of the gene-expression data matrix EC.
From the rs we evaluated the condition correlations r · r′/(|r| |r′|) between
different modules.
Additional details of the algorithm PISA are discussed in the supporting
material.

2.4 p-Values
Given a set containing m genes out of the total of NG, the p-value for having
at least n genes in common with a Gene Ontology (GO) category containing
c of the NG genes is

p =
min{c,m}∑

i=n

(
c
i

)(
NG−c
m−i

)
(
NG
m

) , (8)

6This is not an issue in ISA, where the condition threshold helps to pick out
the signal—which is possibly very small—from the noise.
72 is the smallest number of genes that is interesting; 51 is an arbitrary (large
enough) upper limit.
8The values 50, 20 and 50% used are subjective criteria for how consistent
modules should be. However, the results are not very sensitive to these values.
9While this approach may not be fully exhaustive, any consistent module
missed by this approach is likely to be a variant of another consistent module
or a marginal case.

1175

 at T
he L

ibrary of Peking U
niversity on O

ctober 17, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

M.Kloster et al.

We ignore any genes that are not present in our expression data when
counting c.

3 RESULTS
We applied PISA to the yeast data set used in Bergmann et al. (2003),
which consists of log-ratio gene-expression data for NG = 6206
genes and NC = 987 experimental conditions (see Sections S.4
and S.5 for details). Normalization gives the matrices EG and EC

(see Sections 2.3.3 and S.1 for details).
As a preliminary test, we repeatedly applied PISA to one fully

scrambled version of the matrix EG (and the corresponding EC).
From run to run, the algorithm identified many large modules derived
almost entirely from a single condition, as expected in light of the
broad distribution of the raw gene-expression data (Fig. S1). PISA
also found many small modules, but these differed from one run to
the next. We were able to eliminate both of these classes of false
positives using filters for consistency, recurrence, and number of
contributing conditions (Fig. S2; see Section S.3 for details).

We performed 30 runs of PISA on the yeast data set and identi-
fied the modules that appeared consistently, using the filters derived
above. At the start of each run, only a few preliminary modules could
be found with our single choice of gene threshold tG. Nevertheless,
PISA did consistently find new preliminary modules after elimin-
ating others, demonstrating that removing the condition vectors of
found modules improves the signal to noise for the remaining ones.
A total of 166 consistent modules passed the filters (PISA modules).
Out of the 6206 genes included in the expression data, 2512 genes
appeared in at least one PISA module, and more than 500 genes
appeared in more than one PISA module.10 No genes appeared in
more than four different PISA modules.

For most of the PISA modules, the genes were coregulated, i.e. all
the gene scores had the same sign. (In contrast, the consistent mod-
ules that were eliminated by the filters often had about equal numbers
of genes of either sign.) There were, however, a significant number of
PISA modules with a few gene scores differing in sign from the rest,
e.g. the arginine biosynthesis module described below. Furthermore,
many of the PISA modules agreed closely with modules identified
by ISA at various thresholds, while other PISA modules were sub-
sets of ISA modules. Some PISA modules, for example, the de novo
purine synthesis module (Fig. 4), were significantly more complete
than the ones found by ISA (at any threshold).

PISA found several small modules that agree very well with known
gene regulation in yeast. For example, the arginine-biosynthesis
module consists of ARG1, ARG3, ARG5,6, ARG8, CPA1,
YOR302W, MEP3, CAR1 and CAR2; out of these CAR1 and CAR2
have negative gene scores, i.e. they are counter-regulated relative to
the others. The first five genes are precisely the arginine-synthesis
genes known to be repressed by arginine, while CAR1 and CAR2
are catabolic genes known to be induced by arginine (Messenguy
and Dubois, 2000).

PISA also found a zinc (zap1-regulated) module even though the
set of 987 conditions did not include zinc starvation. The set of
genes in the module (ZRT1, ZRT2, ZRT3, ZAP1, YOL154, INO1,
ADH4 and YNL254C) agree well with the highest-scoring genes in
a separate microarray experiment comparing expression, under zinc

10We have adjusted for the fact that some modules occur in several similar
versions.

SER3, SER33

HIS1

SHM2

MTD1

GCV1
GCV2
GCV3
LPD1

SER2

SER1

HIS2

HIS3

HIS4

HIS5

HIS6

HIS7

HIS4

HIS4

ADE13

ADE4

ADE5,7

ADE8

ADE6

ADE5,7

ADE2

ADE1

ADE13

ADE17,16

ADE17,16

ADE12

PRPP

PRPP

AICAR

IMP

AMP ATP

3-Phosphoglycerate

Ser
Tetrahydrofolate (THF)

M−THFN,N 105

THFFN10 −

THFFN10 −

Gly

Gly

ADE3

His

YGL186C

CEM1 MET6

YDR089W

AIP2

YPR004C

Purine transport:

Other/unknown:

De novo purine biosynthesis pathway

Fig. 4. The purine synthesis module found by PISA (genes shown in bold)
contains all the central genes involved in de novo purine biosynthesis and asso-
ciated one-carbon metabolism in yeast, as well as some of the genes involved
in the closely connected histidine biosynthesis pathway. Purine synthesis is
known to be regulated by the bas1 transcription factor (Daignan-Fornier and
Fink, 1992; Denis et al., 1998); genes that are underlined have p-values below
0.001 for bas1 binding in database A. Only selected metabolites are shown.
The inclusion of related processes, e.g. serine synthesis, in the module may
be due to the ‘Borges effect’ (Mateos et al., 2002).

starvation, of a ZAP1 mutant versus wild type (Lyons et al., 2000).
For this module, the highest-scoring of the 987 conditions came from
the Rosetta compendium (Hughes et al., 2000) of deletion mutants
(see Fig. S9). Our identification of the unknown gene YNL254C as
part of the zinc module, as well as the starvation experiments in Lyons
et al. (2000) and direct transcription-factor-binding experiments (see
below), all indicate that YNL254C is regulated by zap1, and probably
functions in zinc starvation/uptake.

In order to evaluate the overall performance of PISA, we compared
our PISA modules to the categories in the GO curated database (The
Gene Ontology Consortium, 2001).11 For the set of genes in each of
our modules we calculated the p-value for the overlap with the set
of genes in every GO category (see Section 2). The p-value is the

11It is not clear to what extent the GO category definitions (molecular
functions, cellular components and biological processes) correspond to the
transcription modules we are searching for, which are characterized by core-
gulation. Thus, failure to find a good overlap with a GO category does not
necessarily indicate that a module is not biologically relevant, but a very
significant overlap does show biological relevance. Using GO p-values as a
score should therefore be a reasonable way to compare the modules found
using different approaches.

1176

 at T
he L

ibrary of Peking U
niversity on O

ctober 17, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Large-scale analysis of gene-expression data

-0-1-10-100
log10 (p value for PISA)

-0
-1

-1
0

-1
00

lo
g 1

0
(p

 v
al

ue
 f

or
 I

SA
)

lo
g 1

0
(p

 v
al

ue
 f

or
 I

SA
)

(a) PISA vs. ISA

-0-1-10-100
log10 (p value for PISA)

-0
-1

-1
0

-1
00

(b) PISA vs. reduced ISA

Fig. 5. Best p-values onto every GO category with 500 or fewer genes. In
each panel, we include only GO categories for which at least one p-value is
below 10−10. (a) 166 modules found by PISA versus 778 modules found by
ISA. ISA here does a slightly better job overall, but using far more modules
to compare to each GO category. (b) 166 PISA modules versus the 215 most
recurrent ISA modules from (a). PISA now does significantly better than ISA.
Furthermore, whenever ISA had a significantly lower p-value than PISA in
(a), this is still the case in (b); thus the modules for which ISA does better are
the highly recurrent large, strong modules, while PISA does a much better
job at finding small, weak, but still biologically relevant, modules.

probability that an observed overlap occurred by chance. The lowest
p-value we found was 5.7 × 10−191, for the GO category ‘cytosolic
ribosome’, and we found p-values below 10−20 for more than 130
other GO categories. (The modules that were removed by our filters
mostly did not have significant p-values.) Figure 5 shows a compar-
ison between GO-category p-values for PISA and for ISA.12 While
ISA does a somewhat better job at identifying large, strong mod-
ules, PISA does significantly better at finding small, weak modules.
PISA also does better at producing accurate modules (we compared
p-values in cases where at least 50% of the module genes belong
to the GO category; data not shown). As shown in Figure S3, both
algorithms perform much better than SVD.

We also used the p-values between our PISA modules and the
GO categories to compare PISA to other means of identifying
transcription modules. Specifically, we compared PISA to two
different databases of genes predicted to be regulated by single tran-
scription factors. Database ‘A’ contains genes that were enriched
through immunoprecipitation with tagged transcriptional regulators
(Lee et al., 2002), while database ‘B’ has genes sharing regulatory
sequences derived by comparative genomics (Kellis et al., 2003).
Figure 6 shows the p-values between GO and PISA compared to the
p-values between GO and each of these two databases.13 The lower
p-values for PISA indicate a consistently better agreement between
GO and PISA than between GO and the other databases. While PISA
may have a slight advantage in that it looks for overall coregulated
genes as opposed to genes that share a single transcription factor,
and this may be somewhat closer to the definitions of GO categor-
ies (biological processes, etc.), it is remarkable that there are no GO
categories for which database A or B significantly outperforms PISA.

12We used the ISA modules included in the Matlab implementation available
at http://barkai-serv.weizmann.ac.il/GroupPage/software.htm. This includes
modules for threshold coefficients from 1.8 to 4.0.
13We used an internal p-value threshold of 0.001 for database A, as suggested
in Lee et al. (2002).

-1-10-100
log10 (p value for PISA) log10 (p value for PISA)

-1
-1

0
-1

00lo
g 1

0
(p

 v
al

ue
 f

or
 A

)

lo
g 1

0
(p

 v
al

ue
 f

or
 B

)

(a) PISA vs. database A

-1-10-100

-1
-1

0
-1

00

(b) PISA vs. database B

-1-10-100
B

-1
-1

0
-1

00
A

Fig. 6. Best p-values onto every GO category with 500 or fewer genes. In
each panel, we include only GO categories for which at least one p-value is
below 10−10. (a) PISA versus database A. (b) PISA versus database B. (a)
inset: database A versus database B—there are very few GO categories onto
which both A and B have low p-values.

Compared to microarray data, database A and database B share
one clear disadvantage: their binding sites are assigned to intergenic
regions, and if the two genes bordering an intergenic region are diver-
gently transcribed, then the databases do not identify which of the
genes is regulated. In many cases, we found that by comparing sets
of genes in database A to PISA modules, we could decide which of
divergently transcribed genes were actually regulated. For example,
database A lists six intergenic regions as binding site for zap1 at an
internal p-value threshold of 10−5, and four of these lie between
divergently transcribed genes. However, five of the six intergenic
regions border the genes ZRT1, ZRT2, ZRT3, ZAP1 and YNL254C
which PISA identifies as part of the zinc module.

Database A appears to have an additional source of false positives.
Intergenic regions that are close to intergenic regions with very low
p-values often have low p-values themselves, even when there is
no apparent connection between the genes and no evidence of a
binding site in the DNA sequence. For example, for the de novo
purine-biosynthesis module, which is primarily regulated by the bas1
transcription factor, the intergenic region controlling GCV2 has the
lowest p-value within database A, 1.1×10−16, and all the four closest
intergenic regions have p-values below 10−5. Comparison to PISA
modules can help eliminate these potential false positives: out of the
29 genes assigned a p-value below 10−4 for bas1 binding in database
A, 13 belong to a single PISA module, four others are divergently
transcribed adjacent genes, and six others are genes transcribed from
nearby intergenic regions.

4 DISCUSSION
PISA embodies a new approach to analysis of large gene-expression
data sets. The central new feature in PISA is the robust elimination of
transcription modules as they are found, by removing their condition-
score vectors. Also new to PISA, compared to its precursors SA
(Ihmels et al., 2002) and ISA (Bergmann et al., 2003), is the inclusion
of both coregulated and counter-regulated genes in a single module,
and the use of a single gene-score threshold.

Altogether, these new features result in an algorithm that can
reliably identify both large and small regulatory modules, without
supervision. We confirmed the performance of PISA by comparison
to the GO database—PISA performed considerably better against
GO than either high-throughput binding experiments or comparative

1177

 at T
he L

ibrary of Peking U
niversity on O

ctober 17, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://barkai-serv.weizmann.ac.il/GroupPage/software.htm
http://bioinformatics.oxfordjournals.org/

M.Kloster et al.

Biosynthesis

-Amino acid (general) -Arginine-Biotin -Lysine-Branched a.a.s -De novo purine
-TCA cycle -Gluconeogenesis++

Stress
-Oxidative stress-Proteolysis -Heat shock-COS genes

Phosphoglycerides- -Zinc starvationHexose transporters- -Galactose utilizationMid sporulation- Meiosis-
Matinga signaling- Mating-α signaling-

Glycolysis-
Histones-Cell cycle G1/S- Cell wall (bud emergence)-Cell cycle M/G1- Cell cycle G2/M-

Ribosomal proteins-rRNA processing-

Anti-correlated Uncorrelated Correlated

Fig. 7. Correlations between modules identified by PISA (see text). The
modules are ordered to form clusters; the full list is shown in Table S1
(same for both axes). This plot recaptures many of the relationships shown in
Ihmels et al. (2004), Figure 4: the three large, highly correlated areas shown
above correspond to the three different trees of hierarchical clustering in that
figure (lower left corner is amino acid synthesis, upper right corner is protein
synthesis and mid-lower left is stress).

genomics. PISA therefore provides a practical means to identify new
regulatory modules and to add new genes to known modules.

While PISA is more successful at finding small transcription mod-
ules, ISA is overall better at finding large, strong modules. This is
not surprising: such modules are typically the first to be identified
by PISA, and then PISA does not have any advantage over ISA—no
other modules have yet been eliminated. ISA, on the contrary, has
the advantages of eliminating ‘useless’ conditions with the condition
threshold and using multiple gene-threshold values to find the best
modules. One possible line of future work is a hybrid algorithm that
combines the strength of ISA at finding large, strong modules with
the ability of PISA to reliably identify weak modules.

Can PISA shed any light on the organization of gene expression
beyond the level of individual transcription modules? In Bergmann
et al. (2003), the authors argued that they could trace the relationship
between modules from the effects of changing the threshold tG, as
done in greater detail in Ihmels et al. (2004). For instance, a large
module might split into two smaller ones as tG was increased. With
PISA, we were able to use a more direct approach. Once we identified
the modules, we computed the ‘raw’ (i.e. pre-transcription-module-
elimination) condition-score vector r for each module, and from
these raw condition-score vectors, we evaluated the condition correl-
ations between modules (see Section 2). Figure 7 shows the condition
correlations between 40 of the modules that we can put a name to. A
large, positive correlation between two modules can either indicate
that the modules have many genes in common, e.g. the genes of the
arginine-biosynthesis module are essentially a subset of the genes
of the amino-acid-biosynthesis module, or, as in the toy model in
Figures 1 and 2, the modules have few/no genes in common, but the

two sets of genes are similarly regulated under many conditions. In
the toy model, the raw condition-score vectors r1 and r2 correspond
to the vectors in Figure 1a and their correlation, r1 · r2/(|r1| |r2|),
is simply the cosine of the angle between them. A real example of
this second type of correlation is provided by the ribosomal-protein
module (107 genes) and the rRNA-processing module (80 genes).
They have no genes in common, but the correlation between them is
very high, 0.71.

To filter out false modules, we found it necessary to ignore all
modules that depended only on a few conditions. As a result, true
modules that were strongly regulated only in a few experiments could
be missed. This suggests that experiments that affect many modules
at once, in different patterns, are more useful than experiments that
probe the effects of relatively simple perturbations. While the latter
are easier to analyze one by one, there is more actual information in
the former, and algorithms such as PISA can efficiently combine the
results from many ‘complex’ experiments to reveal the individual
modules.

ACKNOWLEDGEMENTS
We wish to thank J.Ihmels and N.Barkai for sharing their dataset,
and Rahul Kulkarni for valuable discussions. C.T. acknowledges
support from the National Key Basic Research Project of China (No.
2003CB715900).

SUPPLEMENTARY DATA
Supplementary data for this paper are available at Bioinformatics
online.

REFERENCES
Alon,U., Barkai,N., Notterman,D.A., Gish,K., Ybarra,S., Mack,D. and Levine,A.J.

(1999) Broad patterns of gene expression revealed by clustering analysis of tumor
and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci.
USA, 96, 6745–6750.

Alter,O., Brown,P.O. and Botstein,D. (2000) Singular value decomposition of genome-
wide expression data processing and modeling. Proc. Natl Acad. Sci., USA, 97,
10 101–10 106.

Bergmann,S., Ihmels,J. and Barkai,N. (2003) Iterative signature algorithm for the
analysis of large-scale gene expression data. Phys. Rev. E, 67, 031902.

Bittner,M., Meltzer,P. and Trent,J. (1999) Data analysis and integration: of steps and
arrows. Nat. Genet., 22, 213–215.

Bussemaker,H.J., Li,H. and Siggia,E.D. (2001) Regulatory element detection using
correlation with expression. Nat. Genet., 27, 167–171.

Califano,A., Stolovitzky,G. and Tu,Y. (2000) Analysis of gene expression micro-
arrays for phenotype classification. Proc. Int. Conf. Intell. Syst. Mol. Biol., 8,
75–85.

Cheng,Y. and Church,G. (2000) Biclustering of expression data. Proc. Int. Conf. Intell.
Syst. Mol. Biol., 8, 93–103.

Daignan-Fornier,B. and Fink,G.R. (1992) Coregulation of purine and histidine biosyn-
thesis by the transcriptional activators BAS1 and BAS2. Proc. Natl Acad. Sci. USA,
89, 6746–6750.

Denis,V., Boucherie,H., Monribot,C. and Daignan-Fornier,B. (1998) Role of the myb-
like protein bas1p in Saccharomyces cerevisiae: a proteome analysis. Mol. Microbiol.,
30, 557–566.

Eisen,M.B., Spellman,P.T., Brown,P.O. and Botstein,D. (1998) Cluster analysis and
display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA, 95,
14 863–14 868.

Gasch,A. and Eisen,M.B. (2002) Exploring the conditional coregulation of yeast gene
expression through fuzzy k-means clustering. Genome Biol., 3, 0059.1–0059.22.

Getz,G., Levine,E. and Domany,E. (2000) Coupled two-way clustering analysis of gene
microarray data. Proc. Natl Acad. Sci. USA, 97, 12 079–12 084.

Hughes,T.R. et al. (2000) Functional discovery via a compendium of expression profiles.
Cell, 102, 109–126.

1178

 at T
he L

ibrary of Peking U
niversity on O

ctober 17, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Large-scale analysis of gene-expression data

Ihmels,J., Friedlander,G., Bergmann,S., Sarig,O., Ziv,Y. and Barkai,N. (2002) Reveal-
ing modular organization in the yeast transcriptional network. Nat. Genet., 31,
370–377.

Ihmels,J., Ronen,L. and Barkai,N. (2004) Principles of transcriptional control in the
metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol., 22, 86–92.

Kellis,M., Patterson,N., Endrizzi,M., Birren,B. and Lander,E.S. (2003) Sequencing and
comparison of yeast species to identify genes and regulatory elements. Nature, 423,
241–254.

Lazzeroni,L. and Owen,A. (2002) Plaid models for gene expression data. Statist. Sinica,
12, 61–86.

Lee,T.I. et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science, 298, 799–804.

Lyons,T.J., Gasch,A.P., Gaither,L.A., Botstein,D., Brown,P.O. and Eide,D.J. (2000)
Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. Proc.
Natl Acad. Sci., USA, 97, 7957–7962.

Mateos,A., Dopazo,J., Jansen,R., Tu,Y., Gerstein,M. and Stolovitzky,G. (2002) System-
atic learning of gene functional classes from DNA array expression data by using
multilayer perceptions. Genome Res., 12, 1703–1715.

Messenguy,F. and Dubois,E. (2000) Regulation of arginine metabolism in Saccharomy-
ces cerevisiae: a network of specific and pleiotropic proteins in response to multiple
environmental signals. Food Tech. Biotech., 38, 277–285.

Owen,A.B., Stuart,J., Mach,K., Villeneuve,A.M. and Kim,S. (2003) A gene recom-
mender algorithm to identify coexpressed genes in C. elegans. Genome Res., 13,
1828–1837.

Tamayo,P., Slonim,D., Mesirov,J., Zhu,Q., Kitareewan,S., Dmitrovsky,E., Lander,E.S.
and Golub,T.R. (1999) Interpreting patterns of gene expression with self-organizing
maps: methods and application to hematopoietic differentiation. Proc. Natl Acad.
Sci. USA, 96, 2907–2912.

The Gene Ontology Consortium (2001) Creating the Gene Ontology resource: design
and implementation. Genome Res., 11, 1425–1433.

1179

 at T
he L

ibrary of Peking U
niversity on O

ctober 17, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

