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Abstract

Drug combinations may exhibit synergistic or antagonistic effects. Rational design of synergistic drug combinations remains
a challenge despite active experimental and computational efforts. Because drugs manifest their action via their targets, the
effects of drug combinations should depend on the interaction of their targets in a network manner. We therefore modeled
the effects of drug combinations along with their targets interacting in a network, trying to elucidate the relationships
between the network topology involving drug targets and drug combination effects. We used three-node enzymatic
networks with various topologies and parameters to study two-drug combinations. These networks can be simplifications of
more complex networks involving drug targets, or closely connected target networks themselves. We found that the effects
of most of the combinations were not sensitive to parameter variation, indicating that drug combinational effects largely
depend on network topology. We then identified and analyzed consistent synergistic or antagonistic drug combination
motifs. Synergistic motifs encompass a diverse range of patterns, including both serial and parallel combinations, while
antagonistic combinations are relatively less common and homogenous, mostly composed of a positive feedback loop and
a downstream link. Overall our study indicated that designing novel synergistic drug combinations based on network
topology could be promising, and the motifs we identified could be a useful catalog for rational drug combination design in
enzymatic systems.
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Introduction

Drug combinations have been envisaged by many to be a

promising approach to treat complex diseases such as cancer,

inflammation and type 2 diabetes [1–3]. However, when used in

combination, drugs interact in many unexpected ways and show a

plethora of different outcomes [4]. Among these interactions, drug

synergy and antagonism have attracted special attentions. Drug

synergy, the combined boost of drug efficacy, is a highly pursued

goal of combinational drug development [2]. Synergistic drug

combinations have been shown to be highly efficacious and

therapeutically more specific [5]. Drug antagonism, in contrast, is

often undesirable, but could be useful in selecting against drug

resistant mutations [6]. Despite active research into the mecha-

nism of drug synergy or antagonism, the answer remains largely

elusive. Experimentally, combinational high throughput screening

[7–9] was devised to search for synergistic drug pairs in several

systems. The low hit rate of drug synergy (generally less than 10%)

stimulated many computational efforts to predict and quantify

drug synergy. Li et al. [10] used an abstract network topology-

based approach to predict drug synergy. Based on topological

relationships between drug targets, they devised a synergy score to

rank and select possible synergistic drug pairs. A chemical genomic

approach was taken by Jansen et al. [11] to uncover antifungal

synergies based on the assumption that drugs with similar

chemogenomic profiles would more likely be synergistic. By

surveying the existing synergistic drug pairs and their topological

relations in biological networks, Zou et al. [12] suggested that

synergistic drug target combinations tend to be in so called

neighbor communities. Based on this concept they trained a

support vector machine (SVM) classifier and successfully retrieved

and experimentally confirmed several synergistic drug pairs.

Noting the similarity between drug synergy and genetic interac-

tion, Cokol et al. [13] suggested that gene pairs manifesting

negative genetic interactions may be possible synergistic drug

target pairs. The experiment they had conducted on yeast using

this concept indeed showed enrichment of synergistic drug pairs,

but many of these drug synergies were later found to be not related

to the underlying genetic interactions. To fast simulate drug

synergy on established molecular networks, Yan et al. [14]

introduced a simplifying strategy for efficient calculation of scores

representing synergistic interactions. Still, predicting drug synergy

or antagonism is difficult. Seemingly synergistic combinations such

as the antibiotic combination of DNA replication inhibitor and

ribosome inhibitor are actually antagonistic [15], and context or

sequence dependent synergy in some cases further complicated the

problem. Thus it is of great interest to predict drug synergy or

antagonism based on the topology of the drug target network.

Biological functions are carried out by many molecules

interacting in a network-like manner. The network structure
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largely determines the dynamics of the interacting molecules,

hence the function it can fulfill. Drug interactions may also be

determined in such a manner, so that the structure of the

biological network involving the drug targets under study may

shed light into the way the drugs act [16–18] and interact [19,20].

Indeed, an early study demonstrated theoretically that serial

inhibition of an enzymatic chain can lead to drug synergy [21].

Fitzgerald et al. [2] examined different patterns of synergistic

combination in several typical network contexts. Lehar et al. took

a reverse approach and used the patterns of drug interactions

outcomes to successfully infer the targets connectivity in metabolic

pathways [19]. Though the relationship between network struc-

tures involving drug targets and patterns of drug interaction has

been demonstrated in their studies, drug synergy/antagonism was

thought to depend heavily on parameters [19]. We ask if the

otherwise might be true, that network structure prevails over

parameters in determining whether the drug combination is

synergistic or not. In order to test this hypothesis, we comprehen-

sively cataloged the drug combination outcomes in a model system

and established the connection between the structure of target-

related networks and drug synergy/antagonism it endows. There

are many possible sources of drug interactions, but we focused

exclusively on those combinations that do not involve pharmaco-

kinetic interactions. Therefore, the drug interactions studied here

arise from interactions of inhibited targets in the underlying

network. Moreover, since we consider combined inhibition of

targets, synergy exhibited by dual-inhibitors which inhibit two

targets simultaneously will also be accounted by our models.

Figure 1. Modeling process to study drug combinations. (A) Illustration of the drug modelling process. An example enzymatic network with
corresponding ODEs is shown. Solid links represent inter-node regulatory relationships, broken lines are background regulations. With the addition of
drugs to chosen links (shown by crosses), the equations are modified by incorporating drugs as competitive inhibitors. (B) An example isobologram
calculated from the combination of links 1 and 2 in (A). Points on isobloles represent dose combinations with the same efficacy. The black isobole
(solid line) is concave, suggesting a synergistic interaction between the two links. The tipping point is the point where CI reaches minimum (or
maximum for antagonistic cases). Inhibition strength is defined as [I]/Ki, i. e. the concentration of the inhibitor divided by its inhibition constant. The
combination indices calculated from inhibition strengths are identical with those calculated with concentrations since KI’s cancel. The whole process
depicted here was repeated for all (16,038) networks and 100,000 sampled parameter sets.
doi:10.1371/journal.pone.0093960.g001
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Methods

Modeling three-node enzymatic networks
To extensively model drug action in diverse conditions and

elucidate the connection between network topology and drug

interactions, we chose to first study small networks which could be

thought of as simplifications of disease related networks. A

commonly used small-network formalism to investigate the

topology-function relationship is the three-node enzymatic net-

work studied by Ma et al. [22] and others [23,24]. Because of the

frequent use of enzymes as drug targets, we considered enzymatic

network as a valid representation of a class of drug target related

network. A three-node enzymatic network consists of three

enzymes, each existing in active or inactive states. The concen-

tration of each enzyme was 1 mM. Following a prescribed

connective structure of the networks, the enzymes catalyze the

reversible conversion of other enzymes from one state to the other,

thus activate or deactivate them (Figure 1A). To ensure a positive

steady state for each enzyme, if an enzyme receives only positive/

negative regulations, a background negative/positive enzyme

regulation F/E was added (E and F in equations in Figure 1A).

All catalyzing reactions were modeled by Michaelis-Menten

kinetics, and a background activating enzyme regulation I for

node A serves as an input of the system. Concentrations of I and

E/F were fixed at 1 mM and 0.5 mM, respectively. All free

parameters in the system were generated by latin hypercube

sampling [25], done logarithmic uniformly in a biological range of

0.001,10 mM for KM, and 0.1, 10 s21 for kcat. We first solved the

nonlinear equations with the nonlinear equation solver gsl_multir-

oot_fsolver_hybrids in GSL (GNU Scientific Library) [26] to

obtain a steady state of the system, and then we performed linear

stability analysis at the solution to select stable states. Linear

stability analysis was performed following standard procedures:

first the Jacobi matrix at the steady state was calculated; then the

eigenvalues of the Jacobi matrix were computed. If all eigenvalues

of the matrix had negative real parts, we considered the solution as

a stable state and used it for further analysis.

Modeling drug action on three-node enzymatic networks
One enzyme (node C in Figure 1A) from the three enzyme

system was chosen as the output node, whose active form

concentration in the stable steady state of the system was recorded

to monitor the efficacy of drugs. Thus, if an inhibitor reduced the

active form concentration of the output node by a certain

percentage (50% reduction used in the current study) from the

drug-free value, it would be considered as a candidate drug and

the reaction (a specific link in the network) it targeted would be a

candidate drug target. After identifying all candidate drug targets,

their combinations were studied by computational enumeration.

We used the concepts of Loewe synergy [27] and combination

index (CI) [28] to distinguish between drug synergy and

antagonism. CI is defined as follows: the denominators are the

EC50’s of the drugs acting alone, whereas the numerators are the

concentrations of the drugs in a combination that exert the same

50% reduction effect.

CI~
½A�combination

½A�EC50

z
½B�combination

½B�EC50

For each drug combination, an EC50-isobole was computed

(Figure 1B) and CI was calculated throughout the concentration

range. A CI consistently less than 1 (a downward concave isobole)

represents drug synergy; a CI greater than 1 (an upward concave

isobole) indicates drug antagonism. Thresholds of 1.01 and 0.99

were used in the computation. Drug pairs with CIs between 0.99

and 1.01 were classified as Loewe additive. We also tested larger

margins (such as 0.9 and 1.1), and the results were qualitatively

similar. The whole process is illustrated in Figure 1.

Sampling all possible network topologies for drug
interaction patterns

To obtain a complete catalog of patterns of drug synergy/

antagonism in our model system, we enumerated all possible

network interaction patterns (each node could have three possible

links to itself and other two nodes, and the links could be activation

or deactivation, generating a total of 39 networks. Eliminating

networks with no connection from input (A) to output (C) leaves

16,038 networks) for the three-node enzyme network following Ma

et al. [22] For each of these networks, the complete Michaelis-

Menten reaction kinetics was written as a set of ordinary

differential equations (ODEs). After evaluating a stable steady

state of the system by nonlinear equation solving and linear

stability analysis, the process of drug action modeling described

above was conducted. For each possible network topology, we ran

a total of 100,000 simulations, each with a random parameter set

generated by latin hypercube sampling. Drug interactions

behaving consistently under various parameterizing conditions as

synergistic or antagonistic were selected, clustered by network

Hamming distance (number of differing links between two

networks) and further analyzed. The values of CIs at the tipping

point of the isoboles (Figure 1B), which we refer to as CIt’s, were

also recorded as representations of the extent of synergy or

antagonism.

Results

Drug synergy/antagonism is a property largely
determined by network topology

We modeled patterns of possible drug combinations in all

possible three-node enzymatic network topologies, using pre-

sampled 100,000 parameter sets (Work flow summarized in

Figure 1, detailed in Methods). Because of the complex dynamics

in many networks, and the requirements that the inhibition

strength ([I]/KI) falls within physiological range, we could only

calculate a handful of closed isoboles in many drug combination

cases. We hence collected drug combinations for which we have

solved more than 100 cases and exclusively studied them. In total,

there are 33,798 cases of drug combinations in various network

structures that are solved successfully for more than 100 parameter

sets. We next examined how these drug combinations behave

under various parameterizing conditions. The relative inertness of

drug interaction patterns to parameter changes was observed. For

most combinations studied in our calculations, whether the drug

interaction was synergistic or antagonistic, was robustly consistent

under most parameterizing conditions. The distribution of

percentage of synergy in all combinations is shown in Figure 2.

It could be seen that more than 18,000 drug combinations were

synergistic in more than 95% of all their solved cases. Therefore, if

we specified a specific target combination in an enzymatic

network, the pattern of interaction of drugs targeting them would

be largely determined by the network structure. This was in

contrast to the previous idea that one could calculate whatever

values of CI by varying the parameters of a specified network [19].

Indeed, CI would vary under different parameterizing conditions,

but the qualitative nature of the combination, i.e. drug synergy or

antagonism, remains relatively inert. To illustrate this point, we
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plotted the distribution of CIt’s for several combinations in

Figure 3. For each of the combinations shown, although the CIt

values vary over a wide range, they fall consistently in either the

synergistic range (,1) or antagonistic range (.1). Overall, we

believe that this is a strong evidence for our hypothesis that the

qualitative nature of drug interaction was largely determined by

the topology of the network involving the drug targets, while

parameters conferring only a minor influence.

Synergistic combinations are abundant in our model
Figure 2 shows the distribution of percentage of solved cases

being synergistic for all 33,798 drug combinations we have

studied. It could be seen that more than 18,000 drug combinations

are synergistic for more than 95% of the cases, whereas only

around 1,000 combinations are consistently antagonistic. We

selected those motifs (8241 networks) with more than 500 solved

cases in which 99% or more are synergistic. These motifs were

clustered according to the network structure. From visual

inspection of the representative networks in each cluster, we

identified the common skeleton shared by cluster members. These

‘synergistic motifs’ were basic building blocks that could lead to

drug synergy. We then classified these motifs into three broad

categories: serial, parallel and mixed serial-parallel combinations.

As shown in Figure 4, each category includes diverse network

topologies. It should be noted that these structures are themselves

‘motifs’, i.e. adding additional links or feedbacks usually do not

alter synergistic interactions of the combinations.

Quantitative comparison of parallel and serial drug
combination patterns

As a quantitative measure, CIt (Figure 1B) can be used to judge

the extent of synergy or antagonism. When CIt is less than 1, a

smaller CIt indicates a more concave bending of the isobole

toward the lower concentration end, which in turn indicates a

greater reduction of drug doses needed. Because CIt varies with

the parameters, we calculated average CIt for each combination

we studied as the average of all the CIt ’s in solved cases of the

combination. To compare two major classes of combinational

patterns, i.e. parallel and serial combinations, we separated all

33,798 combinations into these two groups. If the end node of the

first target link served as the starting node of the second target link,

we defined the combination of these two links as serial

combination. All other combinations were treated as parallel.

The distributions of the average CIt’s for all parallel and serial

combinations are shown in Figure 5. Both distributions peak

around 0.6, a mildly synergistic value. However, serial combina-

tions in general have higher CIt values than parallel combinations.

Also, antagonistic combinations come from mainly serial combi-

nations, which confirms the observations in the previous section.

Therefore, parallel combinations generally show greater dose-

reducing effects, and are less likely to be antagonistic.

Antagonistic combinations in our model
Since most drug combinations we found were synergistic, the

less common antagonistic cases in our model deserve special

attention. Similar to analysis of synergistic drug combinations, we

selected those drug combinations (1044 combinations) with more

than 100 solved cases showing antagonistic more than 90% of the

time and clustered them. Only one major class of antagonistic

interactions was identified (Figure 6). These antagonistic combi-

nations all involved inhibition of a positive feedback on a node,

and a downstream link originating from that node. On one hand,

this suggests that it is relatively hard for two drugs to be

antagonistic in small enzymatic networks; on the other hand, this

motif serves as an interesting example of how antagonism could

arise not from competing actions of two drugs, but from the

specific network topology that underlies the drug targets. We

investigated how this type of combinations leads to drug

antagonism in the next section.

Theoretical analysis of the origin of synergy and
antagonism in typical motifs

We performed a theoretical analysis on the origins of synergy

and antagonism in typical drug combination motifs. First, we

derived a criterion for judging synergy or antagonism from the

definition of Loewe synergy. Based on this criterion, we have

dissected the source of synergy for the simplest cases of serial

combination and parallel combination, as well as the basic motif of

antagonistic combination (File S1). We noticed that single-drug

dose response relationship is a key determinant of synergy/

antagonism in our model system. In parallel/serial combinations,

two hyperbolic single drug dose response relationships make a

synergistic interaction easy to achieve. Inhibiting a positive

feedback may produce a non-hyperbolic dose response relation-

ship that is prone to antagonism. We have provided a detailed

discussion in File S1.

Discussion

Synergy prevails in drug combinations targeting closely
connected targets

Our results demonstrated the high relevance of drug synergy in

small scale enzymatic pathways. Previously Jansen et al. [11]

reported enrichment of synergistic combinations in drug pairs with

similar chemogenomic profiles, whose targets may be neighbors in

the underlying biological networks. Our work provides a

theoretical basis for how their approach is successful. Furthermore,

the practice of targeted cancer therapy combinations have

demonstrated the benefits of co-targeting closely related molecular

targets, especially in the MAPK and the PI3K/Akt/mTOR

pathways. For example, serial combinations such as Mek/Raf [29]

and Akt/mTOR [30], or co-targeting closely related parallel

pathway such as Mek/Akt [31] or Raf/mTOR [32] have all been

shown to be synergistic (Fig. 7). Feedback and crosstalk abound in

these two pathways, but consistent with our results, they generally

do not alter the qualitative feature of the combination, so that most

Figure 2. Distribution of percentage of synergistic cases under
various parameter sets for all combinations studied. Consis-
tently synergistic and antagonistic combinations are marked, showing
their stark contrast in number.
doi:10.1371/journal.pone.0093960.g002
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combinations of targets inside these pathways are synergistic.

Thus, designing synergistic combinations targeting closely con-

nected targets in many enzymatic pathway diseases is a promising

strategy. Targeting unrelated drug targets in large networks often

fail to show synergy, as exemplified by high throughput screening

studies.

Possible source for buffering antagonism
Yeh et al. [4,20] categorized drug antagonism into two

categories: antagonistic buffering and antagonistic suppression.

In the case of antagonistic suppression, one drug suppresses the

action of the other, producing a ‘‘hyper-antagonism’’ with a

maximum combination index larger than 2. Well studied cases of

drug antagonism are chiefly of this type, such as the combination

of the antibiotics spiramycin and trimethoprim [15], and the

combination of dexamethasone and paclitaxel for lung cancer

chemotherapy [33–35]. We observed no cases of suppressive drug

Figure 3. Distribution of CIt values for several combinations. The combinations are shown in insets and the targets inhibited marked by
crosses. These combinations are all highly consistent in showing either synergy or antagonism under 90% of parameterizing conditions.
doi:10.1371/journal.pone.0093960.g003

Figure 4. List of basic motifs that could result in drug synergy.
Red dotted arrows indicate inhibitory actions, while blue arrows
indicate activations. The targeting links of the drug combinations are
marked by crosses in each network.
doi:10.1371/journal.pone.0093960.g004

Figure 5. Comparison of distributions of average CIt’s for
parallel and serial combinations. Definitions of parallel and serial
combinations are presented in the main text.
doi:10.1371/journal.pone.0093960.g005
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antagonism in our modeling study: all the antagonistic cases we

identified were buffering antagonisms (one example shown in

Fig. 3, lower right, where CIt values falls between 1 and 2).

Therefore, our results suggest that in antagonistic drug combina-

tions, drugs do not necessarily jeopardize the action of each other

as commonly thought. Instead, certain network topological

arrangement of the drug targets, such as the motifs involving

positive feedbacks in our findings, could naturally produce a

buffering antagonism between the drugs. Whether such antago-

nism exists, and whether it contributes to clinically observed

antagonism is another interesting topic for future investigations.

Possible applications of the synergy/antagonistic
catalogs

In contrast to previous ideas, we have shown that drug synergy

or antagonism strongly depends on the underlying target-network

topology for enzymatic systems. It is therefore useful to compile

catalogs of synergistic or antagonistic combination motifs. Such

catalogs can be exploited for rationally designing drug combina-

tions, or multi-target drugs. For example, our calculations suggest

that many motifs (Figure 4) are highly consistent in showing

synergistic behaviors. If a disease-related biological network falls

into one of the categories we found, then a combination could be

safely proposed to be a synergistic combination. Also, the

observation that simple serial and parallel combinations tend to

be mostly synergistic could be a guideline that can be readily

applied to many scenarios involving signal transduction pathways

similar to those shown in Fig. 7. Previously, most synergistic

combinations were proposed based on experience. Here we

provide a rational and readily applicable approach toward

synergistic drug combination design. We need to stress that our

results come from calculations on enzymatic networks, and other

types of biological networks still need to be further studied.

Conclusion

This work describes a comprehensive study of the combined

effects of drugs in three-node enzymatic networks. Drug synergy or

antagonism was shown to be a property of target-related network

topology. Several basic synergistic and antagonistic motifs were

summarized and analyzed. Synergistic motifs could be classified

into parallel, serial and mixed type combinations, whereas

antagonistic combinations fall into one basic type involving

positive feedbacks. Motifs described here can be used to design

drug combinations in certain enzymatic contexts. Further work is

warranted to clarify the effects of drug combinations on more

complex biological networks.

Supporting Information

File S1 Theoretical analysis of basic synergy/antago-
nism motifs.

(PDF)
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