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There are numerous different odorant molecules in nature but
only a relatively small number of olfactory receptor neurons
(ORNs) in brains. This “compressed sensing” challenge is com-
pounded by the constraint that ORNs are nonlinear sensors with
a finite dynamic range. Here, we investigate possible optimal
olfactory coding strategies by maximizing mutual information
between odor mixtures and ORNs’ responses with respect to
the bipartite odor-receptor interaction network (ORIN) character-
ized by sensitivities between all odorant–ORN pairs. For ORNs
without spontaneous (basal) activity, we find that the optimal
ORIN is sparse—a finite fraction of sensitives are zero, and the
nonzero sensitivities follow a broad distribution that depends
on the odor statistics. We show analytically that sparsity in the
optimal ORIN originates from a trade-off between the broad tun-
ing of ORNs and possible interference. Furthermore, we show
that the optimal ORIN enhances performances of downstream
learning tasks (reconstruction and classification). For ORNs with a
finite basal activity, we find that having inhibitory odor–receptor
interactions increases the coding capacity and the fraction of
inhibitory interactions increases with the ORN basal activity.
We argue that basal activities in sensory receptors in differ-
ent organisms are due to the trade-off between the increase in
coding capacity and the cost of maintaining the spontaneous
basal activity. Our theoretical findings are consistent with existing
experiments and predictions are made to further test our the-
ory. The optimal coding model provides a unifying framework
to understand the peripheral olfactory systems across different
organisms.

olfaction | information theory | coding | olfactory receptor neurons

Animals rely on their olfactory systems to detect, discrim-
inate, and interpret external odor stimuli to guide their

behavior. Natural odors are typically mixtures of different odor-
ant molecules whose concentrations can vary over several orders
of magnitude (1–3). Remarkably, animals can distinguish a large
number of odorants and their mixtures by using a relatively small
number of odor receptors (ORs) (4, 5). For example, humans
have only∼ 300 ORs (6, 7), and the often-cited number of odors
that can be distinguished is ∼ 10, 000 (8); the real number may
be even larger (9) (see also refs. 10 and 11). Humans can also
distinguish odor mixtures with up to 30 different compounds
(12). In comparison, the highly olfactory lifestyle and exquisite
olfactory learning ability of the fly is afforded by only ∼ 50 ORs
(4, 13). The olfactory system achieves such remarkable ability
through a combinatorial code in which each odorant is sensed by
multiple receptors and each receptor can be activated by many
odorants (14–17). In both mammals and insects, odorants bind
to receptors in the dendrites or cilia of olfactory receptor neu-
rons (ORNs), each of which expresses only 1 type of receptor.
ORNs that express the same receptors then converge onto the
same glomerulus in olfactory bulb (mammals) or antennal lobe
(insects), whose activity patterns contain the information about

external odor stimuli (13, 18–20). ORNs also exhibit a certain
level of spontaneous activity in the absence of odor stimuli (21–
23), and such basal activity can be suppressed by some odorants
(24, 25). While largely regarded as unavoidable noise, the func-
tional rule of spontaneous activity and odor-evoked inhibition in
odor coding has only been revealed in a recent study (26). The
key question that we want to address in this paper is how ORNs
with these characteristics best represent external olfactory infor-
mation that can be interpreted by the brain to guide an animal’s
behavior (4, 13, 27).

It has long been hypothesized that the input–output response
functions of sensory neurons are “selected” by statistics of the
stimuli in the organism’s natural environment to transmit a max-
imum amount of information about its environment, generally
known as the efficient coding hypothesis (28, 29) or the related
InfoMax principle (30, 31). For instance, the contrast–response
function of interneurons in the fly’s compound eye can be well
approximated by the cumulative probability distribution of con-
trast in the natural environment (29). The receptive fields of
neurons in the early visual pathway are thought to exploit statis-
tics of natural scenes (32–36). A similar result has also been
observed in the auditory system (37). In all these cases, to
achieve maximum information transmission an “ideal” neuron
should transform the input distribution into a uniform output
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distribution (29, 38) and a population of neurons should
decorrelate their responses (35, 39, 40).

There are a huge number of odorants in the environment, each
with its own unique molecular structure and different physio-
chemical properties (41, 42), which poses a severe challenge
for the olfactory system to code olfactory signals. Fortunately,
typical olfactory stimuli are sparse with only a few types of odor-
ant molecules in an odor mixture (1, 2, 43). The sparsity of
the odor mixture immediately reminds us of the powerful com-
pressed sensing (CS) theory developed in computer science and
signal processing community (44, 45). The CS theory shows that
sparse high-dimensional signals can be encoded by a small num-
ber of sensors (measurements) through random projections, and
the highly compressed signal can be reconstructed (decoded)
with high fidelity by using an L1-minimization algorithm (44–46).
However, conventional CS theory assumes the sensors to have
a linear response function with essentially an infinite dynamic
range (47). In contrast, the ORN response is highly nonlinear
(24, 48), with a typical dynamic range less than 2 orders of mag-
nitude, which is far less than the typical concentration range of
odorants (48).

The use of the CS theory has recently been explored in olfac-
tory systems. For example, Zhang and Sharpee (49) proposed
a fast reconstruction algorithm in a simplified setup with binary
ORNs and binary odor mixtures without concentration informa-
tion. In another work, Krishnamurthy et al. (50) studied how the
overall “hour-glass” (compression followed by decompression)
structure of the olfactory circuit can facilitate olfactory associa-
tion and learning, with the assumption that ORN responses to
odor mixtures are linear. Following ideas in CS theory, Singh
et al. (51) recently proposed a fast olfactory decoding algorithm
that might be implemented in the downstream olfactory system.

Another related study is the recent work by Zwicker et al.
(52) where the authors investigated the maximum entropy cod-
ing scheme for the olfactory system by using a simplified binary
response function, where an odor only induces a response when
its concentration is above a threshold that is inversely propor-
tional to the receptor sensitivity to the odor. They found 2
conditions for the binary ORNs to maximize the information
transmission. The first condition is that each ORN on average
responds to half of the odors, that is, half of the odors have a con-
centration that is higher than the corresponding threshold, and
the other condition is that the responses from different ORNs
need to be uncorrelated. These results were obtained by study-
ing the average activities of the ORNs and their correlations with
a binary input–output response function and a specific prior for
the sensitivity distribution (52).

In all of these previous studies, however, strong simplify-
ing assumptions were made about neural response functions,
treating them as either binary or linear. Thus, the optimal cod-
ing strategy for neurons with realistic physiological properties
remains unclear. To address these important open questions,
here we study the optimal coding scheme by using a realistic
ORN input–output response function where the ORN output
depends on the odor concentration continuously in a nonlin-
ear (sigmoidal with odor concentration on a logarithmic scale)
form characterized by its sensitivity, or equivalently the inverse
of the half-maximum response concentration. By optimizing the
input–output mutual information in the full sensitivity matrix
space without any prior, we systematically study the optimal com-
pressed coding strategy for an array of nonlinear ORNs with and
without a finite basal activity.

Results
We first describe the mathematical setup of the problem before
presenting the results. An odor mixture can be represented as
a vector c = (c1, . . . , cN ), where cj is the concentration of odor-
ant (ligand) j (=1, 2, . . . ,N ) and N is the number of all possible

odorants in the environment. A typical odor mixture is sparse
with only n(�N ) odorant molecules that have nonzero con-
centrations. As illustrated in Fig. 1A (dotted box), the odor
mixture signal c is sensed by M sensors. The encoding process,
which maps c to the ORN response vector r = (r1, r2, . . . , rM ), is
determined by the bipartite odorant–ORN interaction network
characterized by the sensitivity matrix W , whose elements are
denoted as Wij , the sensitivity of the i -th sensor (ORN) to the
j -th odorant for all odorant–ORN pairs with j = 1, 2, . . . ,N and
i = 1, 2, . . . ,M .

For ORNs without spontaneous activity, we used a simple
competitive binding model (53, 54) (also see SI Appendix), in
which the normalized response of ORN i (=1, 2, . . . ,M ) to odor
c can be described by a nonlinear function,

ri =Fi(c, W) + ηi =

∑N
j Wij cj

1 +
∑N

j Wij cj
+ ηi , [1]

where Fi is the response function and ηi represents the noise.
For convenience, ηi is assumed to be Gaussian with zero mean
and standard deviation (SD)σ0. In this paper, we consider the
case with a small but finite noise σ0� 1. Other forms of the non-
linear response function and noise can be used without affecting
the general conclusions.

As illustrated in Fig. 1B, the input–output response curve is
highly nonlinear (sigmoidal), resulting in a finite response range
for each sensor, which is less than the range of concentration for
a typical odorant molecule. Therefore, to encode the full con-
centration range of an odorant molecule, an odorant needs to
interact with multiple sensors with different sensitivities. On the
other hand, given the fact that M <N , each sensor has to sense
multiple odorant molecules.

Eq. 1 maps the external odor stimulus c to the internal
neuronal activity r = (r1, r2, . . . , rM ). The downstream olfactory
circuits then use this response pattern to evaluate (decode)
odor information (both their identities and concentrations) in
order to guide the animal’s behaviors. The quality of encod-
ing odor information by the periphery ORNs directly sets
the upper limit of how well the brain can decode the odor
information (55).

A given odor environment can be generally described by a
probability distribution Penv(c). To convey maximum informa-
tion about external odor stimuli in their response patterns to
the brain, ORs/ORNs can adjust their sensitivity matrix W to
“match” odor statistics Penv(c). Without any assumption on what
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Fig. 1. Schematics of peripheral odor coding. (A) Illustration of interac-
tion between odorants and ORs. There are N possible odorant molecules
and M ORNs. The interaction between the i-th ORN and the j-th odor-
ant is characterized by the sensitivity Wij . The odorant–ORN interactions
in the peripheral olfactory system (the dotted box) are characterized by
the (M×N) sensitivity matrix W . The odor information collected by the
ORNs is passed on to downstream network for further processing. (B) Typical
ORN–odorant dose–response curve according to Eq. 1. The range of linear
response (in the log scale) is highlighted by the shaded area.
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information the brain may need, the mutual information I (c, r)
between stimuli and response pattern of ORNs sets the limit on
how much odor information is received by the peripheral ORNs
and thus serves as a good “target function” to be maximized
(30, 31, 52, 56–58). I is defined as

I (c; r) =H (r)−H (r|c)

=−
∫

Pr (r) logPr (r)dr +

∫∫
P(r, c) logP(r|c)drdc,

[2]

where H (r) and H (r|c) are the entropy of output distribu-
tion Pr (r) and conditional distribution P(r|c). In this paper, we
consider the limit of small noise when the second term is inde-
pendent of W ; hence, we will use H (r) as our target function for
optimization.
H (r) depends on W and Penv(c) because Pr (r) depends on W

and Penv(c):

Pr (r) =

∫
(2πσ2

0)−
M
2 exp

[
−

M∑
i=1

(ri −Fi(c, W))2

2σ2
0

]
Penv(c)dc.

[3]

The optimal sensitivity matrix can be derived by maximizing the
mutual information I or equivalently the differential entropy H
with respect to W for different odor mixture statistics Penv(c) and
different numbers of ORNs. The mutual information as given
in Eq. 2 can only be computed analytically for simple cases.
For more general cases, we used the covariance matrix adapta-
tion evolution strategy (CMA-ES) algorithm to find the optimal
sensitivity matrix (59, 60) (see Materials and Methods and SI
Appendix for technical details).

The optimal sensitivity matrix is sparse for ORNs without basal activ-
ity. Odor concentration varies widely in the natural environment
(1, 61). To capture this property, we studied the case where the
odorant concentrations in an odor mixture follow a log-normal
distribution with variance σ2

c . Other broad distributions such as
power-law distributions are also studied without changing the
general conclusions. For simplicity, we consider the case where
odorants appear independently in the mixture; a more realis-
tic consideration such as correlation among odorants will be
discussed later in Summary and Discussion.

For given odor statistics (characterized by N , n , and σc), and
a given number of nonlinear sensors M , we can compute and
optimize the input–output mutual information I (W |N ,n,σc ;M )
with respect to all of the M ×N elements in the sensitivity matrix
W . We found that the optimal sensitivity matrix W is “sparse”:
Only a fraction (ρw , the sparsity parameter) of its elements
have nonzero values (sensitive, shown as the colored elements
in Fig. 2A), and the rest are insensitive (the black elements in
Fig. 2A), with essentially zero values of Wij . From the histogram
of ln(Wij ) shown in Fig. 2B, it is clear that elements in the
optimal sensitivity matrix fall into 2 distinctive populations: the
insensitive population that has practically zero sensitivity (note
the log scale used in Fig. 2B) and a sensitive population with a
finite sensitivity. For the cases when the odor concentration fol-
lows a log-normal distribution, the distribution of the sensitive
(nonzero) elements Ps(w) can be fitted well with a log-normal
distribution as shown in Fig. 2B.

Our main finding here, that is, sparsity in the odor–receptor
sensitivity matrix, is supported by existing experimental mea-
surements. As shown in Fig. 2C, the sparsity parameter ρw is
estimated to be ∼ 0.4 for fly larva (48) and ∼ 0.1 for mouse (62).
For locust, the sparsity parameter of the odor–ORN interaction
matrix is estimated to be ∼ 23% from the experiments reported
in ref. 63, and the response sparsity of projection neurons (PNs)

10 20 30 40 50 60 70 80 90 100
odorant index

5

10

15

20

25

30

re
ce

pt
or

 in
de

x

-4

-2

0

2

4

-100 -50 0
0

0.1

0.2

0.3

0.4

pr
ob

ab
ili

ty

-5 0 5
0

0.1

0.2

0.3

0.4
sensitive w

Gaussian fitsensitive

insensitive

Theory

0.0

0.1

0.2

0.3

fly larva
mouse

A

B

C

10
0

0.2

0.4

0.6

Experiment

2 4 6 80 5

fly larva mouse

Fig. 2. Statistics of the optimal sensitivity matrix elements from theory and
comparison with experiments. (A) Heat map of a typical optimal sensitiv-
ity matrix from our model. Color indicates the value of ln(Wij), and black
indicates the “inactive” or negligible interactions. (B) Histogram of all of
the Wij values from our model. It shows a bimodal distribution: an insen-
sitive part with near-zero Wij and a sensitive part with nonzero Wij . The
distribution of the sensitive elements can be fitted by a log-normal distribu-
tion. (C) Experimental data from fly larva and mouse. (Left) The fraction of
sensitive odorant–receptor interactions ρw estimated in experiments for fly
larva (48) and mouse (62). (Right) The histogram of sensitive Wij , Ps(w), for
fly larva and mouse. Model parameters are N = 100, M = 30, n = 2, σc = 2,
and µ= 0.

was found to be ∼ 50% (64). Given the high concentration
of odorants used in these experiments, the “zero” sensitivities
cannot be simply explained by the limitation of experimen-
tal detection accuracy, although it is possible that some of
the “zero” sensitivities are caused by inhibitory odorant–ORN
interactions due to limitations of the measurement methods
(Summary and Discussion). However, measurements of the exci-
tatory odorant–ORN interactions are unambiguous and they
show only a finite fraction of excitatory odorant–ORN inter-
actions, consistent with our theory. Furthermore, the broad
distribution of the excitatory sensitivities obtained in our model
also agrees qualitatively with those estimated from experi-
ments (Fig. 2 C, Right), which are slightly skewed log-normal
distributions.

Besides the distribution of the individual sensitivity matrix
elements, we also calculated the row (sensor)-wise and column
(odorant)-wise rank-order correlation coefficients (Kendall’s
tau, τ) and compared them with those from the same matrix but
with its elements shuffled randomly. We found that both the rows
and columns (SI Appendix, Fig. S1) in the optimal matrix have
a higher level of orthogonality (and thus independence) than
that from random matrices. This orthogonality in the optimal W
matrix leads to a higher input–output mutual information than
those from the shuffled matrices (SI Appendix, Fig. S2A) and a
nearly uniform distribution of ORN activity for different odor
mixtures (SI Appendix, Fig. S2 B–D).
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The Optimal Sparsity Depends on Odor Statistics and the Number
of Sensors. The statistics of the optimal sensitivity matrix ele-
ments are characterized by the sparsity parameter ρw defined as
the fraction of nonzero elements in W , and the distribution of
the sensitive (nonzero) elements, Ps(w), which is further char-
acterized by its mean (µw ) and SD (σw ). Note that the sparsity
parameter ρw is defined in such a way that a smaller value of ρw
corresponds to a sparser sensitivity matrix. We investigated sys-
tematically how ρw , µw , and σw depend on statistical properties
of the odor mixture characterized by N , n , and σc , as well as M ,
the total number of sensors (ORNs).

We found that as the odor concentration becomes broader
with increasing σc , ρw increases (Fig. 3A). This is expected as
more receptors with different sensitivities are required to sense
a broad range of input concentrations. When we increased the
odor mixture sparsity n or the total number of possible odors N ,
the optimal sensitivity matrix sparsity ρw parameter decreased
(Fig. 3 B and C). In general, as the mapping from odor space to
ORN space becomes more “compressed” with larger values of n
and/or N , the optimal strategy is to have each receptor respond
to a smaller fraction of odorants to avoid saturation.

Finally, we gradually increased the number of receptors M
with fixed values of N , n , and σc . We found that ρw decreases,
that is, the sensitivity matrix becomes more sparse as the number
of sensors M increases (Fig. 3D). This somewhat counterintu-
itive result can be understood thus: As the system has more
sensors to encode signals, each sensor can respond to a smaller
number of odors to avoid interference. For all of the cases we
studied, when the odor concentrations follow a log-normal dis-
tribution, then the distribution of the nonzero sensitivities in
the optimal sensitivity matrix follows roughly a log-normal dis-
tribution with its mean µw and SD σw depending on the odor
statistics (σc , n , N ) and the number of ORNs M (SI Appendix,
Fig. S3).

To verify whether sparsity is a general (robust) feature in
the optimal sensitivity matrix, we studied the cases when the
odor concentration follows different distributions, such as a sym-
metrized power-law distribution, Penv(c)∝ exp(−β| ln c|) (see
SI Appendix, Fig. S4 for the comparison with log-normal distribu-
tion), with different exponent β. For all values of β studied, there
is always a finite sparsity parameter ρw < 1 in the optimal sensi-
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Fig. 3. Dependence of ρw on the width of odor log concentration σc (A),
the input sparsity n (B), the number of total odorants N (C), and the number
of receptors M (D). In A and B, N = 50, M = 13; in C, M = 13; and in D, N = 50.
Error bars are SD of 40 times simulation.
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Fig. 4. The optimal sensitivity matrix for the symmetric power-law
odor concentration distribution Penv(c)∝ exp[−β| ln c|]. (A) The sparsity
parameter ρw versus the power-law exponent β. (B) The distribution of
the nonzero sensitivities Ps(w) for β= 0.3, 0.7. (Inset) The dependence
of the skewness of the distribution on β. Parameters: N = 50, M = 13,
n = 3,σ0 = 10−3.

tivity matrix. As shown in Fig. 4A, ρw decreases slightly when
β increases and the odor concentration distribution becomes
narrower, which is consistent with the previous cases when the
odor concentration distribution is log-normal (Fig. 3A). How-
ever, as shown in Fig. 4B, the distribution of the sensitive
elements, Ps(w), does not follow an exact log-normal distribu-
tion (SI Appendix, Fig. S4B). In fact, Ps(w) is asymmetric in
the ln(w) space with a skewness that depends on β as shown in
Fig. 4 B, Inset.

Taken together, our results suggest that sparsity in the sen-
sitivity matrix is a robust feature for nonlinear CS problems.
This theoretical existing experiments in olfactory systems (48,
62). Our study also showed that the nonzero sensitivities fol-
low a broad distribution whose exact shape, mean, and variance
depend on odor statistics and total number of ORNs.

The Origin of Sparsity in the Optimal Sensitivity Matrix. Given the
constraint that the number of sensors is much smaller than the
possible number of odorants, that is, M �N , each sensor needs
to respond to (sense) multiple types of odorant molecule so that
all odorant molecules can be sensed by at least 1 sensor. How-
ever, in an odor mixture with a few types of odorant molecules,
2 or more odorants in the mixture can bind with the same sensor
and interfere with each other (e.g., by saturating the nonlin-
ear sensor). The probability of interference increases with the
sparsity of the sensitivity matrix. This trade-off between sens-
ing multiple odorants and the possible interference determines
the sparsity in the optimal sensitivity matrix. We demonstrate
this trade-off and its effect more rigorously by developing a
mean-field theory (MFT) as described below.

We begin with the simplest case in which there is only 1
odorant in the environment sensed by many receptors (N =
1,M � 1). Since the dynamic range of a nonlinear ORN is
finite due to finite noise and response saturation in the ORN
output (see Eq. 1), multiple ORNs are required to represent
(code) the concentration information of even a single odorant
if the odorant concentration has a larger dynamic range. Obvi-
ously, there is no interference in this case. As first proposed by
Laughlin (29), the optimal coding scheme is for the M receptors
to distribute their sensitivities according to the input concentra-
tion distribution so that the output distribution is uniform. For
the case when the distribution of the odorant concentration is
log-normal with an SD σc , the optimal sensitivity distribution
P1(w) that maximizes H (r) is also approximately a log-normal
distribution:

P1(w)≈ 1

w
√

2πσ2
w

exp

[
− (lnw −µw )2

2σ2
w

]
, [4]
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where the mean µw = 0 and the variance σ2
w increase with

the variance (σ2
c ) of logarithmic concentration distribution.

More importantly, we show analytically that in general the cod-
ing capacity I1 increases logarithmically with the number of
receptors M when M � 1 (see SI Appendix for details), which
is verified by simulation results as shown in Fig. 5A:

I1(M ) =
1

2
log(M ) + const. [5]

This means that sparsity ρw = 1, that is, all sensitivities should
be nonzero because there is no interference when only 1
type of odorant molecule (N = 1) is present in the environ-
ment. However, it is important to note that the maximum
mutual information only increases weakly (logarithmically) for
large M .

We next consider the case where 2 odorants are sensed by
multiple receptors (N = 2,M � 1). Let’s denote the number of
receptors that respond to each odorant as m (m ≤M ) and the
sparsity ρw =m/M . If each odorant is sensed by a disjoint set
of receptors, the total differential entropy will simply double the
amount for a single odorant: I2(m) = 2I1(m). However, there is
a finite probability p =m/M = ρw that a given receptor in 1 set
will also respond to the other odorant. In the conventional lin-
ear compressive sensing scenario, the sensors respond linearly to
the combination of input signals and therefore have effectively
an infinite dynamic range; this linearly “compressed” represen-
tation can thus be “demultiplexed” during the decoding process,
leading to accurate reconstruction of the input signals. In con-
trast, a realistic ORN has only a finite dynamic range and can
reach its saturation level more easily when 2 or more odorants
excite the ORN simultaneously. This interference effect, which is
caused by saturation of the ORN response, constrains its coding
capacity. On average, there are m × p =m2/M receptors whose
output is “corrupted” due to interference between 2 different
odorants in a given mixture. We can write down the differential
entropy as

I2(m) = 2I1(m)− m2

M
∆I , [6]

where I1(m) is the maximum differential entropy for 1 odor
(Eq. 5) and ∆I is the marginal loss of information (entropy loss),
which can be approximated by ∆I ≈α(I1(m + 1)− I1(m))≈
α∂I1(m)/∂m , where α≤ 1 is the average fraction of informa-
tion loss for a “corrupted” sensor. We can then obtain the
optimal value of m by maximizing I2(m) with respect to m .
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Fig. 5. The trade-off between increasing single odorant information and
interference among multiple odorants. (A) The differential entropy with 1
odorant, I1, versus the number of receptors M for different width (σc) of
odor log-concentration distribution. I1 increases monotonically with M but it
only grows logarithmically with M for large M (dashed line). (B) Differential
entropy I2 for the case with 2 odorants in the mixture with their concentra-
tions following the same log-normal distribution with width σc. I2 depends
nonmonotonically on the fraction of sensitive receptors ρw (=m/M) with a
maximum (marked by the dashed lines) at ρ∗w that depends on σc, which is
shown in the inset.

For m�M , the interference effect is small, so I2(m)≈ 2I1(m),
which increases with m logarithmically according to Eq. 5. As
m increases, the interference effect given by the second term
on the right-hand side of Eq. 6 increases with m , which is
faster than the slow logarithmic growth of 2I1(m). This leads
to a peak of I2(m) at an optimal value of m =m∗<M or
a sparsity parameter of the sensitivity matrix ρw =m∗/M < 1
(Fig. 5B).

In the MFT, we can compute the olfactory coding and interfer-
ence by ignoring the weak rank-order correlation in the optimal
sensitivity matrix and assuming the distributions for the optimal
sensitivity matrix elements are independent and identically dis-
tributed. In particular, we used the following approximation for
the distribution of the sensitivity matrix W :

P(W) =

N∏
j=1

M∏
i=1

[ρw ×Ps(Wij ) + (1− ρw )× δ(Wij )], [7]

where ρw is the matrix sparsity and Ps(Wij ) is a smooth dis-
tribution function, which is approximated here as a log-normal
distribution with mean µw and SD σw as given in Eq. 4. The mean
differential entropy of ORN response pattern

〈H 〉W (ρw ,µw ,σw )≡
∫

H (W)P(W)dW ,

which is averaged over the distribution of the sensitivity matrix
W , can be maximized with respect to the parameters ρw , µw , and
σw (see SI Appendix for details). The resulting optimal param-
eters agree with our direct numerical simulations qualitatively
with a sparsity ρw < 1 that increases with the width of the input
distribution σc (SI Appendix, Fig. S5).

The Optimal Sparse Sensitivity Matrix Enhances Downstream Decod-
ing Performance. The response patterns of ORNs form the inter-
nal representation of external odor stimuli which is further
inferred and interpreted by the brain to guide the organism’s
behavior. Here in this section we test whether the optimal
sensitivity matrix that enables maximum odor information trans-
mission by ORNs can enhance the downstream decoding perfor-
mance by examining 2 specific learning tasks: classification and
reconstruction.

The goal of the classification task is to infer the category of
odor mixture such as the odor valence by training with simi-
lar odor stimuli. Classification is believed to be carried out by
the Drosophila olfactory circuit, which is illustrated in Fig. 6A.
After odor signals are sensed by ∼ 50 ORNs, they are relayed
by the PNs in antennal lobes to a much larger number of
Kenyon cells (KCs) in the mushroom body (MB). Each KC
receives sparse random connections from PNs (65). A single
GABAergic neuron (APL) at each side of the brain forms neg-
ative feedback with all KCs (66). Olfactory learning is mainly
mediated by the dopaminergic neurons (DANs), which con-
trol the synaptic weights between KCs and MB output neurons
(MBONs) (67).

Our model “classifier” network mimics the properties of MB,
as illustrated in Fig. 6B. It contains a high-dimensional mixed
layer (KCs) and a single readout neuron for simplicity. Each
KC unit pools the ORNs with a fixed random, sparse matrix.
Only the synaptic weights from the KCs to the readout neu-
ron are plastic. We assumed that odor stimuli fall into clusters
whose centers represent corresponding typical odor stimuli with
the radius of a cluster ∆S characterizing the variability (68)
(Fig. 6C). Each cluster is randomly assigned with a label (attrac-
tive or aversive) (see Materials and Methods and SI Appendix for
details).

The synaptic weights from the KCs to the readout neuron are
trained by using a simple linear discriminant analysis method,
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Fig. 6. Maximum entropy coding facilitates olfactory learning and clas-
sification. (A) Schematics of the neural circuitry for olfactory learning in
the fly; see the text for detailed description. (B) A simplified model of
the fly olfactory system shown in A for learning the valence of odor stim-
uli, where the effect of DANs is replaced by simple plastic weights from
KC to MBON. (C) Odors are organized as clusters of size ∆S and are ran-
domly assigned with an odor valence. The decoding network receives the
response pattern of ORNs and classifies them into the right categories. One
hundred clusters were drawn and each cluster contains 50 variations, result-
ing in 5,000 odor stimuli among which 80% were used as training data
and the rest were used as testing data. (D) Classification performance with
respect to the sparsity of sensitivity matrix. Best performance appears at
around ρw = 0.6, within the 95% maximum entropy region. Parameters:
N = 100, M = 10, n = 3,σc = 2,σ0 = 0.05, ∆S = 0.1, 500 KC units, and 2 odor
categories. Error bars are SD from 40 simulations.

although other linear classification algorithms such as support
vector machine would also work. After training, the performance
of the “classifier” is quantified by the accuracy of classification on
the testing dataset.

To test effects of different coding schemes on the classifi-
cation performance, we vary the distribution of the sensitivity
matrix elements by changing the sparsity ρw without changing
the distribution of the nonzero sensitivity matrix elements (e.g.,
the log-normal distribution with fixed mean and variance). The
output of the coding process r(c, W) serves as the input for the
“classifier” network and the classifier error is computed for dif-
ferent values of ρw . As shown in Fig. 6D, we find that the best
performance is achieved near ρw = 0.6, which belongs to the
range of ρw with large mutual information between odor input
and the ORN/PN response (shaded region in Fig. 6D). Chang-
ing parameters such as M , n , and number of categories gives
similar results (SI Appendix, Fig. S6). In line with recent studies
which show that sparse high-dimensional representation facili-
tates downstream classification (68, 69), our results suggest that
maximum entropy coding at the ORNs/PNs level may enhance
classification by retaining maximum odor mixture information
in a form that can be decoded by the KCs through random
expansion.

Motivated directly by the original CS problem in computer
science, we also examined how the peripheral coding regime
affects the downstream reconstruction task using a generic feed-
forward artificial neural network as the “decoder.” We found
that the reconstruction error depends on the coding matrix W ,
in particular its sparsity parameter ρw . The best performance
is achieved around ρw = 0.6, within the region where sparse W
enables nearly maximum entropy coding (SI Appendix, Figs. S7
and S8); this property is insensitive to the number of hidden
layers in the reconstruction network (SI Appendix, Fig. S9).

The Optimal Coding Strategy for ORNs with a Finite Basal Activity.
So far, we have only considered the case where the neuron activ-

ity is zero in the absence of stimulus and odorants only activate
the ORs/ORNs. It has been widely observed that some ORNs
show substantial spontaneous activities, and some odorants can
act as inhibitors to suppress the activities of neurons they bind to
(23, 24, 70), as shown in Fig. 7A. The presence of an inhibitory
odorant can shift a receptor’s dose–response curve to an excita-
tory odorant, thereby diminishing the sensitivity of the receptor
to excitatory odorants (26). It is then natural to ask what the
optimal design of the sensitivity matrix is to maximize coding
capacity if odorants can be either excitatory or inhibitory. To
answer this question, we used a 2-state model to characterize
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Fig. 7. The optimal sensitivity matrix for ORNs with a finite basal activ-
ity and comparison with experiments. (A) Schematic of ORN response to
excitatory (blue region) and inhibitory odorants (red region). Note that
the neuron has a finite acitivity r0 in the absence of any stimulus. (B)
Heat map of a typical optimal W from our model, with the size of the
elements indicating the strength of excitatory (blue) and inhibitory (red)
interactions. (C) Both the excitatory and inhibitory interactions in optimal
W can be well approximated by log-normal distributions (solids lines). (D)
The fraction of inhibitory interaction ρi increases the basal activity r0 nearly
linearly (Upper). The differential entropy I also increases with r0 (Lower).
The shaded region shows the range of r0 corresponding to the fraction
of inhibitory interaction estimated from experiments (24), which coincides
with the range of r0 where the differential entropy increases sharply with
r0. (E) The distributions of the estimated relative excitatory and inhibitory
receptor–odor sensitivities from experimental data for the fly (24). Both dis-
tributions can be well fitted by log-normal distributions. (F) The correlation
between the number of odorants that inhibit an ORN with the ORN’s spon-
taneous activity obtained from experimental data on the fly (24) (Upper)
and mosquito (71) (Lower). Each point corresponds to an ORN, the line is
the linear fit, and the shaded region is the 0.95 confidence interval. Model
parameters used are N = 50, M = 10, n = 2,σc = 2, with 40 repeated simu-
lations. In D, error bars are small, comparable to the size of the symbols.
In B and C, r0 = 0.18.
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both odor-evoked excitation and inhibition (26). Now, the inter-
action between the odorant j and ORN i has 2 possibilities: It
can be either excitatory with a sensitivity W A

ij or inhibitory with
a sensitivity W I

ij . The normalized response of i-th ORN to odor
mixture c is

ri =

[
1 + γ

1 +
∑nI

q=1 W
I
iqcq

1 +
∑nA

p=1 W
A
ip cp

]−1

+ ηi , [8]

where γ(>0) determines the basal activity by r0 = 1/(1 + γ), nA

and nI are the number of excitatory and inhibitory odorants to
the i -th receptor, and ηi is a small Gaussian white noise.

Our simulations show that with a finite spontaneous activity
the receptor array achieves maximum entropy coding by assign-
ing a certain number of inhibitory interactions in the sensitivity
matrix (Fig. 7B). The strength (sensitivity) of both the excitatory
and inhibitory elements follows (approximately) log-normal dis-
tributions (Fig. 7C). The fraction of inhibitory interaction (ρi) in
the optimal W is roughly proportional to the spontaneous activ-
ity of ORN r0, with only a slight deviation when r0→ 0 and r0→
1 (Fig. 7D, Upper). Interestingly, as r0→ 0, ρi approaches a finite
value that is related to the fraction of zero sensitivity elements
(1− ρw ) we studied in the previous sections for ORNs without a
spontaneous activity (SI Appendix, Fig. S10). As the basal activ-
ity increases, the coding capacity increases rapidly at first and
quickly plateaus around r0 = 0.3 (Fig. 7 D, Lower). The increase
of coding capacity can be understood intuitively by considering
that the effective dynamic range of receptors increases in the
presence of inhibition. Odor-evoked inhibition enables receptors
to work bidirectionally and avoid saturation when responding to
many odorants simultaneously.

To verify our theoretical results, we have analyzed the statistics
of the sensitivities for the excitatory and inhibitory interactions
obtained from the experimental data in the fly by Hallem and
Carlson (24) as well as in the mosquito by Carey et al. (71).
As shown in Fig. 7E for the fly data, both the excitatory and
inhibitory sensitivities follow log-normal distributions, which are
consistent with our model results shown in Fig. 7C. The mosquito
data show very similar results (SI Appendix, Fig. S12). Our the-
ory also showed that the fraction of inhibitory interaction ρi
increases with the basal activity r0, as shown in Fig. 7 D, Upper.
We have tested this theoretical result from the experimental
data. As shown in Fig. 7F, the number of inhibitory odor–ORN
interaction for an ORN shows a strong positive correlation with
its basal activity for both fly and mosquito, which is in agree-
ment with our theoretical prediction. Such positive correlation
is still present with a high statistical significance even with a
more stringent definition of excitatory and inhibitory interac-
tions (SI Appendix, Fig. S11). Finally, we note that the relative
basal activity 〈r0〉 from the experimental data (24) is smaller than
0.16 (see SI Appendix for detailed analysis), where the differen-
tial entropy rises sharply with r0 as highlighted by the shaded
region in Fig. 7D, Lower. Although an even higher spontaneous
activity toward r0 = 0.5 can further increase the coding capac-
ity, the gain is diminishing, while the metabolic cost increases
drastically in maintaining the spontaneous activity (72). Thus, an
optimal basal activity would be expected in the shaded region
of Fig. 7D due to the trade-off between coding capacity and
energy cost.

Summary and Discussion
To summarize, in this paper we studied how a relatively small
number of nonlinear sensors (ORNs) with a limited dynamic
range can optimize the transmission of high-dimensional but
sparse odor information. We found that the optimal compressed
coding strategy depends on whether a given ORN has a finite
basal activity. For a neuron without basal activity, the best strat-

egy is for it to only respond to a finite fraction ρw (< 1) of
odorants with its sensitivities (to those odorants that it responds
to) following a broad distribution and the rest (1− ρw ) frac-
tion of the sensitivities are zero. The optimal sparsity parameter
ρw depends on the odor mixture statistics and the number
of ORNs. The sparsity in the odor–ORN sensitivity matrix is
caused by the trade-off between the broad-tuning of ORNs and
odor interference as a direct consequence of the finite dynamic
range of the realistic nonlinear ORNs. For a neuron with a
finite basal activity r0, the optimal strategy is to have a finite
fraction ρi of the odor–ORN interactions be inhibitory and
the rest (1− ρi) fraction of the odor–neuron interactions be
excitatory. The inhibitory fraction ρi increases with the basal
activity r0.

The optimal strategies for the 2 types of neurons are consis-
tent with each other. When the basal activity diminishes (r0→ 0),
ρi approaches a finite value that is approximately the same as
1− ρw . This is intuitively clear as the inhibitory interactions in
the limit of r0 = 0 are just the null interactions (with zero sensitiv-
ity) found in neurons without basal activity. In realistic olfactory
systems, the population of ORNs is likely to be mixed: Some
ORNs have no (or very small) basal activity and some have finite
basal activities. In this work, we studied these 2 types of neurons
separately for simplicity. However, the main results and conclu-
sions do not change when we consider the mixed case with both
types of ORNs together (SI Appendix, Fig. S10).

Comparison with Existing Experiments and Testable Predictions. A
general conclusion from our theory is that the optimal odorant–
ORN interaction matrix is only sparsely populated with exci-
tatory interactions. In other words, there is always a finite
fraction of nonexcitatory (zero or inhibitory) odorant–ORN
interactions—(1− ρw ) for neurons without basal activity and ρi
for neurons with basal activity. This general theoretical result,
that is, the sparsity of the excitatory odorant–ORN interac-
tions, is consistent with existing experimental measurements of
receptor–odor sensitivity matrices in different organisms (fly
larva, mouse, adult fly, and mosquito) by different measure-
ment methods as shown in Figs. 2C and 7 E and F. Although
the natural odor environment varies for different organisms,
the broad distribution of the nonzero sensitivity obtained in our
models is also consistent with the sensitivity matrices estimated
from experiments in these different organisms (Figs. 2C and 7
E and F). The optimal coding strategy, if it exists, would be
the result of evolution. Thus, our theory may be tested by com-
paring olfactory systems in different species. In particular, our
theory predicts that the sparsity parameter ρw decreases with
the number of ORNs M (Fig. 3D), which can be tested by mea-
suring the sparsity in the OR sensitivity matrices in different
organisms.

The relatively high level of spontaneous activity in ORNs has
long been thought to only play a role in the formation of topo-
graphic map during development (73). A recent study shows
that odor-evoked inhibition can code olfactory information that
drives the behavior of the fly (26). Our results provide a quan-
titative explanation for the advantage of having certain level
of spontaneous basal activity and odor-evoked inhibitions in
odor coding. For neurons with a finite basal activity, our the-
ory predicts that the fraction of odorants that inhibit the neuron
increases with the basal activity of the neuron. The data from
the adult fly and mosquito are consistent with this prediction
(Fig. 7F). However, high-throughput techniques such as calcium
imaging, which only indirectly measure the odor–ORN interac-
tion, seem to be incapable of detecting spontaneous activity and
inhibitory response (48). Therefore, more large-scale direct mea-
surements using electrophysiological methods such as those done
for Drosophila (24, 25) and mosquito (71) should be carried out
to test our predictions in different organisms.

Qin et al. PNAS Latest Articles | 7 of 10

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906571116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906571116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906571116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906571116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906571116/-/DCSupplemental


By considering how the coding capacity of ORNs changes with
basal activity (Fig. 7D) and the associated extra energy cost (72),
one can hypothesize the existence of an “optimal” r0. Our result
suggests that as the number of sensors increases, the benefit of
having basal activity diminishes; hence, the “optimal” r0 should
decrease as the number of sensory neurons increases. Indeed,
this is consistent with the fact that Escherichia coli has 5 chemore-
ceptors (74) which work bidirectionally with a high basal activity
r0≈ 1/3− 1/2 (75), and r0 in the mouse is smaller than that in
the fly (70). Of course, more experiments across different organ-
isms with different numbers of sensory neurons are needed to
test this hypothesis.

Possible Future Directions. In this study, we assumed that odor
information is contained in the instantaneous spiking rate of
ORNs and did not consider adaptation dynamics. Although
adaptation plays an important role in all sensory systems (76),
it happens in a relatively slower time scale than the time
required for animals to detect and respond to odor stimuli (77,
78). In general, sensory adaptation shifts the response function
of the sensory neuron according to the background stimulus
concentration and it leads to a larger but still finite effective
dynamic range without changing the qualitative characteris-
tics of the input–output response curve (76, 79). Therefore,
even though ORN level adaptation can further increase cod-
ing capacity at a slightly longer time scale as shown recently
by Kadakia and Emonet (80), we do not expect it to qualita-
tively affect the optimal coding strategy found here. It remains
an interesting question to understand how neuronal dynamics
such as adaptation can be used for coding time-dependent odor
signals.

We have used reconstruction and classification as 2 learn-
ing tasks to demonstrate the advantage of having maximum
entropy coding at the ORN level. While the classification task
has clear biological relevance, it is unclear to what extent ani-
mals need to infer the concentrations of individual odorants in
an odor mixture. The perception of odors has been thought as
synthesis, that is, odorant mixture is perceived as a unit odor
(17). Nevertheless, the performance of the reconstruction task
indicates that most of the information about the odor mixture
including the identities and concentrations of individual odor-
ants in a sparse mixture can potentially be extracted from the
activity pattern of ORNs, which is consistent with the exper-
imental finding that mice after training can detect a target
odorant in odor mixtures with up to 16 different odorants (81).
In this work, we focused only on the optimal coding strategy
for the peripheral ORNs. In the fly olfactory system, odorants
that elicit very similar ORN response patterns can be repre-
sented by very distinct patterns of KCs (24, 82). It remains an
interesting open question whether and how the architecture of
the ORN/PN to KC network optimizes the odor information
transmission to enhance precision of downstream learning and
decision-making.

In conventional CS theory with linear sensors, a random
measurement matrix enables accurate reconstruction of sparse
high-dimensional input signals (44, 47). By using prior informa-
tion about the input, a better sensory matrix can be designed (83,
84). In many cases, the optimal matrix maximizes the entropy
of compressed representation (85). Unlike the linear CS prob-
lem where the measurement matrix is known and can be used
directly for reconstructing the sparse input signal by using the
L1-minimization algorithm, reconstruction in the nonlinear CS
problem studied here has to be done by learning without prior
knowledge of the sensitivity matrix. Despite this difference, our
results suggest that with nonlinear sensors the sparse optimal
sensory matrix that maximizes information transmission enables
better learning and more accurate reconstruction. This gen-
eral observation and the limit of reconstruction in nonlinear

CS should be examined with more rigorous analysis and larger
numerical simulations.

In olfactory systems, ORNs of the same type converge to the
same glomerulus in the second olfactory center (antennal lobe
in insects and olfactory bulb in mammals). Such convergence
in the glomerulus serves the purpose of controlling (averaging
out) the response noise of individual ORN. Since the output
considered in our study is essentially the averaged response
of all of the same type of ORNs, we take the constant small
noise approximation in this study and focus on the deterministic
part of the response function. It would be interesting to con-
sider explicitly the intrinsic noise in a single ORN and the noise
introduced in the “averaging” process in the glomerulus when
there are more information and data available about these noise
sources.

Finally, in our study, we considered the simplest case where
odorants appear independently in odor mixtures. However, even
in this simplest case, we have found weak but statistically rel-
evant “orthogonal” structure in the optimal sensitivity matrix.
That is, the rowwise or columnwise correlation coefficients are
both centered around 0 but have a narrower distribution than
those calculated from the randomly scrambled sensitivity matrix
(SI Appendix, Fig. S1). In naturally occurring odor mixtures, co-
occurrence of odorants in different odor sources is common.
For example, odorants that are products in the same biochem-
ical reaction pathway, for example fermentation, are likely to
appear together (2, 86). The topography of odor space induced
by the co-occurrence of odorants was recently studied by Zhou
et al. (87). Although odorant-evoked ORN response patterns
are not simply determined by the molecular structure, some
very similar odorants do trigger similar ORN response patterns
(24). On the other hand, ORNs and their responses to differ-
ent odorants can be correlated due to structural similarities in
their receptor proteins. Teşileanu et al. (88) recently studied a
complementary problem. Given a fixed total number of ORNs,
they studied the optimal fraction of the each ORN type to max-
imize olfactory information by considering the correlations in
receptor responses. It would be interesting to explore how such
correlations among ORNs and odorant molecules as well as
co-occurrences among different odorants in odor mixtures can
affect the optimal coding strategy at the olfactory periphery in
future studies.

Materials and Methods
Numerical Optimization of Sensitivity Matrix. We use the CMA-ES algorithm
to search the optimal sensitivity matrix (59, 60). At each iteration, a popu-
lation of candidate sensitivity matrices are sampled and their performance
are estimated. The subpopulation that have better performance then deter-
mines the next generation of candidates. The iteration keeps going until
the solution converges. For each parameter set, we perform many simula-
tions from random starting points. To estimate the differential entropy I(r)
of response pattern of ORNs r, we first use the Gaussian Copula mutual
information estimator to estimate the joint mutual information of the ran-
dom variable MI(r) (89, 90); we then use the KDP algorithm (91) to estimate
the entropy of each marginal distribution I(ri), then I(r) =

∑M
i I(ri)−MI(r)

(see SI Appendix for details).

OR–Odorant Sensitivities from Experiment. For fly larva and mouse, the sen-
sitivities of ORs to different odorants are directly reported in refs. 48 and 62,
which is used in Fig. 2C. For the adult fly and mosquito, both odor-evoked
responses of ORNs to different odorants and spontaneous firing rate were
reported in refs. 24 and 71. We assume all ORNs have the same maximum fir-
ing rate and estimate their sensitivities to excitatory and inhibitory odorants
using Eq. 8 (see SI Appendix for details).

Downstream Decoding. In the classification task, centroids of odor clusters
are sampled from Penv(c). Each cluster is randomly assigned with a label.
All of the odor stimuli are randomly divided into a training set (80%) and
testing set (20%). The output of the coding process r(c, W) serves as the
input of the “classifier” network. On average, each hidden unit (KC) receives
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7 random connection from ORNs with the weights sampled from a truncated
Gaussian distribution N (0.5, 0.25). Input of each KC is normalized and the
response of KCs is a rectified linear function of its input with a threshold
chosen such that on average 10% KCs respond to each odor (see SI Appendix
for details).
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