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Early-warning signals of critical transition: Effect of extrinsic noise
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Complex dynamical systems often have tipping points and exhibit catastrophic regime shift. Despite the
notorious difficulty of predicting such transitions, accumulating studies have suggested the existence of generic
early-warning signals (EWSs) preceding upcoming transitions. However, previous theories and models were based
on the effect of the intrinsic noise (IN) when a system is approaching a critical point, and did not consider the
pervasive environmental fluctuations or the extrinsic noise (EN). Here, we extend previous theory to investigate
how the interplay of EN and IN affects EWSs. Stochastic simulations of model systems subject to both IN and
EN have verified our theory and demonstrated that EN can dramatically alter and diminish the EWS. This effect
is stronger with increasing amplitude and correlation time scale of the EN. In the presence of EN, the EWS can
fail to predict or even give a false alarm of critical transitions.
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I. INTRODUCTION

Complex dynamical systems exhibit critical transitions
when external and/or internal conditions drive the system to
pass a critical point. Such transitions are often catastrophic and
irreversible. Examples include collapse of ecosystems [1–3],
rapid climate change [4–6], crash of financial markets [7], and
deterioration of medical conditions [8–10]. Anticipating and
averting such events is highly desirable due to their obvious
importance. Recently, many studies have proposed that certain
impending critical transitions can in principle be identified
through generic signs called the early-warning signals (EWSs)
regardless of their underlying details [11–13]. Most of the
proposed EWSs are based on the increasing trend of some
summary statistics, such as the rising of variance [14–16],
autocorrelation coefficient at lag-one [R(1)] [17,18], skewness
[14,19], and the Pearson correlation coefficient (ρ) [20,21].
The idea behind previous theory is that critical transitions
correspond to dynamical bifurcations, especially the fold
bifurcation (or saddle-node bifurcation). Systems that are near
critical points recover back to their equilibrium much slower
after perturbation, known as critical slowing down (CSD)
[22–24]. In the presence of small noise, the EWS is a direct
consequence of CSD [12].

Despite their strong theoretical underpinning, these EWSs
have only been tested in a few controlled experiments
[14,25–27], and failed when applied to field data [28–30],
raising debates of their generality and robustness [31]. Under-
standing the failure and evaluating the performance of EWSs
are essential for its practical applications. Most of the previous
studies only considered the intrinsic noise (IN), which arises
from, e.g., the stochastic birth and death of species of low
numbers in cells or ecosystems. The effect of the pervasive
environmental fluctuations, or the extrinsic noise (EN), has
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been largely ignored. EN has been demonstrated to have a
drastic effect on dynamical systems [32,33]. For example,
EN can enhance regular behavior [34], such as noise-induced
transitions [35–37], stochastic resonance [38], and pattern
formations [34].

The validation of previous EWS theory relies on the small
IN assumption, which is true for large enough systems since
IN scales inversely with the system size. However, EN does
not have such property and cannot be neglected even in the
thermodynamic limit. Generally speaking, EN is shared by
all components in a system, introducing inherent correlations
among them. How EN interacts with IN to alter the stochastic
dynamics and influences the performance of EWS remains
largely unknown.

In this paper, we incorporate EN in dynamical systems
that exhibit critical transitions and systematically examine
its impact on EWSs. We first formulate an equation that
quantitatively describes the effect of EN on EWS by extending
previous theory. We then applied our theory to analyze the
impact of EN on several simple models subject to various
types of EN. The analytical results were tested and compared
with numerical simulations (Appendixes B and C). Our results
suggest that EN can dramatically diminish EWSs, and this
effect increases with the magnitude and correlation time scale
of the EN, as well as the system size. We also find that
for certain systems, an EWS can give false alarm of critical
transitions as a result of EN. For time sequence data, we find
that even under the minor strength of EN, the EWS fails to
identify the critical transition. Our results demonstrate the
complex effect of EN on EWSs.

II. THEORY

Consider a general dynamical system of N variables x =
(x1,x2, . . . ,xN ) whose deterministic behavior is described by
ẋ = f (x,θ ), where θ represents the set of parameters. When
noise is relatively small, its stochastic behavior at steady state
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can be generally studied using the linear noise approximation
(LNA) method [39–42], described by the following stochastic
differential equation (SDE),

dx(t) = Ax(t)dt + Bdw(t), (1)

where the deviation from the steady state δx ≡ x(t) − x∗ has
been rewritten as x(t) for simplicity. A is the Jacobian matrix of
the corresponding deterministic dynamics at the steady state,
w(t) is an M-dimensional Wiener process, and B is an N × M

matrix which determines the amplitude of the noise. At the
steady state, the covariance matrix of variable fluctuations
C, Jacobian matrix A, and the diffusion matrix D ≡ BBT

follows [41]

AC + CAT + D = 0, (2)

and the correlation function G(τ ) ≡ 〈x(t)xT (t + τ )〉 is

G(τ ) = CeAT τ . (3)

Equations (2) and (3) are the foundation of the previous
EWS theory, which lead to several widely used EWSs, includ-
ing divergence of variance, enhancement of ρ (to 1 or −1) and
enhancement of R(1) (to 1). To see this explicitly, consider
the zero-eigenvalue bifurcation (λ → 0) of a single-variable
system with small noise: We have λC + Cλ = D; hence
the variance of the variable fluctuation D/|2λ| diverges and
R(1) → 1. For multivariable systems, variables that constitute
the zero-eigenvector exhibit divergence of variance and in-
crease of R(1), and fluctuations of these variables get strongly
correlated or anticorrelated [21].

We now extend the above theory to more general situations
with both IN and EN. A conventional way to incorporate EN
is through fluctuating parameters [43,44], usually modeled as
an Ornstein-Uhlenbeck process [32,45–47],

θ̇t = (θ0 − θt )/τc +
√

2σ 2
e /τcξ (t), (4)

where τc is the correlation time scale, σ 2
e is the variance of

EN, and ξ (t) is a unit Gaussian white noise with 〈ξ (t)ξ (t ′)〉 =
δ(t − t ′). Notice that an N -variable system subject to n-variate
EN is equivalent to an N + n variable system with only IN.
Denoting its Jacobian matrix, covariance matrix, and diffusion
coefficient matrix as Ã,C̃,D̃, and applying the LNA method
[39–42], we have

ÃC̃ + C̃ÃT + D̃ = 0, (5)

where

Ã =
[
A αT

0 β

]
, C̃ =

[
C ′ C2

CT
2 C3

]
, D̃ =

[
D 0
0 DE

]
.

α = ∂f (x,θt )/∂θt at (x∗,θ0), which is an N × n matrix,
represents the coupling of EN to the internal system. β is a diag-
onal matrix with diagonal elements [−1/τ (1)

c , . . . , − 1/τ (n)
c ],

where τ (i)
c is the correlation time scale of the ith EN. C2

represents the covariance between internal dynamical variables
and EN variables, C3 is the covariance of EN, DE is the
diffusion matrix associated with Eq. (4). Our goal is to obtain
C ′, the covariance matrix of the internal dynamical variables

after introducing EN. Generally, it is difficult to solve for C ′
explicitly from Eq. (5). A conventional approach is to use the
matrix vectorization and Kronecker product method [48]. The
vectorized form of C̃, defined as the stacking of its columns,
can be solved as

Vvec(C̃) = −(In ⊗ Ã + Ã ⊗ In)−1Vvec(D̃), (6)

where In is the unit matrix and ⊗ is the Kronecker product
of the matrix. The impact of EN on EWSs is obtained by
comparing C̃ and C. For one-variable or two-variable systems,
it has a more concise form and the explicit difference between
C̃ and C can be obtained (see Appendix A).

III. RESULTS

A. EWSs in the presence of EN for single-variable system

We begin with a comprehensive analysis of the impact of
EN on EWSs for a well-studied single-variable dynamical
system, the insect outbreak model [49]. The evolution of
the population of budworm in a forest is described by ẋ =
x − ax2 − bx2/(1 + x2). The first two terms represent logistic
growth of the population, and the third term is due to predation
by birds. This system can be either monostable or bistable
depending on the values of a and b. In the monostable regime
with high population density (a = 0.05, b = 1.5), we add EN
to the growth rate (the coefficient of the first term). The steady
state variance C′ with EN added is

C ′=D/|2λ| + σ 2
e α2/|λ(λ + β)|, (7)

where λ is the eigenvalue of the linearized system at steady
state x∗ (see Appendix A). The autocorrelation coefficient is

R(1) = eλ + 2α2λσ 2
e (eβ − eλ)[

D(β + λ) − 2α2σ 2
e

]
(β − λ)

. (8)

Equations (7) and (8) can be further simplified in two
important limits: white EN and adiabatic EN.
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FIG. 1. Comparison of theory (lines) and simulation (symbols)
for the insect outbreak model with � = 50, a = 1/20, b = 1.5. (a,b)
Total variance and R(1) vs EN amplitude for white EN (blue) and
adiabatic EN (orange). (c,d) Total variance and R(1) vs EN correlation
time scale with σe = 0.2, τc = 10. The red solid lines show the
theoretical results for white and adiabatic EN. Error bars are standard
deviation of 50 simulations.
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FIG. 2. Comparison of theory (lines) and simulation (symbols)
for system-size-dependent effect. Total variance (a) and R(1) (b) vs
system size for IN-only (blue) and with-EN (orange) cases in the insect
outbreak model (with a = 1/20, b = 1.5). Error bars are standard
deviations of 50 simulations.

In the white noise limit, we have τc = −1/β 	 1, thenC ′ ≈
C(1 + 2α2σ 2

e τc/D). Thus the variance increases by a factor
that scales with σ 2

e , α2, and τc. The second term in Eq. (8)
vanishes, so R(1) = eλ. Hence, white EN does not change the
autocorrelation function [see Figs. 1(a)–1(b)].

In the adiabatic limit, we have τc = −1/β � 1, then C ′ ≈
C(1 + 2α2σ 2

e /D|λ|), and R(1) = eλ + (1 − eλ)/(1 + ε) with
ε ≡ |Dλ|/2α2σ 2

e . The fold change of variance and R(1) is
determined mainly by ε; when ε 	 1, C ′ diverges, and R(1) =
1 [see Figs. 1(c)–1(d)].

Generally, the relative amplitude of IN scales with 1/
√

�,
where � is the “system size.” In contrast, EN does not have
this property. In the above model, α ∝ �, indicating that EN
scales with �2. Hence, EN is dominant for large systems and
R(1) approaches 1 (see Fig. 2). Taken together, the steady state
value of variance and R(1) strongly depend on EN, and can be
very large even if the system is far away from the critical point.

B. Toggle switch motif subjects to IN and EN

We now apply our theoretical framework to a well-studied
two-variable system, the toggle switch model: two transcrip-
tion factors A and B suppress the expression of each other
by binding to the corresponding promoter regions. Denoting
the concentration of proteins as x and y, the coarse-grained
dimensionless deterministic equations describing this sys-
tem are [50] ẋ = a1[a0 + (1 − a0)/(1 + yn1 )] − x and ẏ =
a2[a0 + (1 − a0)/(1 + xn2 )] − y. The first term on the right-
hand side (RHS) of each equation represents protein synthesis,
consisting of a basal rate a0 and a Hill-function form regulated
rate. a1 and a2 represent the maximum expression rates; n1 and
n2 are Hill coefficients. The second terms on the RHS represent
the degradation of proteins. The qualitative dynamic properties
of this system have been well studied. In some parameter
regions, it exhibits bistability, where the expression level of
A (or B) can be either high or low depending on the initial
state of the system.

We simultaneously incorporated EN into the degradation
rates of proteins A and B according to Eq. (4). We compared
the aforementioned three EWSs: variance (in terms of the
Fano factor), ρ, and R(1), when this system is driven toward
a transition point. For each control parameter a1, EWSs are
estimated from 50 long stationary trajectories. Consistent with
previous theory (Fig. 3, black lines), with very small EN,
both our simulation (Fig. 3, blue triangles) and the theory
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FIG. 3. EWSs in a toggle switch model subject to various ENs:
theoretical (solid lines) and simulation (symbols) results. Shown are
the Fano factor of gene B, the Pearson correlation coefficient between
A and B, and R(1) of B, subject to different amplitudes of EN (a–c)
and different correlation time scales of EN (d–f). At each a1, numeric
results are estimated from stationary long-time trajectories. Shadowed
areas indicate the critical point. Parameters values are n1 = n2 = 2,
a2 = 10, a0 = 0.05, � = 20. In (a–c), τc = 100, in (d–f), σe = 0.1.
Error bars are standard deviations of 50 simulations.

(Fig. 3, blue line) show that EWSs dramatically increase
prior to the upcoming critical transition. However, the rise
of the Fano factor with respect to a1 becomes feeble as the
amplitude of EN increases (denoted by different colors). With
stronger EN, its trend even becomes nonmonotonic, decreasing
first and only increasing at the very vicinity of the critical
point [Fig. 3(a)]. ρ and R(1) exhibit similar behavior; both
are dramatically diminished with increasing amplitude of EN
[Figs. 3(b) and 3(c)]. These can be interpreted as a complex
interaction between the internal time scale and the time scale
of EN. When the system is far away from the critical point,
EN is dominant due to its slow time scale (τc = 100), while
at the very vicinity of the critical point, the internal time scale
surpasses that of EN and IN becomes dominant.

We also studied the effect of correlation time scale of EN on
EWSs. With increasing correlation time scale, the increase of
EWSs with respect to the control parameter (as it approaches
the critical point) decreases [Figs. 3(d)–3(f)].

C. False alarm of critical transition

Next, we study how EN may give a false alarm in systems
with no critical transition. Our model is the common two-gene
negative feedback loop: transcription factor A promotes the
expression of B, while B inhibits the expression of A. The
deterministic equations are ẋ = a0 + (1 − a0)kn

1/(kn
1 + yn) −

x, ẏ = a0 + (1 − a0)xn/(kn
2 + xn) − y. Expression level of

gene B at steady state increases continuously with the control
parameter k1 [Fig. 4(a)]. Without EN, the Fano factor of B
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FIG. 4. EWSs can give a false alarm in a simple negative feedback
loop model with no critical transition. (a) Steady state expression level
of gene B as a function of parameter k1. (b–d) When subjected to EN,
EWSs rise rapidly with the increase of control parameter k1. The solid
lines are theoretical results based on Eq. (6) and symbols with error
bars are the mean of 50 stochastic simulations. Parameter values are
a0 = 0.05, k2 = 0.5, n = 3, � = 500.

does not increase much with k1, and the Pearson correlation
coefficient between A and B, and R(1) of B remain close to 0 as
k1 increases. However, all of the three EWSs rise dramatically
with the increase of k1 when EN is imposed, especially when
EN is large [Figs. 4(b)–4(d), solid lines]. This simple example
demonstrates that when a system is subject to EN, conventional
EWSs may give a false alarm of critical transition.

D. Early-warning signals based on time series data

Most natural systems can only afford a small number of
samples and/or limited times of observation, such as a single
trajectory of system state driven by a slowly changing control
parameter. Previous studies have suggested EWSs can precede
critical transition even using a single time series, provided that
the control parameter changes relatively slowly and IN is small
[12,17].

We next examined the effect of EN on EWS estimated from
single trajectories in the toggle switch model. When control
parameter a1 changes gradually and drives the system past the
critical point, the system jumps to the alternative state [shadow
area in Fig. 5(a)]. To calculate time-dependent EWS, we used
a conventional sliding window method [16]. First, we subtract
a Gaussian kernel smoothing function (thick gray solid lines)
from the trajectory to filter out trends on a large time scale and
the residues were used for further analysis [Fig. 5(b)]. Then, a
sliding window was used for the residues up to the transition
point to estimate EWS.

Consistent with previous studies, all the three EWSs show
a strong increase prior to the critical transition when there
is no EN. The trend is quantified by the Kendall’s rank
correlation coefficient ρK a larger value of ρK indicates a
stronger trend. However, imposing medium strength of EN
dramatically impairs the trend of the Fano factor and R(1).
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FIG. 5. Comparison of EWSs derived from time series of the
toggle switch model with and without EN. (a) Control parameter
a1 increases linearly with time from 2 to 18 in a time window of
1000. Trajectories of expression level of A and B with only IN are
shown. Gray band marks the transition events. The smooth solid
gray line through the time series is a Gaussian kernel smoothing
function used to filter out longer-term trends. The arrow marks the
width of the sliding window used to calculate EWSs. (b) Residue
after subtracting the average of the Gaussian kernel. (c) Example of
estimated Fano factor from (b) prior to the critical transition. Purple
line: IN only. Blue line: with EN (σe = 0.1, τc = 10). (d) Including
EN dramatically diminishes two EWSs, but the Pearson correlation
coefficient is relatively robust. Box plot of Kendall’s rank correlation
coefficient (ρK) of 500 trials.

The trend of ρ is relatively robust but its absolute value is
smaller compared with the IN-only situation [Fig. 5(d)]. Since
the exact time when the system jumps to the alternative state
differs from trial to trial, we simulated 500 such trajectories
with and without EN. The trends of EWSs prior to the transition
are summarized in Fig. 5(d). The values of ρK are all centered
around 1 or −1 when only IN is present, indicating a very
strong trend of increase. With EN included, the distribution of
ρK is much broader and has a small average value, indicating
that EWSs do not have a defined increasing trend before the
transition. This result demonstrated that for time series data,
even minor EN can drastically diminish EWSs.

IV. CONCLUSIONS

We have extended the previous linear noise approximation
theory to dynamical systems subject to both IN and EN,
allowing us to explore the influence of EN on the EWS under
rather general conditions. Our theory has been tested on simple
models subject to various forms of EN. Our results suggest
that EN could largely diminish an EWS when a dynamical
system is approaching a critical point. This effect becomes
stronger with the increase of magnitude and correlation time
scale of EN, as well as the increase of system size. The drastic
effect of EN on EWS is attributed to its nonlinear coupling to
the internal dynamics and its relatively slow time scale. They
interact synergistically to produce nontrivial fluctuations of the
system. We caution that EN could be an important source to
cause false alarms and false negative results when using EWSs
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to identify or predict critical transitions in natural systems.
Our work also contributes toward a more general framework
to study IN and EN in dynamical systems.

Note that not all regime shifts belong to critical transitions
[51] and different types of regime shifts can be classified ac-
cording to several time scales [52]. The realization that certain
regime shifts or critical transitions in principle can be predicted
represents a substantial step forward. Nevertheless, extracting
reliable EWSs from real data can be challenging. Previous
works seldom characterized the robustness and sensitivity of
EWSs [28]. In this study, we demonstrated that EN could be
one of the important reasons that causes EWS theory to fail. As
has already been suggested, model-based approaches, treating
individual systems separately, could potentially alleviate such
challenge [28,31].

In this study, as well as in most of the previous studies
on EWSs, the systems considered are spatially homogeneous
and well mixed. Many real systems have limited dispersion
(diffusion) rate and are spatially inhomogeneous [53,54].
Noise in spatially extended systems is known to have profound
effects [55], such as noise-induced transition [35], stochastic
resonance [38], and pattern formation [34,56]. As has been
well studied in both equilibrium and nonequilibrium systems,
spatial heterogeneity generally changes abrupt transitions (first
order) to continuous transitions [57–59]. Furthermore, spatial
disorder can induce a broad region near the transition point
called the “Griffith phase” where generic scale-free behavior
can be observed [60,61]. It has been suggested that some
emergent spatiotemporal patterns could be indicators of tipping
points [62–66]. Future works that systematically explore the
influence of spatial heterogeneity, internal noise, and environ-
mental fluctuations on the behavior of dynamical systems will
certainly deepen our understanding on catastrophic transitions.

Without knowing the dynamical rules and assessment of
various factors that could affect the systems’ behavior, such as
the strength of EN, EWSs are not robust indicators of critical
transitions. Due to the complex interplay of EN with internal
nonlinear dynamics, EN and IN can be separated only in very
special situations which usually do not hold [43,67,68]. Future
studies in this area should also develop robust methods to assess
the EN level in a dynamical system in order to have better
quantifications of EWSs.
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APPENDIX A: LINEAR NOISE APPROXIMATION FOR
SYSTEM WITH EXTRINSIC NOISE

Here we use the linear noise approximation method
[39,41,69] to derive Eq. (6) in the main text. The techniques
we used are matrix vectorization and the Kronecker product
[48]. For a matrix B ∈ Rm×n with column (b1,b2, . . . ,bn), its

vectorization is defined as the stacking of columns,

Vvec(B) =

⎛⎜⎝b1
...
bn

⎞⎟⎠ ∈ Rnm. (A1)

For matrix A, X, B with proper dimensions, we have the
following identity,

Vvec(AXB) = (BT ⊗ A)Vvec(X), (A2)

where ⊗ is the Kronecker product. Equation (5) in the main
text is also called the Lyapunov matrix equation, which has a
unique solution since all the eigenvalues of A are smaller than
0 [48]. Inserting the identity matrix on the left side of Eq. (5)
and applying Eq. (A2) to it, we have

Vvec(ÃC̃ + C̃ÃT ) = −Vvec(D̃), (A3)

(In ⊗ Ã + Ã ⊗ In)Vvec(C̃) = −Vvec(D̃). (A4)

We then get Eq. (6) in the main text.

Vvec(C̃) = −(In ⊗ Ã + Ã ⊗ In)−1Vvec(D̃). (A5)

While this form is easy to do numerical calculation, it
does not explicitly show the impact of EN. Hence for simple
one- and two-dimensional systems, we solve Eq. (5) explicitly.
Substituting Ã, C̃, D̃ with their expression, we have

D =
(

AC ′ + C ′AT + αT CT
2 + C2α AC2 + αC3 + C2β

CT
2 AT + C3α

T + βCT
2 βC3 + C3β

)
.

(A6)

Hence

C3 = − 1
2DEβ−1, (A7)

αC3 + AC2 + C2β = 0, (A8)

(AC ′ + C2α) + (AC ′ + C2α)T + D = 0. (A9)

Comparing Eq. (A9) and AC + CAT + D = 0, we have

C ′ = C − A−1
(
αCT

2 + H
)
, (A10)

where H is an antisymmetric matrix to be determined.
For the insect outbreak model with EN in the main text,

we can solve C ′ directly from the corresponding equations
(A8)–(A10),

C3 = σ 2, (A11)

αC3 + λC2 + βC2 = 0, (A12)

2(λC ′ + αC2) + D = 0, (A13)

which yields

C ′ = D

|2λ| + σ 2
e α2

|λ(λ + β)| . (A14)

This is Eq. (7) in the main text.
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APPENDIX B: FROM CHEMICAL MASTER EQUATIONS
TO CHEMICAL LANGEVIN EQUATIONS

In this section, we briefly summarize how chemical master
equations can be approximated by chemical Langevin equa-
tions (CLEs) for reasonably large systems under a limited span
of time [42,70]. Consider a chemical reaction system with N

species S1, . . . ,SN and M reactions R1, . . . ,RM . Assume that
the system is dilute and well stirred inside a volume �. Denote
the number of species as X; the evolution of joint probability
density of X is described by the following chemical master
equation:

∂P (X,t |x0,t0)

∂t
=

M∑
m=1

[am(X − νm)P (X − νm,t |X0,t0)

− am(X)P (X,t |X0,t0)]. (B1)

Here, νm is the state change vector of reaction m. The
corresponding chemical Langevin equation is

X(t + dt) − X(t)

=
M∑

m=1

νmam[X(t)]dt +
M∑

m=1

√
am[X(t)]

√
dtNm(t), (B2)

where Nm(t) is the noise with standard Gaussian distribution.
Comparing with Eq. (1) in the main text, we have

A = ∂

∂X

{
M∑

m=1

νmam[X(t)]

}
, (B3)

B =
M∑

m=1

νm

√
am[X(t)]. (B4)

The steady state Jacobean matrix and diffusion matrix can
be calculated from the above equations.

The CLE of the insect outbreak model with EN imposed on
growth rate is

Ẋ = η(t)X − aX2

�
− �b(X/�)2

1 + (X/�)2 +
√

η(t)Xξ1(t)

−
√

aX2

�
ξ2(t) −

√
�b(X/�)2

1 + (X/�)2 ξ3(t), (B5)

where X(t) ≡ �x(t) is the population of the budworm, � the
system size, η(t) the Gaussian extrinsic noise with mean 1 and
variance σ 2

e , and ξi(t), i = 1,2,3 is standard Gaussian white
noise.

The CLE of the toggle switch model with EN imposed on
degradation rates is

dX

dt
= a1�

[
a0 + 1 − a0

1 + (Y/�)n1

]

− η(t)X +
√

a1�

[
a0 + 1 − a0

1 + (Y/�)n1

]
ξ1(t)

−
√

η(t)Xξ2(t), (B6)

dY

dt
= a2�

[
a0 + 1 − a0

1 + (X/�)n2

]

− η(t)Y +
√

a1�

[
a0 + 1 − a0

1 + (X/�)n1

]
ξ3(t)

−
√

η(t)Yξ4(t), (B7)

where X = �x and Y = �y are protein numbers, η(t) the
fluctuating degradation rate of proteins with mean 1 and
variances σ 2

e , and ξi(t), i = 1, . . . ,4 is independent standard
Gaussian white noise.

APPENDIX C: STOCHASTIC SIMULATION WITH
EXTRINSIC NOISE

The stochastic simulations for systems with only IN are
performed by the Gillespie algorithm [71,72]. The variant
algorithm [32,44] is used to simulate systems with EN. EN is
introduced as a fluctuating parameter as described in the main
text. The trajectory of EN is simulated according to Eq. (4)
with a suitable time step dt using the Euler method [45]. The
population number X is updated according to the propensity
which depends on the fluctuating parameter until the elapsed
time is larger than dt , then the corresponding parameter in
the propensity function is updated by the value of EN in time
t + dt .

The propensity is derived from the deterministic equations
by incorporating a system size � through the conventional
van Kampen expansion [42]. For example, in the simulation
of the insect outbreak model, the propensity functions of each
reaction at time t are

ηtX(t),
aX2(t)

�
, �

b[X(t)/�]2

1 + [X(t)/�]2 ,

where ηt is the fluctuating growth rate at time t . The same
method is used in simulations of the toggle switch model and
the negative feedback model described in the main text.
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