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Proteins are essential players of life activities. Intracellular protein levels directly affect cellular functions
and cell fate. Upon cell division, the proteins in the mother cell are inherited by the daughters. However,
what factors and by how much they affect this epigenetic inheritance of protein abundance remains
unclear. Using both computational and experimental approaches, we systematically investigated this
problem. We derived an analytical expression for the dependence of protein inheritance on various fac-
tors and showed that it agreed with numerical simulations of protein production and experimental
results. Our work provides a framework for quantitative studies of protein inheritance and for the poten-
tial application of protein memory manipulation.
� 2018 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Proteins are important functional players in cells, whose abun-
dances directly affect physiological functions and the fate of the
cells [1–4]. Since proteins are directly passed on from parent to
progeny cells in each cell division, there are correlations in the
abundance of each type of proteins within a cell lineage [5]. Such
correlations may further lead to similar cell behavior within the
lineage, thereby playing an important role in inheritance and envi-
ronmental adaptation. The progeny cell inherits more than just the
specific protein molecules from the parent cell; it also inherits a
large number of cellular components, including the transcription
and translation machineries, which complicates the protein abun-
dance correlation in a cell lineage. Both the strength and the time
scale of protein abundance memory in a cell lineage significantly
depend on individual cases [6,7]: while the abundance memory
of cyclins in budding yeast lasts less than one cell cycle [8], the
memory of the expression of the lac gene in E. coli cell lineages
lasts for many generations [1].

Recently, an increasing number of studies have suggested that
the abundance memory of certain proteins in cell lineages was
likely an active and flexible strategy for cells to adapt to changing
environments, rather than a simple by-product of cell division
[1,5,7,9]. For example, it was suggested that a long memory of
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protein abundance may help cell adapt to a fluctuating environ-
ment [1]. In addition, some proteins inherited from a parental
cell can directly affect the apoptotic probability of the progeny
cells [10,11].

Given the importance of protein inheritance in cell lineages,
increasing theoretical and experimental efforts have been devoted
to study the effects of different factors on protein inheritance and
its potential impact on cellular behavior [1,5,12,13]. Such investi-
gations undoubtedly contributed to our understanding of many
issues related to protein inheritance. However, most studies thus
far have focused on the inheritance of a particular protein or the
contribution of one or a few specific factors to protein inheritance
[1,10]. In reality, protein inheritance in the cell lineage is often
affected by multiple factors at the same time. Do different factors
have different effects on protein inheritance? Are the influences
of these factors independent or synergetic? What is the quantita-
tive relationship between the protein inheritance and the various
influencing factors? The lack of answers to these questions has hin-
dered our understanding of the general phenomenon of protein
inheritance.

In this study, by combining theoretical approach and quantita-
tive experiments, we systematically investigated the contributions
of various factors to protein memory along the cell lineage. We
constructed a simple model and, for the first time, gave an analytic
formula for the dependence of protein memory on various factors:
protein synthesis, protein degradation, volume ratio for uneven
division, doubling time, intrinsic noise, extrinsic noise, partition
ess.
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noise during cell division, and the time scales of different noises.
We validated the theory by performing both computer simulations
and quantitative experiments.

2. Materials and methods

2.1. Stochastic simulations of the model

All simulations were performed using MATLAB (MathWorks).
Stochastic simulation was performed using the Gillespie Algorithm
[14–16]. To incorporate the extrinsic noise, the fluctuating produc-
tion rate of protein was modeled as one ‘‘species”. The system had
two variables: the production rate number KpðtÞ and the protein
number SðtÞ. The numbers of the protein and the production rate
were updated according to the propensity based on Gillespie
Algorithm.

The propensity was derived from the deterministic equations
by incorporating a system size X through the conventional Van
Kamppen expansion [17] and a rescaled constant for the protein
production rate number. For the model simulation with the extrin-
sic noise incoporated into the production rate, the propensity func-
tion at time twas ½kppX;1=s; a1KpðtÞ; SðtÞkd�, where kppX and 1=s are
the birth and death rates of protein production rate number KpðtÞ,
a1KpðtÞ and kd are the birth and death rates of protein number SðtÞ.
In the steady-state, we had hKpðtÞi ¼ kppXs for average production
rate number and hSðtÞi ¼ a1kppXs=kd for the average protein copy
number. We also had kpðtÞ ¼ KpðtÞ=X for the protein production
rate and XðtÞ ¼ SðtÞ=X for protein concentration.

After sufficient time simulation, protein copy number reached a
steady state, and the generated protein level data were recorded
per cell doubling time T. The process was simulated 2000 times.
Then, the Pearson correlation was calculated based on the recorded
proteins.

2.2. Single-cell measurements using time-lapse microscopy

Standard methods were used throughout the study. To prepare
the cells for time-lapse microscopy, we inoculated congenic W303
(MATa his3-11,15 trp1-1 leu2-3 ura3-1 ade2-1) cells from a colony
into liquid SD, grew the cells for 12 h, and then diluted and cul-
tured them for 12 h. Next, the cells that grew exponentially in SD
liquid medium were seeded into a microfluidic chip in the same
medium. For each experiment, stacks of 9 images were acquired
every 5 min with 30 ms exposure for the bright-field channel,
Fig. 1. Schematic view of the protein inheritance model in a cell lineage. The parameter kp
rate and the dilution rate, respectively. The cell size ratio is the ratio of corresponding v
and 50 ms for the red channel and green channels. Microcolonies
were tracked throughout the time series by identifying overlapping
areas. Cell segmentation and tracing were performed based on
bright field images and automatically obtained using the MATLAB
customized software cellseg, which we previously developed
[18,19]. Fluorescence quantification was performed using cellseg
and ImageJ with Image5D plugin. The maximum intensity
projection of z-stacks was reported for experiments to obtain the
protein intensity.

2.3. Quantification of protein half-lives by FACS

W303 yeast strain with Adh1Pr-GFP (expressing GFP protein) or
Adh1Pr-GFP-PEST (expressing GFP protein with a PEST tag) were
grown in 5 mL of synthetic medium with 2% (w/v) glucose over-
night at 30 �C and rotating. The overnight culture was diluted to
an OD600 value of 0.1 in 20 mL of fresh medium and incubated until
the cells reached the mid-logarithmic growth phase. Cyclohex-
imide (translation inhibitor [20,21]) was added to a final concen-
tration of 200 lg/mL, which is sufficiently high to inhibit protein
synthesis without inducing a critical growth defect during the
experiment. Next, 0.5 ml of yeast cells were quickly obtained from
the culture every 10 min and 4.5 mL PBS buffer was added. FACS
was performed to determine the protein fluorescence.
3. Results

3.1. Memory of protein abundance along the cell lineage with intrinsic
noise

To investigate the memory of protein abundance along the cell
lineage, we first constructed a simple model in which the rate of
protein deposition is determined by the rates of protein synthesis
ðkpÞ and degradation/dilution ðkdÞ. The degradation/dilution rate kd
includes two parts (i.e., kd ¼ kdil þ kdeg): regulated degradation
ðkdegÞ and dilution rate ðkdilÞ due to cell growth and division [22].
We considered both symmetrical and asymmetrical division by
introducing the division size ratio a, which is defined as the ratio
of corresponding volume to the total volume (i.e., VM

VMþVD
for

mother/lager cells, and VD
VMþVD

for daughter/smaller cells). As a

result, kdil ¼ �lnðaÞ=T , where T is the cell doubling time [5]. We
assumed that the system was in steady state, and only the mother
and daughter lineages were discussed for simplicity (Fig. 1).
represents the protein production rate, while kdeg and kdil represent the degradation
olume to the total volume (i.e. VM

VMþVD
for mother cells, and VD

VMþVD
for daughter cells).



Z. Gao et al. / Science Bulletin 63 (2018) 1051–1058 1053
Because intrinsic noise and extrinsic noise may have different
effects on protein memory in the cell lineage [5], we first investi-
gated a system with intrinsic noise only. The dynamics of protein
concentration follows the stochastic differential equation (SDE)
[23,24]

dXðtÞ
dt

¼ kp � kdXðtÞ þ
ffiffiffiffi
D

p
nðtÞ; ð1Þ

where XðtÞ is the protein concentration, kp the production rate, kd
the degradation/dilution rate. nðtÞ represents the intrinsic noise,
which is a rapidly fluctuating random variable with zero mean
hnðtÞi ¼ 0 and hnðtÞnðt0Þi ¼ dðt � t0Þ [25,26]. D is the noise strength.
We assumed that the system was at steady state and that the fluc-
tuation of protein abundance around its steady-state value
xðtÞ ¼ XðtÞ � hXðtÞi was small. Note that our model was constructed
simply based on the production rate and degradation/dilution rate
without considering other kinds of regulations. Thus, the protein
expression only had one steady state.

Pearson correlation coefficients between different generations
were used to measure the strength of protein memory. The Pearson
correlation of protein abundance between generation 1 and gener-
ation n in the mother/daughter lineages can be calculated as the
following equation (see Supplementary Materials for details):

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.scib.2018.07.010.

qðx1; xnÞ ¼ aðn�1Þe�ðn�1ÞkdegT ; ð2Þ

where xiði ¼ 1;2; . . . ;nÞ is the protein abundance fluctuation of the
ith generation cell in the mother/daughter lineage, a is the cell size
division ratio, and T is the corresponding mother/daughter cell dou-
bling time.

Thus, with only the intrinsic noise, the protein correlation
increases with the cell size division ratio a and decreases exponen-
tially with the degradation rate kdeg and the doubling time T.
Fig. 2. Dependence of protein memory along the cell lineage on different factors based o
correlation. The parameter of the factor is varied while other parameters fixed: (a) cell si
of intrinsic noise D, (e) amplitude of extrinsic noise rex, and (f) the time scale of extrin
different generations along the cell lineage. Parameters values are T = 50, kdeg ¼ 0:01, a
3.2. Memory of protein abundance along the cell lineage with both
intrinsic noise and extrinsic noise

Next, we added extrinsic noise into the system and investigated
the memory of protein abundance in the cell lineage with both
intrinsic and extrinsic noises. Extrinsic noise may derive from
either or both of production and degradation/dilution processes
due to the fluctuation of environment and/or cell heterogeneity.
We studied separately the impact of extrinsic noise on production
and degradation/dilution.

We first incorporated extrinsic noise into the production rate
[27]. We assumed that the fluctuation of the production rate kp
was described by the following equation [15,24,28,29]:

dkpðtÞ
dt

¼ kpp � 1
s
kpðtÞ þ

ffiffiffiffiffiffiffiffiffiffi
2r2

ex

s

r
fðtÞ; ð3Þ

where fðtÞ represents a Gaussian white noise with
hfðtÞfðt0Þi ¼ dðt � t0Þ and zero mean hfðtÞi ¼ 0. r2

ex is the variance
of the production rate and s is the correlation timescale of the
extrinsic noise.

Then, the protein correlation in the mother/daughter lineage
can be calculated as follows (see Supplementary Materials for
details):

qðx1; xnÞ ¼ aðn�1Þe�kdegðn�1ÞT

þ 2r2
exðkdil þ kdegÞðaðn�1Þe�kdegðn�1ÞT � e�

ðn�1ÞT
s Þ

D 1
s þ kdil þ kdeg
� �þ 2r2

ex

� �
1
s � kdil � kdeg
� � : ð4Þ

Eq. (4) was plotted in Fig. 2 with various factors as variables.
Note that the dependence of protein memory on the division size
ratio a, the degradation rate kdeg, and the doubling time T are sim-
ilar as in case of the intrinsic noise only.

Eq. (4) can be simplified in two important limits. In the white
noise limit, s! 0 (1=s ! 1, i.e. the extrinsic noise fluctuates
n Eq. (4). Each subpanel shows the relationship between one factor and the Pearson
ze division ratio a, (b) doubling time T, (c) protein degradation rate kdeg, (d) strength
sic noise s. Different colors represent the correlation between 1st generation and
¼ 0:63, s ¼ 500, D ¼ 0:1, rex ¼ 0:1.

https://doi.org/10.1016/j.scib.2018.07.010
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rapidly), the above Eq. (4) is degenerated into Eq. (2), the case with
intrinsic noise only. Hence, fast fluctuating white extrinsic noise
does not change the protein memory behavior. In the adiabatic
limit, s ! 1 (1=s ! 0, i.e., the extrinsic noise is almost a constant
in a long time), then the protein correlation in the mother/daugh-
ter lineage is simplified as (see Supplementary Materials for
details):

qðx1; xnÞ ¼ 1þ 1
g
ðaðn�1Þe�ðn�1ÞkdegT � 1Þ; ð5Þ

where g ðg ¼ r2
Total=r2

IntrinsicÞ is the variance ratio between the total
variance of protein abundance and the variance caused by intrinsic
noise.

Note that there can be two different sources of extrinsic noise.
One is the external environment fluctuation; the other originates
from cell to cell variability. Thus, the adiabatic limit case
ðs ! 1Þ can be further subdivided into two different cases. In case
A, the population of the cells under consideration was reproduced
from one single cell. In this case, intrinsic noise is dominant
ðg ! 1Þ, and Eq. (5) is degenerated into Eq. (2). In case B, the
population of the cells under consideration was reproduced from
Fig. 3. Comparison of the protein inheritance between theory (lines) and simulation (sym
different time scales of extrinsic noise. The parameter values were X ¼ 500, kpps ¼ 0:02,
constant for production rate in the simulation. (b) The schema of variance caused by
adiabatic limit case B. (c) The results with different strength of extrinsic noise for the adi
kpp ¼ 0, 1=s ¼ 0, kd ¼ 0:02, a1 ¼ 1 and T = 30. For each simulation, the value of product
average protein copy number. The parameters value were X ¼ 500, kppX ¼ 0:1, 1=s ¼ 0:0
when the average of protein number hSðtÞi was set to a specific value. The Pearson co
simulated cells, error bars show the standard deviation of 10 independent simulations (
multiple cells that had some initial cell-to-cell variability. When
the cell-to-cell variability is small, this case is similar to case A.
When the cell-to-cell variability is dominant in the system
(g>>1), the protein abundance in the cell lineage becomes highly
correlated ðq ! 1Þ. These results show that intrinsic and extrinsic
noises play different roles in protein memory.

Next, we tried to incorporate extrinsic noise into the protein
degradation/dilution process, and then into both the protein syn-
thesis and degradation/dilution processes. We found that the con-
tribution of different factors to the correlation were generally
similar (Figs. S1, S2, S3 and see Supplementary Materials for
details). There is, however, an interesting non-monotonic depen-
dence of correlation on the time scale of extrinsic noise (Fig. S2c
and d), due to the interaction between the noise from production
rate and that from degradation/dilution rate.
3.3. Small copy numbers of protein

In order to make the protein correlation solvable analytically,
we described the stochastic behavior of protein abundance using
the Langevin equation (Eq. (1)), where the intrinsic noise
amplitude was determined by a free parameter D. However, the
bols) with extrinsic noise incorporated into the production rate. (a) The results with
kd ¼ 0:02, a1 ¼ 1 and T = 30, where X is the system volume size, and a1 is a rescale
intrinsic noise, total variance of protein abundance, and the variance ratio for the
abatic limit case B. The parameter values were X ¼ 500, kpX � Nðl;rextrinsicÞ, l ¼ 10,
ion rate was sampled from the normal distribution. (d) The results with different
1, kd ¼ 0:02, and T = 30. The value of a1 was calculated based on hSðtÞi ¼ a1kppXs=kd ,
rrelation coefficients of protein levels were estimated from an ensemble of 2000
see Materials and Methods for more details).
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parameter D is related to the production and degradation/dilution
rates in the real chemical reaction processes. In addition, our SDE
of protein abundance rely on assumption of small noise, which
could breakdown when the copy number of proteins are very small
[30], as is the case for many proteins in E. coli and budding yeast
[31,32].

To address these concerns, we used the Gillespie algorithm to
simulate the gene expression and degradation/dilution processes
with both intrinsic and extrinsic noises [14–16]. In order to com-
pare the simulation results with the theoretical prediction
(Eq. (4)), we estimated the noise strength D and the variance of
production rate r2

ex based on the chemical Langevin equation
[33]. In this case, we had D ¼ 2kp, where parameter kp is the pro-
duction rate, and r2

ex ¼ kpps, where kpp and 1=s is the birth and
death terms of production rate (Eq. (3)) [24,33] (see Supplemen-
tary Materials for details).

Our stochastic simulation using the Gillespie algorithm agrees
perfectly with the theory prediction (Fig. 3). It is worth noting that,
in the adiabatic limit case B (i.e. 1=s! 0), the production rate for
each single cells is a constant, but drawn from a distribution for
Fig. 4. Protein memory experiments with GFP. (a) Schematic diagram of experimental
Adh1pr-GFP; red, Cdc10, cell cycle marker). Left panel: the corresponding profiles of prot
the time between two consecutive cytokinesis was defined as one generation. (c–f) Th
Schematic diagram of the mother and daughter lineages, showing the time points of da
Experimental results (bar) and theoretical predictions based on the parameters from t
daughter lineage.
a population of cells due to cell-to-cell heterogeneity. Conse-
quently, the temporal protein abundance fluctuation of single cell
is controlled by the intrinsic noise, and r2

Intrinsic and r2
Total can be

estimated by measuring the variance of the protein level using sin-
gle cell time series and among the population, respectively
(Fig. 3b). In simulation, we directly investigated the influence of
the variance ratio g ¼ r2

Total=r2
Intrinsic by verifying the variance of

protein production rate for the cell population as 1=s! 0 (Fig. 3c).
We also examined the effect of average protein copy number in

the steady state. We varied the average protein copy number from
128, 32, 8 to 2. The theory showed consistently very good agree-
ment with the simulations for all cases, even when the average
protein copy number decreased to 2 (Fig. 3d).

3.4. Comparison with experiments

We further tested our theory with quantitative experiments.
We used budding yeast because it grows fast and is easy to manip-
ulate genetically. More importantly, its asymmetrical division not
only enabled us to examine the influence of the cell size division
process. (b) Right panel: A typical phase/fluorescence time-course images (green,
ein levels. ‘1’ marks the time when cytokinesis (septin splits into two) happens, and
e distributions of different parameters estimated from the experimental data. (g)
ta analysis. (h) Scatter plot of the GFP protein abundance between M1 and M2. (i)
he experimental data (red line) for GFP abundance along the mother lineage and
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ratio, but also provided two different protein dilution rates (dou-
bling times) for mother and daughter cells simultaneously. We
employed a microfluidics device, which enabled us to grow the cell
population in a very stable environment. This setting would corre-
spond to the case B with adiabatic limit for extrinsic noise
ð1=s ! 0Þ (Fig. 4a). Thus, we could directly estimate the variance
ratio by measuring the variance of protein abundance in a single
cell and in a population of cells, as shown in Fig. 3b.

First, we performed protein inheritance experiments with a GFP
controlled by a constitutive promoter Adh1pr and not being
actively degraded (i.e. kdeg � 0) (Fig. 4b) [34]. We monitored the
concentration of GFP in individual cells in real time over genera-
tions using time-lapse fluorescence microscopy. To define genera-
tions, we fused an mCherry to the septin ring component Cdc10,
whose assembly and disassembly mark the cell cycle entry and
cytokinesis, respectively (Fig. 4b) [35]. Moreover, to avoid potential
fluctuations due to different cell cycle phases, we always quanti-
fied protein abundance at the end of cell division (defined as when
the septin ring splits into two) (Fig. 4b).

The protein abundance of hundreds of cells for each generation
was obtained, and the Pearson correlations of the protein levels
between the first generation and offspring generations were
Fig. 5. Protein memory of GFP-PEST in cell lineage. (a) Right panel: A typical phase/fluore
Left panel: the corresponding profiles of protein levels. "1" marks the time when cyt
cytokinesis was defined as one generation. (b) and (e) show the distributions of the protei
of GFP-PEST protein abundance. (d) and (g) GFP-PEST memory along mother and daughte
calculated (Fig. 4g and h). Meanwhile, all parameters in the theory,
including the cell size division ratio, doubling time, variance ratio
g, were also obtained from the experimental data (Fig. 4c–f), and
the median values of these parameters were then used to predict
the lineage protein correlation based on Eq. (5) without parameter
fitting.

We observed excellent agreement between theoretical predic-
tions and the experimental results for the mother lineage
(Fig. 4i). For daughter lineage, the agreement was very good for
the first to the second daughter. But for the first to the third daugh-
ter, the experimentally measured correlation was lower than the
theoretic prediction. A possible reason may be that in contrast to
the mother cell lineage, the protein abundance in the daughter cell
lineage was obtained by monitoring different cells, which may
introduce additional noise. Also, it was difficult to trace the daugh-
ter cell lineage more than 3 generations in our experimental sys-
tem and we had only limited data for the 3rd generation daughters.

Next, we tested the theory with a degradable GFP ðkdeg–0Þ. We
fused a PEST degron to GFP (GFP-PEST), which would introduce an
active degradation of the protein [36,37]. We first monitored the
degradation of both GFP and GFP-PEST using cell cytometry after
the addition of a protein synthesis inhibitor, and observed that
scence time-course images (green, Adh1pr-GFP-PEST; red, Cdc10, cell cycle marker).
okinesis (septin splits into two) happens, and the time between two consecutive
n variance ratio g obtained in the two experiments. (c) and (f) show the distributions
r lineages estimated from experiments (bars) and predicted by the theory (red lines).



Fig. 6. Protein memory of the Cdc14 in cell lineages. (a) Right panel: A typical phase/fluorescence time-course images (green, Cdc14; red, Cdc10, cell cycle maker). Left panel:
the corresponding profiles of protein levels. The median level of protein Cdc14 as it localized in the nucleolus was used. (b) The distribution of protein variance ratio g
obtained in the experiments. (c) The distribution of Cdc14 protein abundance. (d) Cdc14 memory along the cell lineage from experiments (bars) and predicted by the theory
(red lines).
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GPF-PEST degraded much faster than GFP (Fig. S4). Note that the
degradation of the PEST sequence depends on its phosphorylation
state, and thus the degradation rate of GFP-PEST is cell-cycle
dependent [38]. Indeed, we found that the fluctuation of protein
abundance of GFP-PEST correlates with cell cycle progression
(Fig. 5a). However, according to our theory the protein inheritance
memory depends on the average degradation rate within a cell
cycle. The measured average degradation rate of GFP-PEST was
kdeg ¼ 0:0112 which was used in Eq. (5) for prediction. We per-
formed the lineage experiments twice using GFP-PEST with differ-
ent initial cell-to-cell variability (Fig. 5c and f), which resulted in
significantly different the protein abundance correlations along
the lineages (Fig. 5d and g). Remarkably, the theoretic predictions
agreed very well with both experiments (Fig. 5d and g), (except for
the first to the third daughter for the same reason discussed
above).

Furthermore, we tested the theory with an endogenous protein
Cdc14, which is an essential cell cycle phosphatase. The localiza-
tion of Cdc14 is regulated by multiple factors, although it does
not seem to have regulated degradation [39,40]. During the early
mitosis, Cdc14 is sequestered in the nucleolus by Net1 until M/A
transition [39]. Since the localization of Cdc14 changes signifi-
cantly during cell cycle, the median level of Cdc14 as it localized
in the nucleolus was used in our correlation calculation to mini-
mize the error (Fig. 6a). Again, the protein abundance correlation
obtained from the experiment agreed very well with the theory
(Fig. 6d).

4. Summary

Protein abundance memory plays an important role for cells to
adapt to the environment [1]. However, multiple factors could
affect the protein memory, such as protein production, degrada-
tion, random partition noise at division, extrinsic noise, intrinsic
noise and the time scales of these noises. In this study, we com-
bined theoretical, computational and experimental approaches,
and systematically investigated the contributions of different fac-
tors to protein memory in cell lineages.
We found that these factors significantly and differently
affected the protein memory in the cell lineage. First, the protein
level correlation decreases with decreasing division size ratio (a).
This would imply that the smaller daughter cell is naturally
"fresher" (less correlated with the parent cell) than the mother cell,
even without any specific asymmetric aging mechanisms [41].
Moreover, daughter cells commonly have a longer doubling time,
making them even more "fresher" (lesser correlated with their par-
ent cell). Second, the protein level correlation decreases exponen-
tially with the protein degradation rate, suggesting that changing
the degradation rate could be an easy way to adjust protein mem-
ory. Given that protein degradation is a common method of regu-
lation and it can also be subject to environmental cues, this
observation may provide insights into the regulation of protein
degradation. Third, while intrinsic noise tends to diminish the pro-
tein abundance correlation in a cell lineage, extrinsic noise
enhances the correlation (Fig. 2d and e).

Generally, there are two layers of protein inheritance, total pro-
tein amount and the protein with post-translational modification
regulation. Here, we mainly focused on the memory of total pro-
tein amount, since the mechanism of protein post-translational
modification varies case by case so that it is hard to have a general
theoretical expression for this layer of inheritance. However, for
the case in which protein with post-translational modification
can be viewed as a continuous process (the post-translational
modification rate can be viewed as the production rate), our theory
could also be used to predict the protein memory.

We chose budding yeast to test our theory experimentally, and
the theory agrees remarkably well with our quantitative experi-
ments. Note that, although in principle all parameters described
in our model could be tuned experimentally (such as cell size ratio
by comparing the symmetric and asymmetric division cells, dou-
bling time by culturing cells with different kinds of medium), in
practice most parameters are correlated with each other. For
example, in the cases of the protein memory of GFP and of GFP-
PEST, adding PEST degron actually did not only change the protein
degradation, but also the noise level. This is something to keep in
mind, especially when trying to tune the protein memory.
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Our theory was based on very general assumptions. The conclu-
sions are not limited to yeast, but applicable to other cell types,
such as bacterial and mammalian cells. Our work provides a frame-
work and a platform to further explore protein memory in more
complex situations, e.g. fluctuating environments with various
time scales.
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