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Growth strategy of microbes on mixed carbon
sources
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A classic problem in microbiology is that bacteria display two types of growth behavior when
cultured on a mixture of two carbon sources: the two sources are sequentially consumed one
after another (diauxie) or they are simultaneously consumed (co-utilization). The search for
the molecular mechanism of diauxie led to the discovery of the lac operon. However,
questions remain as why microbes would bother to have different strategies of taking up
nutrients. Here we show that diauxie versus co-utilization can be understood from the
topological features of the metabolic network. A model of optimal allocation of protein
resources quantitatively explains why and how the cell makes the choice. In case of co-
utilization, the model predicts the percentage of each carbon source in supplying the amino
acid pools, which is quantitatively verified by experiments. Our work solves a long-standing
puzzle and provides a quantitative framework for the carbon source utilization of microbes.
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uring the course of evolution, biological systems have

acquired a myriad of strategies to adapt to their envir-

onments. A great challenge is to understand the rationale
of these strategies on quantitative bases. It has long been dis-
covered that the production of digestive enzymes in a micro-
organism depends on (adapts to) the composition of the
medium!. More precisely, in the 1940s Jacques Monod observed
two distinct strategies in bacteria (E. coli and B. subtilis) to take
up nutrients. He cultured these bacteria on a mixture of two
carbon sources, and found that for certain mixtures the bacteria
consume both nutrients simultaneously while for other mixtures
they consume the two nutrients one after another?3, The latter
case resulted in a growth curve consisted of two consecutive
exponentials, for which he termed this phenomenon diauxie.
Subsequent studies revealed that the two types of growth beha-
vior, diauxic- and co-utilization of carbon sources are common in
microorganisms*~8. The regulatory mechanism responsible for
diauxie, that is the molecular mechanism for the microbes to
express only the enzymes for the preferred carbon source even
when multiple sources are present, is commonly ascribed to
catabolite repression>?-13. In bacteria it is exemplified by the lac
operon and the cAMP-CRP system!4-17. In yeast, the molecular
implementation of catabolite repression differs, but the logic and
the outcome are similar’.

Why have microbes evolved to possess the two strategies and
what are the determining factors for them to choose one versus
the other? For unicellular organisms, long term survival and
growth at the population level are paramount. Cells allocate their
cellular resources to achieve optimal growth!8-27, In particular, it
has been demonstrated that the principle of optimal protein
resource allocation can quantitatively explain a large body of
experimental data?%2! and that the most efficient enzyme allo-
cation in metabolic networks corresponds to elementary flux
mode?>26:28_n this paper, we extend these approaches to address
the question of multiple carbon sources and show that the two
growth strategies can be understood from optimal enzyme allo-
cation further constrained by the topological features of the
metabolic network.

Results

Categorization of carbon sources. Carbon sources taken by the
cell serve as substrates of the metabolic network, in which they
are broken down to supply pools of amino acids and other
components that make up a cell. Amino acids take up a majority
of carbon supply (about 55%)2°-31. As shown in Fig. 1, different
carbon sources enter the metabolic network at different points3!.
Denote those sources entering the upper part of the glycolysis
Group A and those joining at other points of the metabolic
network Group B (Fig. 1). Studies have shown that when mixing a
carbon source of Group A with that of Group B, the bacteria tend
to co-utilize both sources and the growth rate is higher than that
with each individual source®”32. When mixing two sources both
from Group A, the bacteria usually use a preferred source (of
higher growth rate) first6:11:13,33,34

Precursor pools of biomass components. Based on the topology
of metabolic network (Fig. 1), we classify the precursors of bio-
mass components (amino acids and others) into seven precursor
pools. Specifically, each pool is named depending on its entrance
point on the metabolic network (see Supplementary Note 1.3 for
details): al (entering from G6P/F6P), a2 (entering from GA3P),
a3 (entering from 3PG), a4 (entering from PEP), b (entering from
pyruvate/Acetyle-CoA), ¢ (entering from a-Ketoglutarate) and d
(entering from oxaloacetate). The Pools al-a4 are collective called
as Pool a.
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Fig. 1 Metabolic network of carbon source utilization. Group A substrates
(in green frames) can be simultaneously utilized with Group B substrates
(red frames), whereas substrates paired from Group A usually display
diauxie. Only the major pathways are shown. The precursors of biomass
components (amino acids marked with light brown frames and other
components marked with orange frames) are classified into Pools a-d
(marked with gray dashed line frames). The enzyme for the interconversion
between Glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P) is
very efficient (Supplementary Table 1), so we approximate G6P/F6P as a
single node for convenience. All Group A carbon sources enter the
metabolic network through G6P/F6P, while Group B carbon sources enter
the metabolic network from different points after glycolysis. Glycerol enters
from the upper part of glycolysis but not G6P/F6P, thus we classify glycerol
as a quasi-Group A carbon source (see Supplementary Note 1.4 for details)

Coarse-graining the metabolic network. Note that the carbon
sources from Group A converge to the node (G6P/F6P) before
entering various pools, while the carbon sources from Group B
can take other routes (Fig. 1). In fact, the metabolic network
shown in Fig. 1 can be coarse-grained (see Methods) into a model
shown in Fig. 2a, in which nodes Al and A2 represent carbon
sources from Group A, node B a source from Group B, and Pools
1 and 2 are some combinations of the four pools in Fig. 1. In
other words, Fig. 2a is topologically equivalent to Fig. 1 as far as
the carbon flux is concerned. Each coarse-grained arrow (which
can contain several metabolic steps) carries a carbon flux J and is
characterized by two quantities: the total enzyme cost @ dedi-
cated to carry the flux and a parameter « so that ] = ® - «.

Origin of diauxie for carbon sources in Group A. Let us first
consider the case in which both carbon sources are from Group
A. We proceed to solve the simple model of Fig. 2a with two
sources Al and A2 ([B] = 0), using the optimal protein allocation
hypothesis!®20:21.25 " which maximizes the enzyme utilization
efficiency.

In Fig. 2a, all enzymes that carry and digest nutrient Ai (i =1, 2)
into node M are simplified to a single effective enzyme E,; of cost
®,; (see Supplementary Note 1.2 for details). The carbon flux to
the precursor pools from source Ai is proportional to @ ;. We take

the Michaelis-Menten form (see Supplementary Note 1.2 for

details): J,; = ®; - k4;, where k,; =k,; - % (denoted as the
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substrate quality). [Ai] is the concentration of Ai. For the subsystem
consist of Al, A2 and node M, J,,, = @y - k4 + Dy - k4, and
D,y = Dy + Dy, We define the efficiency of a pathway by the
flux delivered per total enzyme cost>>20:

]tot
o

€

(1)

tot

The efficiency to deliver carbon flux from the two sources Al

. Dy + Dy .
and A2 to node M is then ¢ = W. If x4, > K4y, that is,

if the substrate quality of Al is better than that of A2, then
_ Do (g1 —Ka2)
Qi+ Py,
solution (maximum efficiency) is @4, = 0. This means that the
cell expresses only the enzyme for Al and thus utilizes only Al.
Conversely, if k4, < k4,, ®4; = 0 is optimal and the cell would
utilize A2 only. In either case, optimal growth would imply that
cells only consume the preferable carbon source, which
corresponds to the case of diauxie>>611,

In the above coarse-grained model, the enzyme efficiency of the
carbon source Ai is lump summed in a single effective parameter
K4;- In practice, there are intermediate nodes and enzymes along
the pathway as depicted in Fig. 2b, and more elaborate
calculations taking into account the intermediate steps are needed
to evaluate the pathway efficiency. Note that Fig. 2b is rather
generic in representing a part of the metabolic pathway under
consideration. X and Y can represent carbon sources coming
from Group A and/or Group B, M represents the convergent
node of the two sources under consideration and Pool z
represents the precursor pool under consideration. We now
proceed to calculate and compare the efficiencies of the two
branches: X — M and Y — M. Using the branch X — M as the

example, denote E] the enzymes (of protein cost @) ) catalyzing
the intermediate nodes m’ (=1~ Ny) (Fig. 2b). Define

£ =ty < x,,. It is easy to see that the optimal

NX .
O = dy + . @), which is the total protein cost for enzymes
=1
dedicated to the branch. The pathway efficiency for the branch
X — Misthen ey, = Jy_ /D% where Jy_,, is the carbon flux
from X to M. Assuming that the flux is conserved in each step
along the branch ]X_,M =0y -k =Dy -y (=1~ Ny),

where K’X = k’X ~ x is the substrate quality of m]

[m’ ]+K’
(Supplementary Note 1.2) and the last approximation is valid

with [n7] > K, which is generally true in bacteria3>3¢ and which
also maximizes the flux with a given enzyme cost (Supplementary
Note 1.5). It is then easy to see that

1 1
Ve + 50 1k g+ o0 g, @

For &y ., > €y, the optimal solution is @, = @/, = 0; for

Ex—Mm =

ex_m < €y_y» the optimal solution is @y = @} =0 (see
Supplementary Note 2.2 for details). Only the nutrient with
higher branch efficiency is utilized to supply the convergent node
M and thus Pool z (Fig. 2b).

When X and Y both come from Group A, the convergent node
M resides upstream to all precursor pools (Fig. 1 and
Supplementary Fig. 1c). Only the nutrient with higher efficiency
is being utilized to supply all precursor pools. When the preferred
nutrient is exhausted, the cell switch to the other less favorable
nutrient. The actual switching point could depend on the
concentrations of both nutrients. Note that the branch efficiency
e4im (Eq. (2)) depends on the concentration of the nutrient [Af]

through the substrate quality «,; = k,; - Al[] | Thus, only with

ane o
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Fig. 2 Topology of the metabolic network. a Coarse-grained model of the
metabolic network. Group A carbon sources merge to a common node M
before reaching precursor pools. Group B sources can supply some
precursor pools from other routes. b Topology of the part of the metabolic
network connecting two carbon sources to a precursor pool. The two
carbon sources X and Y (from Group A and/or Group B) reach a common
node M through multiple intermediate nodes (metabolites) m’;( and m/Y
along their respective pathway, after which the flux is diverted to Pool z

saturating concentrations, one can have an absolute ranking of
the nutrient quality. For concentration [Ai] < Ky, €4, ([Ad])
drops fast with [Ai]. Theoretically, when the concentration of the
originally preferred nutrient (A1) drops to a point [A1]; such that
ea1m([Al]1) = €451 ([A2]), the other nutrient (A2) becomes
preferrable and the cell may switch to A2 at this point. This gives

[Al]l; =% +[ A2]’ where § and A are constant (see Supplementary

Note 2.3 for details). For [A2] < A, the turning point is reduced
to [Al]; =2 - [A2], a form of ratio sensing. Indeed, ratio sensing
was recently observed in the budding yeast Saccharomyces
cerevisiage cultured in glucose-galactose mixed medium?33, and
the experimental results agree well with the turning point
equation derived above (see Supplementary Fig. 2 and Supple-
mentary Note 2.3 for details).

Co-utilization of carbon sources. The diauxic growth is due to
the topology of the metabolic network, in which Group A sources
converge to a common node (G6P/F6P) before diverting to var-
ious precursor pools (Figs. 1, 2a and Supplementary Fig. 1c). The
situation is different if the two mixed carbon sources are from
Groups A and B, respectively (denoted as A + B). (Some com-
binations of two Group B sources also fall into this category and
can be analyzed similarly; see Supplementary Fig. 3d) Group B
sources can directly supply some precursor pools without going
through the common node (G6P/F6P) (Fig. 1). The topologies of
the metabolic network in the cases of A + B are exemplified in
Supplementary Fig. 3. All A+ B cases can be mapped to a
common coarse-grained model depicted in Supplementary
Fig. 1d (which is also Fig. 2a with only one of the A sources
present), although the actual position of nodes M and N in the
metabolic network, and the contents of Pools 1 and 2 may depend
on specific cases. As obvious from Fig. 2a, source A or B alone
could in principle supply all precursor pools. However, because of
the location of the precursor pools relative to the sources, it may
be more economical for one pool to draw carbon flux from one
source and the other from the other source.
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To determine which of the two carbon sources should supply
which pool(s), we apply branch efficiency analysis (see Supple-
mentary Note 3 for more details). For Pool 1, we compare the
efficiency of A and B in supplying flux to node M; while for Pool
2 to node N. The criteria are simply:

A, if >
Pool 1 is suppliedby{ P A 7 Eu (3)

ifey oy < €5y

A, if >
Pool 2 is supplied by { B7 TN 7 BN (4)

cifey y < &gy
It is easy to see from inequalities (3) and (4) that if the
following condition is met

1/kg = 1/1yy < 1/14 < 1/ieg + 1/ 1y, (5)
then A supplies Pool 1 and B supplies Pool 2—the two carbon
sources are simultaneously consumed. In reality, there are
multiple intermediate nodes between the M-N interconversion
(Figs. 1, 2a and Supplementary Fig. 1d). Similar to Eq. (2), 1/x,,
and 1/xy here actually represent summations of all intermediate
terms between M and N in the metabolic network.

Pools suppliers in the mixed carbon sources. In order to apply
the above analysis to the real case, we collected the available data
for metabolic enzymes of E. coli from the literature (Supple-
mentary Table 1). We calculated the branch efficiencies of dif-
ferent carbon sources to the metabolites F6P, GA3P, 3PG, PEP,
pyruvate and oxaloacetate (see Supplementary Note 4.1 for
details), which correspond to the nodes M or N in the simplified
network of Fig. 2a for Pools al-d (Fig. 1 and Supplementary
Fig. 3). The results are shown in Supplementary Table 2. Then
using the criteria Egs. (3) and (4), one could evaluate the carbon
source supplier(s) of all pools (Supplementary Table 3). Note that
Pool c is supplied by both the suppliers of Pools b and d owing to
the effect of converged flux (see Supplementary Notes 4.1-4.2 for
details).

However, in practice, the suppliers of Pools b-d can be different
from the above evaluation due to energy production in the TCA
cycle. Specifically, when oxaloacetate flow through a TCA cycle
back to itself, it generates fixed amount of energy>!, with half of
the carbon atoms replaced by those coming from pyruvate (see
Supplementary Figs. 4b-c and Supplementary Notes 4.3-4.4 for
details). By collecting relevant energy production data from
literatures3’, we quantitatively analyzed the influence of this
effect, and obtained the optimal carbon source supplier(s) of each
precursor pool for E. coli under aerobic growth in various
combinations of source mixture (see Supplementary Notes 4.3—
4.5 for details). The results are shown in Supplementary Table 4.

Comparison with experiments. To test these predictions (Sup-
plementary Table 4), we use 13C isotope labeling methods to trace
the carbon source(s) of each precursor pool (see Methods for
details). Specifically, we cultured E. coli to the steady state in a
mixture of two carbon sources with one source being labeled with
13C. We then measured the 13C labeling percentage of amino
acids and obtained the percentage of each carbon source in
supplying the synthesis of each amino acid. To ensure reliability,
we obtained and compared our experimental results using two
types of fragment in mass spec raw data: M-57 and M-85 (Sup-
plementary Fig. 5) (see Methods for details).

We first examined the A 4 B cases (Group A source: glucose,
lactose, fructose, glycerol; Group B source: pyruvate, succinate,
fumarate, malate). Overall, the experimental results showed
excellent agreement with our predictions (Fig. 3). A number of
features are worth noting. Just as the model predicted
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[ ] Lactose (A)+pyruvate (B)

,HH o o
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Fig. 3 Suppliers of precursor pools in A + B cases. Vertical axes are the
percentages of the carbon atoms from the first of the two sources
indicated. Model predictions (in hollow bars, see Supplementary Table 4)
are shown together with experimental results (in color bars). The source
supplier of representative amino acids in Pools a-d was measured using 13C
labeling (raw data from M-57 fragment; see Methods for details). Error
bars represent standard deviations. Source data are provided as a Source
Data file. a Glucose or lactose mixed with a Group B carbon source.

b Fructose or glycerol mixed with a Group B carbon source

(Supplementary Table 4), two patterns of the carbon source
partition (Fig. 3a, b) were observed depending on which A source
was used. Glucose and lactose are both highly preferable carbon
sources for E. coli, both supporting large growth rates
(Supplementary Table 5); their supply patterns look almost the
same (Fig. 3a). Fructose, glycerol, maltose and galactose are less
preferable Group A sources with lower growth rates (Supple-
mentary Table 5), and they showed very similar supply patterns
when mixed with the same Group B source (Fig. 3b, Supple-
mentary Fig. 6a). Group B sources succinate, fumarate and malate
showed similar supply patterns when mixed with a same Group A
source (Figs. 3a, b, 4a & Supplementary Fig. 6a). There was a
noticeable systematic discrepancy between the experimental
results and the model predictions for Pool a. This may be due
to the fact that microbes reserve a portion of gluconeogenesis
enzymes preparing for potential changing environment (see also
Supplementary Notes 4.8-4.9).
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Next, as our model can calculate carbon source utilization and
partition in any combinations of sources, we performed
experiments for B+ B cases (pyruvate mixed with succinate,
fumarate or malate; succinate mixed with malate). In agreement
with the model prediction, these B+ B cases showed co-
utilization and the measured carbon supply percentages quanti-
tatively agree with model predictions (Fig. 4).

Discussion

The diauxie versus co-utilization puzzle can be understood from
the topology of the metabolic network. This can be illustrated
with the coarse-grained model shown in Fig. 2a (see also Sup-
plementary Figs. 1b-d). The sources of Group A go through a
common node before delivered to various precursor pools, and
the most efficient source wins?2. It has been observed that there is
a hierarchy among Group A sources ranked according to the
single-source growth rate, and when two or more sources are
present the bacteria usually use the one with highest growth
rate®34. This is a natural consequence of our theory. A higher
growth rate commonly implies higher enzyme utilization effi-
ciency and thus a higher priority to be utilized. Other than the lac
operon, questions remain as how this priority is implemented
molecularly. It has been known that in many cases the catabolite
repression is not complete and that this may depend on whether
the carbon sources belong to the type of Phosphotransferase
system (PTS)!%13, highlighting the potential constraints, trade-
offs and/or costs of implementing a prefect optimal solution. We
have mixed glucose (a PTS sugar) with both PTS sugar fructose
and non-PTS sugars maltose and glycerol, which all belong to the
A + A cases. We found that while glucose showed almost perfect
inhibition to the two non-PTS sugars (all precursor pools were
about 100% supplied by glucose), its inhibition to the other PTS
sugar fructose was not complete (glucose supplied ~83% pre-
cursor pools) (Supplementary Fig. 6b).

When Group B source is present along with Group A source, it
can take a shortcut to reach some of the precursor pools (Fig. 2a,
Supplementary Fig. 1d) and can be more efficient to supply these
pools. Some combinations of two Group B sources also fall into
this category and thus can be co-utilized. In these cases, our
experimental results quantitatively agree with our model predic-
tions. As can be seen from Figs. 3 and 4, despite the various
possible combinations of carbon sources, the partition of the
sources among the pools fall into a few patterns. This is due to the
fact that these partitions are largely determined by the topology of
the metabolic network and thus are quantized. This property also
relaxes the requirements of accurate enzyme parameters in
determining the pool suppliers. To test the robustness of the
model predictions with respect to the errors/uncertainties of the
parameters extracted/estimated from the literature, we carried out
a detailed analysis (Supplementary Note 4.9 and Supplementary
Tables 6 and 7). The analysis showed that for any mixture of two
carbon sources and for arbitrary choice of parameters, only a very
few (no more than 4) partition patterns of the sources are qua-
litatively similar to the experimental result. Model predictions
using the nominal parameter values from the literature quanti-
tatively and consistently agree with all the experimental patterns
for all the combinations of carbon sources we tested. Conversely,
in order to produce a pattern that is qualitatively similar but
quantitatively different from the experimental one, a very large
deviation from at least one nominal value is necessary.

The present work deals with relatively stable growth conditions
and the simple exponential growth behavior. In this case,
there is a body of experimental evidence for optimal protein
allocation!8-24.27-38 Furthermore, our model relies only on the
assumption that microbes optimize enzyme utilization efficiency,
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Fig. 4 Suppliers of precursor pools in B4 B cases. Vertical axes are the
percentages of the carbon atoms from the first of the two sources
indicated. Model predictions (in hollow bars, see Supplementary Table 4)
are shown together with experimental results (in color bars). The source
supplier of representative amino acids in Pools a-d was measured using 13C
labeling (raw data from M-57 fragment; see Methods for details). Error
bars represent standard deviations. Source data are provided as a Source
Data file. a Pyruvate mixed with another Group B carbon source.

b Succinate mixed with malate. In this case, the branch efficiencies of the
two sources are about the same

so it may also be applicable to suboptimal growth cases?”-38. The
environment the microbes face can be highly variable and
uncertain. Their long-term fitness of the population may not
simply be determined only by the growth rate of individual cells
in the exponential phase, but a result of trade-offs that best adapt
to the changing environment. Strategies such as bet hedging,
memory of the past and anticipation of the future are found to
exist in microorganisms3°-48,

Finally, from theoretical aspects, our analysis framework is
broadly applicable to more complex regulations in metabolic
networks such as reversible reactions, allosteric enzymes, meta-
bolites inhibitions, etc. (see Supplementary Notes 5-7 for details).
However, there are cases, such as bi-substrates transporters or
enzymes (e.g., glucose transporters in E. coli can co-transport
mannose*?), for which specific care needs to be taken (see Sup-
plementary Notes 6-7 for details). In practice, the nutrient uptake
strategy or eating habit of a microbe is shaped by its environ-
mental history. While the phenomena of diauxie versus co-
utilization are widely spread in microbes, there are bound to be
variations and exceptions. For example, certain microbes may
have different hierarchies of preferable carbon sources. It is still a
great challenge to understand in quantitative frameworks how
cells and population behave and evolve in different and changing
environments.

Methods

Coarse graining methods. Coarse graining of the metabolic network is done in
such a way as to preserve the network topology but grouping metabolites, enzymes
and pathways into single representative nodes and corresponding effective
enzymes. In particular, a linear pathway is lump summed into two nodes (start and
end) connecting with a single effective enzyme.

Strain. The strain used in this study is E. coli K-12 strain NCM3722.

Growth medium: Most of the cultures were based on the M9 minimal medium
(42 mM Na,HPO,, 22 mM KH,PO,, 8.5 mM NaCl, 18.7 mM NH,Cl, 2 mM
MgSO,, 0.1 mM CaCl,), and supplemented with one or two types of carbon
sources. For the carbon sources in each medium, the following concentrations were
applied: 0.4% (w/v) glucose, 0.4% (w/v) lactose, 0.4% (v/v) glycerol, 20 mM
fructose, 20 mM fructose, 20 mM maltose, 20 mM pyruvate, 15 mM succinate,

20 mM fumarate, and 20 mM malate.
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Batch culture growth: The batch cultures were performed either in the 37°C
incubator shaker shaking at 250 rpm or in the microplate reader, which holds the
temperature at 37 °C and shakes at 900 rpm. The culture volume was 200 uL in
96-well plates, 1 mL in 5 mL round-bottom tubes or 50 mL in 100 mL flasks.
Every batch culture was performed as described below. Single colony from the
LB agar plate was first inoculated into 50 mL LB medium and cultured overnight.
Then, 0.5 mL overnight culture was inoculated into 50 mL LB medium and
cultured for 2 h. Cells were centrifuged at 4000 rpm for 2 min, and the cell pellets
were diluted to ODgoo = 0.001 in the culture medium (M9 medium
supplemented with various carbon sources). Then, the medium was cultured in
microplate reader (measuring growth rate) or incubator shaker (isotope
labeling).

Growth rate measurement: Each well of the 96-well plate was covered with a
200-pL culture medium (ODgop = 0.001). Cells were cultured at 37 °C in the
microplate reader shaking at 720 rpm with a 2-mm diameter. The microplate
reader measured the ODgq, of each well at an interval of 5 min for 20 h. Growth
rate A was measured as the multiplicative inverse of doubling time:

_ dlog, ODg,

A
dt

(6)

The interval of 2h with the maximum Pearson correlation coefficient was
defined to be in the exponential phase and the slope of this interval was the growth
rate. For some cultures, the ODggo remains constant during the first 20 h. Thus the
record time was extended to 72 h for these cultures.

Isotope labeling: The following 13C carbon sources were applied in the isotope
labeling experiments: glucose (Product code: CLM-1396; Cambridge Isotope
Laboratories, Inc.), fructose (Product number: 587621; Sigma-Aldrich) and glycerol
(Product number: 489476; Sigma-Aldrich) (Group A); pyruvate (Product code:
CLM-2440; Cambridge Isotope Laboratories, Inc.) and succinate (Product number:
491985; Sigma-Aldrich) (Group B). In an isotope labeling experiment, there are
two types of carbon sources: one is uniformly labeled with 13C, while the other one
is not labeled. In every experiment, 1 mL !3C-labeled culture medium (ODggo =
0.001) was inoculated into the 5 mL round-bottom tube and cultured in the
incubator shaker until the ODgo = 0.150 to 0.250 (7-8 generations). Three
independent experiments (with numerous distinct cells) were carried out for each
combination of mixed carbon sources.

Extraction and derivatization of amino acids®: Cells labeled by 13C were
harvested by centrifuging for 3 min at 12,000 rpm. The cell pellets were washed
with 1 mL PBS and centrifuged for 2 min at 12,000 rpm twice, and then
resuspended in 200 pL of 6 M HCI. The resuspended cells were transferred into
sealed 1.5 mL tubes and hydrolyzed for 20 h at 105 °C. The cell hydrolysate was
dried at 65 °C under the fume hood. The dry hydrolysate was resuspended with 40
pL N,N-Dimethylformamide and 20 uL N-tert-butyldimethylsilyl-N-
methyltrifluoroacetamide and heated at 85 °C for 1 h so that the amino acids were
derivatized (structure shown in Supplementary Fig. 7b). The solution of mixed
derivatized amino acids was filtered with 13 mm syringe filter with 0.2 pm
membrane.

GC-MS setup: GC-MS analysis was carried out using the Hybrid Quadrupole-
Orbitrap GC-MS/MS System (Q Exactive GC, ThermoFisher). The injected
sample volume was 1 uL at a carrier gas flow of 1.200 mL/min helium with a split
ratio of 1:4.2. The oven temperature was initially set at 150°C and maintained for
2 min, raised to 180°C at 5°C/min and immediately to 260°C at 10 °C/min and
maintained for 8 min, and then raised to 350°C/min and maintained for 5 min.
The ionization mode was set as electron impact ionization. The ion source
temperature was set at 230 °C. The MS transfer line temperature was set at 250 °C.
The scan range was 50.0 to 650.0 m/z with a resolution at 60,000. The MS was
tuned to 414.0 m/z.

GC-MS analysis of 13C labeled derivatized amino acids: The derivatized amino
acids was analyzed by GC-MS with the setup described above. Different kinds of
derivatized amino acids in one sample were separated in the gas chromatography
(GC) according to their different retention time. The amino acids were fragmented
during ionization, forming different kinds of fragments (Supplementary Fig. 7b).
Different kinds of fragment of the same derivatized amino acid and their relative
abundance (Supplementary Fig. 7b—c) were analyzed by mass spectrometry (MS).
The labeling percentage of a certain amino acid can be inferred from the labeling
percentage of its fragments. Thermo Xcalibur4.0 was used to view and process the
GC-MS data. According to the relative retention time in the chromatogram
(Supplementary Fig. 7a) and the corresponding mass spectrum (Supplementary
Fig. 7b), 13 kinds of amino acid were detected. The integrated mass spectrum over
the full peak range of every derivatized amino acid was obtained to calculate the
13C labeling percentage’!. For a typical derivatized amino acid, 5 types of fragment,
M-15, M-57, M-85, M-159 and {302 (Supplementary Fig. 7b), were detected. M-57
denotes that this fragment weighs 57 daltons less than the corresponding
derivatized amino acids, and the same goes for M-15, M-85 and M-159. f302
denotes a fragment of weights 302 daltons. For a certain fragment containing N
carbon atoms from the underivatized amino acids (the natural form of concern),
there were (N + 1) kinds of mass isotopomer incorporating 0 ~ N 13C
respectively. I; denoted the intensity of mass isotopomer that had i 13C and N — i

12C. The 13C labeling percentage { of this fragment was calculated as follows:

N p

= Zzzllz P 7)
N
Amino acids 13C labeling data of different fragments: There are five types of

fragments (M-15, M-57, M-85, M-159 and f302) formed during the ionization of
amino acids. With each type of raw data, we can calculate (with Eq. (7)) a set of 13C
labeling percentages for amino acids. According to the molecular structure, these
results can be classified into the following three categories: using (1) M-15/M-57;
(2) M-85/M-159; and (3) £302. Only in the first category, there is no carbon atom
loss during the fragmentation of the amino acids of concern (Supplementary
Fig. 7). This means that M-15/M-57 reflects the exact 13C labeling percentages of
amino acids. Yet, the signal intensity of M-15 is faint, thus M-57 is the best choice
among the fragments. However, in practice, Leu M-57 and Ile M-57 fragments
share the same mass as that of £302 and thus are not applicable for analysis.
Consequently, we used Leu M-15 and Ile M-15 to calculate the 13C labeling
percentage of Leu and Ile, and M-57 data for other amino acids throughout our
manuscript and Supplementary Information unless otherwise specified. In the
second category, the carboxylic carbon atom in an amino acid was lost during the
fragmentation (Supplementary Fig. 7). Thus M-85/M-159 data can reflect the 13C
labeling percentages for a majority yet not all carbon atoms in amino acids, and
indeed M-85 and M57 data show a very good agreement with each other
(Supplementary Fig. 5). In the third category, all carbon atoms in the side chain of
an amino acid (a considerable proportion) were lost during fragmentation
(Supplementary Fig. 7). As a result, we did not use 302 data for calculation in this
study.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability
This paper does not involve computer code. Built-in functions of Origin (v9) were used
for curve fitting in Supplementary Fig. 2.

Data availability

The data that support the findings of this study are available from the corresponding
author (C.T.) upon request. The source data underlying Figs. 3-4, Supplementary
Figs. 5-6, Supplementary Note 4.7 and Supplementary Table 5 are provided with the

paper.
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