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1. Introduction

Biological systems often show qualitatively different 
responses to quantitatively different external stimuli. 
Different responses transfer different signals to the 
downstream signaling pathways, enabling biological 
systems make decisions to deal with different 
circumstances. This raises the important question 
of whether a simple regulatory network can provide 
different answers in response to different input 
signals. Research has shown that the dynamics of the 
yeast Saccharomyces cerevisiae transcription factor 
Msn2 varies with the degree of glucose limitation [1]. 
Glucose limitation occurs when the nutrient supplier 
glucose level in the environment is below a normal 
level. Msn2 concentration in the nucleus oscillates 
when the yeast is under minor glucose limitation. 
When glucose limitation becomes more severe, 
nuclear Msn2 concentration shows a pulse at first but 
returns to the prestimulus level. Another example 
is the single-cell organism amoeba Dictyostelium 
discoideum. During starvation, the amoeba begins to 
produce cAMP when it is stimulated by extracellular 
cAMP. The amoeba shows a different response to 
different levels of extracellular cAMP during the 
process of starvation [2]. In detail, when an amoeba is 
stimulated by a high concentration of external cAMP, 

intracellular cAMP shows oscillation. Conversely, 
when an amoeba is stimulated by a low concentration 
of external cAMP, intracellular cAMP shows an initial 
pulse, but it returns to the prestimulus level, which can 
be viewed as adaptation.

Motivated by these observations, we considered 
whether these two different behaviors could occur in 
a simple regulatory network, i.e. whether a simple net-
work topology can perform two different functions. 
Previous studies have shown the relationship between 
a network topology and its function is not a one-to-
one mapping [3–8]. On the one hand, some different 
network topologies perform the same function. For 
example, both negative feedback loop (NFL) and inco-
herent feedforward loop can cause a biological system 
to exhibit adaptation [9]. On the other hand, some net-
work topologies can perform more than one function. 
The NFL in the cell cycle system induces oscillation 
(figure 1(a)) while the NFL in bacterial chemotaxis 
system induces adaptation (figure 1(b)) [6, 10–12].

In this study, we focused on two well-studied func-
tions—adaptation [9, 13] and oscillation [6, 10, 14–
16], which are commonly found in signaling systems, 
such as the p53 [17], Msn2 and cAMP signaling path-
ways. We systematically searched for two-node and 
three-node network topologies capable of adaptation 
and oscillation in the conditions of transcriptional 
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regulation and enzymatic reactions. Then, we investi-
gated the transition between these two functions (fig-
ure 1(c)).

2. Model construction

As in many previous studies of biological signaling 
systems and networks, we used ordinary differential 
equations to model the dynamics of networks 
or circuits [18, 19]. For the transcriptional 
regulatory networks (TRNs), each node stands 
for a transcriptional gene product which itself is a 
transcription factor. Transcription factors bind to 
regulatory sequences of the target genes to modulate 
their transcriptional activity. A transcriptional factor 
could up regulate (activation) or down regulate 
(inhibition) its target gene. The linkages between 
nodes represent the corresponding regulation and 
are modeled with the Hill function [18]. We used 
AND logic to represent the interaction, which means 
that gene expression is only turned on when all the 
activators are at high concentrations and the repressors 
are at low concentrations [13].

For the enzymatic regulatory networks (ERNs), 
each node stands for an enzyme and the interactions 
(links) between nodes represent some catalytic reac-
tions, such as phosphorylation, dephosphorylation, 
methylation, ubiquitination, etc. An enzyme (node) 
can also be a substrate of other enzymes (including 
itself) and its activity can be activated or inhibited by 
other nodes. We modeled the networks of the enzy-
matic regulation with Michaelis–Menten rate equa-
tions [18]. Each node in the model represents an 
enzyme and it is interconvertable between an active 
and an inactive state. These states have a fixed total con-
centration, so variable A represents the active concen-
tration of node A while (1  −  A) represents the inactive 
concentration of node A. We assume that all enzymatic 
reactions are reversible in the enzymatic network we 
consider (otherwise, it may evolve to an absorbing 
‘dead’ state). Biologically, for example, when a sub-
strate is phosphorylated by an enzyme, in most cases 
it could also be dephosphorylated by another enzyme. 
So, if in a network the reverse reaction is not apparent 
for a node (manifested as the node only have positive 
or negative links pointing to it from other nodes), we 

Figure 1. The relationship between network topology and its functions. (a) Negative feedback loop in cell cycle system induces 
oscillation. (b) Negative feedback loop in chemotaxis system induces adaptation to the input signal. (c) Search for network topologies 
capable of adaptation and oscillation. The transition between the two functions can be achieved by changing parameters or inputs 
(shown here).
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assume that there is an additional link from a basal 
or background enzyme F to do the (constant) reverse 
reaction [9].

3. Results

3.1. Two-node bi-functional topologies with 
transcriptional regulation
Adaptation means that the system can respond to 
changes in external stimulus but return to the previous 
output level, even when the stimulus change persists. 
If the output returns to (almost) exactly the same 
level as before, it is called perfect adaptation. Here we 
focus on perfect adaptation, as both its definition and 
theoretic analysis are clear. We started by searching for 
the simplest two-node networks capable of achieving 
perfect adaptation and oscillation. Adaptation requires 
that the system has a stable fixed point (steady state) 
and that the value of the output node at the steady state 
is independent of the input level [9]. The simplest way 
to oscillate, starting from a stable fixed point, is the 
emergence of a stable limit cycle, resulting from a Hopf 
bifurcation [6, 15, 20, 21]. Our method was to analyze 
the Jacobean matrix to find the conditions for perfect 
adaptation and Hopf bifurcation.

Assume that node A receives the input signal I. 
Changing the input from I to I +∆I  and expanding 
the equations around the fixed point [9],

dA

dt
= f (A, B, I) = 0,

dB

dt
= g(A, B) = 0, (1)

Ç ∂f
∂A

∂f
∂B

∂g
∂A

∂g
∂B

åÇ
∆A

∆B

å
= −

Ç
∂f
∂I

0

å
∆I, (2)

or

∂f
∂A∆A + ∂f

∂B∆B + ∂f
∂I ∆I = 0,

∂g
∂A∆A + ∂g

∂B∆B = 0.
 

(3)

We have

∆A

∆I
=

∂f
∂I

∂g
∂B

|J|
,
∆B

∆I
=

−∂f
∂I

∂g
∂A

|J|
, (4)

where J is the Jacobean matrix 

Ç ∂f
∂A

∂f
∂B

∂g
∂A

∂g
∂B

å
and 

|J| =
Ä

∂f
∂A

∂g
∂B − ∂f

∂B
∂g
∂A

ä
 its determinant.

As node A receives the input signal, ∂f
∂I �= 0. ∂g

∂A rep-
resents the interaction between the two nodes (signal 

transduction from node A to node B), so ∂g
∂A �= 0 and 

thus ∆B �= 0. Therefore, if perfect adaptation could 
be achieved in a two-node network, it can only happen 

on node A (∆A = 0), and with the condition ∂g
∂B = 0 

(equation (4)). For transcriptional regulation, the rate 
equation of node B is g(A, B)  =  production term—
degradation term  =  production term—b2B, where b2 

is the degradation rate. In order to satisfy ∂g
∂B = 0, the 

node B should activate itself (i.e. the production term 

should have a positive dependence on B) to make up 
for the degradation. Furthermore, for the fixed point 

to be stable, the sign of Tr(J) =
Ä

∂f
∂A + ∂g

∂B

ä
should be 

negative and |J| =
Ä

∂f
∂A

∂g
∂B − ∂f

∂B
∂g
∂A

ä
should be posi-

tive. Combined with the condition ∂g
∂B = 0, this means 

that the sign of ∂f
∂A should be negative and the sign of Ä

∂f
∂B

∂g
∂A

ä
should also be negative. So a NFL is neces-

sary for adaptation. Thus, for a two-node network to 
achieve perfect adaptation, (1) the node that receives 
the input signal should also be the output; (2) the other 
node should have self-activation; and (3) there should 
be a NFL between the two nodes. The topologies satis-
fying the three requirements are shown in figure 2(a) 
[13]. As far as the signs of the Jacobean matrix ele-
ments are concerned, it is easy to see that there are two 
kinds of Jacobean matrix for adaptation:

ñ
− +

− 0

ô
and

ñ
− −
+ 0

ô
.

Let us take the topology in figure 2(b) as an exam-
ple and carry out the linear stability analysis. The 
dynamic equations are:

dA
dt = f (A, B, I) = −b1A + Ik1

n1

k1
n1+Bn1

,
dB
dt = g(A, B) = −b2B + aAn2

k2
n2+An2

Bn3

k3
n3+Bn3 .

 
(5)

The transcriptional regulation is modeled with Hill 
functions. Each link has two parameters: the Hill 
coefficient n and the half activation (inhibition) k. 
b1 and b2 represent the degradation rate of node A 
and node B respectively. a represents the maximum 
transcription rate of node B. The input signal acts 
on node A and takes a linear form for simplicity (the 
form of the input signal did not affect the results). The 
output (readout) of the system is the level of A. The 
Jacobean matrix is
Ç ∂f

∂A
∂f
∂B

∂g
∂A

∂g
∂B

å

=


 −b1

−Ik1
n1 n1Bn1−1

(k1
n1+Bn1 )2

a2n2An2−1k2
n2

(An2+k2
n2 )2

Bn3

(Bn3+k3
n3 ) − b2 +

a2An2

An2+k2
n2

n3Bn3−1

(Bn3+k3
n3 )2


 ,

with the signs of its elements

Sign

Ç ∂f
∂A

∂f
∂B

∂g
∂A

∂g
∂B

å
=

ñ
− −
+ uncertain

ô
. (6)

The system can achieve perfect adaptation if ∂g
∂B = 0 at 

the fixed point. This condition can be satisfied if the 
Hill coefficient n3  =  1 and k3 � B∗ (* denotes steady 
state). In this case, equation (5) can be simplified to

dA
dt = f (A, B, I) = −b1A + Ik1

n1

k1
n1+Bn1

,
dB
dt = g(A, B) = −b2B + aAn2

k2
n2+An2

B
k3

.
 (7)

The steady state of A is:

Phys. Biol. 16 (2019) 016001
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A∗ = k2

Å
k3b2

a − k3b2

ã 1
n2

. (8)

This means that the steady state concentration of node 
A depends only on the parameters and not on the input 
signal. In other words, when the input signal changes, 
the output (node A) would return to the same previous 
value after a transient response (figure 2(b)) [9, 13].

We now proceed to identify the requirements for 
oscillation. The nonlinear dynamics analysis tells 
us that a stable limit cycle will emerge if the sign of 

Tr(J) =
Ä

∂f
∂A + ∂g

∂B

ä
 changes from negative to posi-

tive and the sign of the |J| =
Ä

∂f
∂A

∂g
∂B − ∂f

∂B
∂g
∂A

ä
 is posi-

tive. According to this rule, there are eight kinds of 

Jacobean matrixes that Hopf bifurcation could hap-
pen [6].

Figure 2. Two-node bi-functional networks with transcriptional regulation. (a) Six two-node network topologies could perform 
both adaptation and oscillation. Note that the dotted line on node A represents three possible regulations of node A on itself: 
activation, inhibition or no regulation. All three are allowed in the bi-functional network, so every motif stands for three topologies.  
(b) An example network. It can switch between the two functions by changing parameters on node B in the direction indicated.  
(c) An example in which adaptation can be transformed to oscillation in two different ways: parameter changes and input change.

Phys. Biol. 16 (2019) 016001
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The sign of 
Ä
∂f
∂B

∂g
∂A

ä
 cannot be zero because ∂f

∂B and ∂g
∂A 

depict the interaction between the two nodes A and 
B. Thus, for Hopf bifurcation to happen, the sign of 
∂f
∂Bshould be always opposite to the sign of ∂g

∂A, which 
means that a NFL is necessary for oscillation.

Note that the sign of a Jacobean matrix element 
is determined by the specific interaction between the 
two corresponding nodes or self-loop (see table S1 
in supplemental information (stacks.iop.org/Phys-
Bio/16/016001/mmedia)). It is easy to see that all six 
two-node topologies that can perform adaptation have 
the potential to oscillate through a Hopf bifurcation  
(figure 2(a)).

3.2. Transition between adaptation and oscillation 
in two-node TRNs
We next investigated the transition between the two 
functions. Specifically, starting with a topology that 
can achieve adaptation, how can one induce a Hopf 
bifurcation so that the same topology will perform 
oscillation. From the above analyses of the signs 
of Jacobean matrix for both adaptation and Hopf 
bifurcation, we conclude that the possible ways of 
changing from adaptation to oscillation are

ñ
+ +

− −

ô
,

ñ
− +

− +

ô
,

ñ
+ −
+ −

ô
,

ñ
− −
+ +

ô
,

ñ
adjustable +

− 0

ô
,

ñ
0 +

− adjustable

ô
,

ñ
adjustable −

+ 0

ô
,

ñ
0 −
+ adjustable

ô
.

ñ
−+

− 0

ô
→
ñ

++

− 0

ô
,

ñ
−+

− 0

ô
→
ñ

−+

−+

ô
,

ñ
−+

− 0

ô
→
ñ

++

−+

ô
,

ñ
−−
+ 0

ô
→
ñ

+−
+ 0

ô
,

ñ
−−
+ 0

ô
→
ñ

−−
++

ô
,

ñ
−−
+ 0

ô
→
ñ

+−
++

ô
.

 

(9)

Again, taking the topology depicted in figure 2(b) 
as an example, we illustrate how the transition from 
adaptation to oscillation can happen. As discussed 
above, the signs of the Jacobean matrix elements for 

adaptation are 

ñ
−−
+0

ô
. One way to change the system 

from adaptation to oscillation is to make the Jacobean 

matrix changing from 

ñ
−−
+ 0

ô
to 

ñ
−−
+ +

ô
 (equation (9)) 

and to also satisfy the condition 
∣∣∣ ∂g
∂B

∣∣∣ >
∣∣∣ ∂f
∂A

∣∣∣. This can 

be accomplished by changing the parameter of node B, 
n3 and k3, as shown in figure 2(b).

We are particularly interested in the case in which 
change of the input level can induce the transition, 
as this is the case often seen biologically. From equa-
tion (9) and the relationship between the regulation 
type and the sign of Jacobean matrix element (table 

S1), we conclude that the two topologies that have self-
activation on node A can switch between the two func-
tions by only changing the input signal level, which 
correspond to the Jacobean matrix changing from ñ
−−
+0

ô
 to 

ñ
+ −
+ 0

ô
 or from 

ñ
− +

− 0

ô
 to 

ñ
+ +

− 0

ô
. Figure 2(c) 

shows an example of one such topology for which the 
transitions can be induced by changing either from ñ
− −
+ 0

ô
 to 

ñ
− −
+ +

ô
 (through parameter changes), or 

from 

ñ
− −
+ 0

ô
 to 

ñ
+ −
+ 0

ô
 (through input level change).

3.3. Three-node bi-functional topologies with 
transcriptional regulation
As it is difficult to exhaustively analyze all three-
node networks by analytic means, we numerically 
studied all possible three-node topologies to identify 
those capable of oscillation and adaptation with 
transcriptional regulation. Each topology can be 
represented by a 3  ×  3 matrix, in which the elements 
represent the type of links (regulations) between the 
nodes. Each element can be assigned to a value 0 (no 
regulation), 1 (positive regulation) or  −1 (negative 

regulation). Taking into account of symmetry 
considerations and the fact that there should be at 
least one pathway from input to output, there are a 
total of 16 038 distinct topologies to be considered 
[9]. For each topology, we wrote down the differential 
equations as described in section 2 and simulated its 
dynamics with 1000 000 sets of parameters sampled 
via Latin hypercube sampling method [22]. We found 
398 topologies that can perform both functions by 
certain criteria (details in supplemental information) 
[9]. We found that the networks perform the two 
functions in two ways. One is by using the same 
structure, while the other is to use two different 
substructures in a network, each satisfying one of 
the two functions. Based on these two strategies, we 
divided the 398 topologies into two groups. One is 
the NFL group, which include 206 topologies that 
achieved both adaptation and oscillation through a 

Phys. Biol. 16 (2019) 016001
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NFL. The other group has a NFL combined with an 
incoherent feedforward loop (NFIFL), which include 
192 topologies (figure 3(a)). In the NFIFL group, the 
NFL is for oscillation and the incoherent feedforward 
loop is for adaptation.

3.4. Transition between adaptation and oscillation 
in three-node TRNs
We investigated how the networks transform between 
these two functions by analyzing specific examples 
belonging to the NFL and NFIFL groups. For the 
example from the NFL group shown in figure 3(b), the 
rate equations are

dA
dt = −b1A + IBn1

k1
n1+Bn1

,
dB
dt = −b2B + a1Cn2

Cn2+k2
n2

Bn3

Bn3+k3
n3 ,

dC
dt = −b3C + a2k4

n4

k4
n4+An4

.
 

(10)

Analysis of the rate equation of node B shows that 
when n3  =  1 and k3 � B∗, the steady state of node C 
can be simplified to:

C∗ = k2

Å
b2k3

a1 − b2k3

ã 1
n2

. (11)

The concentration of the output node would remain 
constant independent of the input level I, which is 
a necessary condition for perfect adaptation. Next, 
we considered the transition of the system from 
adaptation to oscillation. We found that many 
parameters could induce Hopf bifurcation. An 
example of the transition induced by the input signal 
level is shown in figure 3(b). When the input signal 
is low, the system shows adaptation. When the input 
signal is increased, the system oscillates.

For the NFIFL group, an example is shown in fig-
ure 3(c) with the following rate equations

dA
dt = −b1A + IAn1 k13

n2

(k11
n1+An1 )(Cn2+k13

n2 ) ,
dB
dt = −b2B + a1k21

n4 Bn3

(An4+k21
n4 )(Bn3+k22

n3 ) ,
dC
dt = −b3C + a2An5 Bn6

(k31
n5+An5 )(k32

n6+Bn6 ) .

 

(12)

Figure 3. Three-node bi-functional topologies with transcriptional regulation. In our model, input is acting on node A and output 
is the level of node C. (a) The bi-functional topologies can be divided into two groups, which are separately clustered to identify 
common features shown on the right of each group. Red lines represent positive regulation, green lines negative regulation and black 
lines no regulation. (b) An example in the NFL group. The function can be transformed by changing input signal, which induces 
a Hopf bifurcation. The bifurcation diagram along with the examples of dynamic trajectories of the node C is also shown. (c) The 
same as (b), but for an example in the NFIFL group.

Phys. Biol. 16 (2019) 016001
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When the parameters meet the requirements: 
k22 � B∗, k21 � A∗, k31 � A∗, k32 � B∗, equation 
(12) can be simplified to

dA
dt = −b1A + IAn1 k13

n2

(k11
n1+An1 )(Cn2+k13

n2 ) ,
dB
dt = −b2B + a1k21

n4

An4
,

dC
dt = −b3C + a2An5 Bn6

k31
n5 k32

n6 .

 

(13)

The steady state of node C is:

C∗ =
a2

b3kn5
31kn6

32

Å
a1kn4

21

b2

ãn6

. (14)

C* is independent of the input level I. Therefore, the 
system is capable of adaptation to the input. With these 
requirements for the parameters, changing any one 
of multiple parameters can induce Hopf bifurcation. 

Switching between the two functions via changing the 
input signal level is shown in figure 3(c).

3.5. Bi-functional topologies with enzymatic 
regulation
We used the same methods to identify the bi-functional 
topologies in ERNs (figure 4(a)). We found eight two-
node topologies that can perform the two functions 
(figure 4(b)) (details in Supplemental Information). 
Two more bi-functional network topologies appeared 
for enzymatic networks (figure 4(b)) compared with 
transcriptional networks (figure 2(a)). This is due 
to the different interaction forms of the two types of 
regulation, which result in different kinds of Jacobean 
matrix elements. The correspondence tables between 

Figure 4. Bi-functional topologies with enzymatic regulation. (a) An example network. The enzymatic regulation is modeled 
with Michaelis–Menten rate equation. (b) Eight two-node enzymatic bi-functional topologies. Note that the dotted line on node 
A represents three possible regulations of node A on itself: activation, inhibition or no regulation. All three are allowed in the bi-
functional network. (c) Three-node bi-functional topologies can be divided into two groups, which are clustered separately. (d) An 
example in the NFIFL group. The function can be transformed by changing input signal, which induces a Hopf bifurcation. The 
bifurcation diagram is also shown.

Phys. Biol. 16 (2019) 016001



8

M Zhang and C Tang 

regulation links and the signs of the matrix elements 
can be found in table S2 in supplemental information. 
For three-node enzymatic networks, we enumerated 
all topologies and numerally studied them using the 
same method as for the transcriptional networks. We 
found that 350 of them can exhibit oscillation and 
adaptation. All three-node bi-functional topologies 
(155 topologies in the NFL group and 195 topologies 
in the NFIFL group) are shown in figure 4(c).

3.6. Transition between adaptation and oscillation 
in ERNs
Similar to the transcriptional networks, the 
mechanism to induce transition between the two 
functions in enzymatic networks is Hopf bifurcation. 
For the two-node topologies, the transition between 
the two functions depends on the sign of Jacobean 

matrix elements. Perfect adaptation requires ∂g
∂B = 0, 

and transition to oscillation can be induced by Hopf 
bifurcation. Eight two-node topologies shown in 
figure 4(b) can all switch between oscillation and 

adaptation by changing the sign of ∂g
∂B and/or the input 

level (details in Supplemental Information). For the 
three-node topologies, an example from the NFIFL 
group is shown in figure 4(d), in which the input signal 
induces the Hopf bifurcation.

3.7. Different features of the bi-functional 
topologies between transcriptional and enzymatic 
networks
In agreement with previous works [9, 13], we found 
two significant differences in topologies of TRNs and 
ERNs.

 (1)  An auto-activation on the node B is 
necessary for the NFL group in TRNs but it 
is not necessary for the NFL group in ERNs 
(figures 3(a) and 4(c)).

 (2)  The direct regulation that node C received 
should have opposite sign for the NFIFL 
group in ERNs, while this rule is not 
compulsory for the NFIFL group in TRNs 
(figures 3(a)] and 4(c)).

These differences are due to the different regula-
tory forms of transcriptional and enzymatic regula-
tions.

4. Summary

In this study, we focused on two well-studied 
functions, adaptation and oscillation, and investigated 
simple networks that can perform both functions. We 
identified all two-node and three-node bi-functional 
topologies with transcriptional and enzymatic 
regulations. We found that the transformation 
between the two functions is achieved by Hopf 

bifurcation. The bifurcation can be induced by 
changing network parameters. Importantly, for 
certain topologies the switch of the functional 
behavior can also be accomplished by changing the 
input level, which is the hallmark of some biological 
signaling systems. Interestingly, the three-node 
networks can be divided into two groups according 
to their strategy to be bi-functional. One is similar 
to the two-node networks, in that they achieve both 
functions using the same NFL. The other achieves the 
two functions using two motifs: a NFL for oscillation 
and an incoherent feedforward loop for adaptation.

There are plenty of biological examples in which the 
system demonstrates bi- or multi-functionality. The two 
examples mentioned in the INTRODUCTION, that of 
the yeast [1] and amoeba [2], are examples of chang-
ing input leading to changes in network dynamics. On 
the other hand, in the tumor suppressor p53 network 
of mammalian cells it was shown that suppression of 
a negative feedback between Wip1 and ATR in the UV 
pathway is sufficient to change the p53 dynamics from 
oscillation to adaptation [23], suggesting that switch-
ing of function can be achieved by changing network 
parameters. Note that the different network dynamics 
not only code for different environmental information 
but often lead to different fates of the cell, highlighting its 
biological importance [1, 17, 24].

The bi-functional networks we identified have 
rather simple topologies with clear parameter require-
ments. It should not be very difficult to synthesize 
them. In a broader context, it would be desirable to 
further investigate other bi- or multi-functional net-
works in terms of mechanism, biological significance, 
and issues such as evolvability, compatibility and 
trade-offs [25, 26].
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