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SUMMARY

Many signaling systems execute adaptation under
circumstances that require noise attenuation. Here,
we identify an intrinsic trade-off existing between
sensitivity and noise attenuation in the three-node
networks. We demonstrate that although fine-tuning
timescales in three-node adaptive networks can
partially mediate this trade-off in this context, it
prolongs adaptation time and imposes unrealistic
parameter constraints. By contrast, four-node net-
works can effectively decouple adaptation and noise
attenuation to achieve dual function without a trade-
off, provided that these functions are executed
sequentially. We illustrate ideas in seven biological
examples, including Dictyostelium discoideum
chemotaxis and the p53 signaling network and find
that adaptive networks are often associated with a
noise attenuation module. Our approach may be
applicable to finding network design principles for
other dual and multiple functions.

INTRODUCTION

A fundamental challenge in biology is to understand how the

signaling systems in living organisms are able to accurately

respond to the external signals and robustly carry out their func-

tions. General design principles have been found to link recurrent

network motifs to specific biological functions, such as reliable

cell decisions (Brandman et al., 2005), robust biological oscilla-

tions (Novák and Tyson, 2008; Tsai et al., 2008; Zhang et al.,

2017), faithful noise resistance (Hornung and Barkai, 2008),

optimal fold-change detection (Adler et al., 2017), cell polariza-

tion (Chau et al., 2012), and adaptation (Ma et al., 2009).

The function of adaptation, referring to the system’s ability to

react to a change of signal and return to the pre-stimulated level,

is vital for living systems to sense a wide range of change (Alon

et al., 1999; Gardner et al., 2000). Such response terminates

the signal response after an appropriate time (Ferrell, 2016; Weill
Cell S
et al., 2012) and resists the changed environment to maintain

their own stability (Muzzey et al., 2009). For example, bacteria

maintain their sensitivity to chemical gradients over a wide range

of attractant or repellent concentrations (Barkai and Leibler,

1997). Adaptive Msn2 localization pulse under oxidative stress

induced byH2O2 plays an important role for yeast to survive envi-

ronmental challenges (Hao and O’Shea, 2011; Levine et al.,

2013). Besides, adaptation of E(spl) mediated by miR-7 through

an incoherent feedforward loop helps to drive the final state to

the previous value after the upstream signal changes dramati-

cally, which stabilizes the developmental process of Drosophila

(Li et al., 2009). Adaptive behavior can be measured collectively

by two quantities: sensitivity and precision. Sensitivity describes

how large the magnitude of the relative output response is

whereas precision depicts how close the pre- and post-stimulus

steady states are (Figure 1A). An exhausted search on all

possible three-node enzyme networks shows that the adapta-

tion can be achieved by networks containing at least one of

two core motifs: a negative feedback loop with a buffering

node (NFBLB) and an incoherent feedforward loop with a

proportioner node (IFFLP) (Ma et al., 2009). Similarly, negative

feedback (NF) loops and incoherent feedforward loops are also

core motifs in three-node adaptive gene regulation networks

(Shi et al., 2017).

Signaling systems also need to resist noise to enable reliable

responses. It has been found that feedback loops play important

roles in noise attenuation (Figure 1B). For instance, NF typically

reduces cell-cell variations (Alon, 2007; Becskei and Serrano,

2000; Fritsche-Guenther et al., 2011; Hansen et al., 2018; Ji

et al., 2013). On the other hand, positive feedback (PF) can atten-

uate noise better than NFwhile the sensitivity is maintained (Hor-

nung and Barkai, 2008). By counting on timescales of feedback

loops, linking fast and slow PF loops can maintain a high state

and resist large noise (Brandman et al., 2005). Moreover, the

signed activation time, which describes the difference between

deactivation and activation time, is a key feature that measures

the ability of noise reduction in a regulatory system (Wang

et al., 2010).

Since adaptive systems are often operated in noisy circum-

stances (Colin et al., 2017; Sartori and Tu, 2011), how to achieve

noise attenuation and adaptation simultaneously is clearly a

challenging task. In equilibrium systems in which the detailed
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Figure 1. Searching for Circuits Capable of

Adaptation and Noise Attenuation

(A) Typical dynamics, functional characterization,

and motifs of adaptation.

(B) Typical dynamics, functional characterization,

and motifs of noise attenuation.

(C) Expected dynamics and characterization of dual

function.

(D) Illustration of the mathematical model for a

three-node network IFFLP.
balance condition is satisfied, reducing noise and maintaining

high sensitivity cannot be achieved simultaneously based on

the fluctuation-dissipation theorem (Van Kampen, 2007). How-

ever, most sensory and regulatory systems are non-equilibrium;

external metabolic energy is consumed to drive the dynamics of

the system. It has been demonstrated that it is possible for a

system to have both high sensitivity and low fluctuation (Sartori

and Tu, 2015). In terms of network topologies, the investigation

of intrinsic noise and adaptive response shows that the NF

loop has a higher response magnitude than the incoherent feed-

forward loop for a given intrinsic noise level (Shankar et al., 2015).

Moreover, timescale plays a critical role of noise attenuation in

adaptive systems. Adaptive systemsmay behave as a bandpass

filter so that high-frequency extrinsic noise can be averaged out

through response time while low-frequency extrinsic noise can

be filtered by adaptation time (Sartori and Tu, 2011).

Instead of exploring adaptation properties and noise resis-

tance in some classic adaptive networks (e.g., IFFLP and

NFBLB) (Shankar et al., 2015) or experimentally observed net-

works (Sartori and Tu, 2011), we investigate the design principle

of low noise and perfect adaptation from the bottom-up. What

kind of network topologies can maintain adaptation and reduce

noise simultaneously? If such networks exist, what are the un-

derlying design principles?

Here, we systematically investigate the design principles that

link network topologies to dual function in both three- and

four-node networks (Figure 1C). We first use three-node net-

works as a minimal framework and enumerate all possible

network topologies to reveal the trade-off between sensitivity

and noise attenuation capability. In order to mediate such

trade-off, we also tune the timescale of nodes in three-node

adaptive networks. This strategy can result in better dual func-

tion but introduces some ‘‘costs.’’ Then we turn our attention

to four-node networks, whose flexibility may provide ways to

achieve dual function and overcome the limitations of three-
272 Cell Systems 9, 271–285, September 25, 2019
node networks. We sequentially combine

noise attenuation modules with adaptive

modules in four-node networks to investi-

gate how different strategies influence the

compatibility for dual function. Our anal-

ysis suggests that despite the simplicity

of the modules for a single function,

achieving multiple functions simulta-

neously requires that different functional

modules work coherently in both time

scales and topologies. We further explore

a larger four-node network space with an
evolution algorithm, and the design principle of sequential com-

bination emerges again. Examination on seven biological sys-

tems shows that adaptive networks are often sequentially

coupled with a noise attenuation module.

RESULTS

Sensitivity, Precision, and Noise Amplification Rate
We aim to explore the design principle for a network executing

both adaptation and noise attenuation. The adaptation behavior

and noise propagation process are captured by three quantities.

The adaptation behavior can be described by two quantities:

sensitivity and precision (Ma et al., 2009). Sensitivity and preci-

sion are defined as follows:

Sensitivity =

����ðOpeak �O1Þ
�
O1

ðI2 � I1Þ=I1

����;
and

Precision =

����ðO2 �O1Þ=O1

ðI2 � I1Þ=I1

����
�1

;

where O1 and O2 are output values in steady state under the

input signal I1 and I2, respectively, and Opeak is the transient

peak valuewhen the input signal changes from I1 to I2 (Figure 1A).

Sensitivity describes the size of the output jump while the

precision represents how close the pre- and post-stimulus

output levels are after a persistent change of input signal. The

system noise level in the output is described using the standard

noise amplification rate (Hornung and Barkai, 2008; Wang

et al., 2010):

NAR =
stdðOÞ=meanðOÞ
stdðIÞ=meanðIÞ ;



where I denotes the input signal fluctuating around I1 or I2 andO

is the corresponding output level in steady state (Figure 1B).

Thus, according to definition of three quantities, networks

capable of dual function should have large sensitivity, high pre-

cision, and low NAR (Figure 1C).

We use enzymatic regulatory networks and Michaelis-Menten

rate equations tomodel both three-node and four-node networks

(see STAR Methods). An enzymatic regulatory network with

IFFLP topology is illustrated in Figure 1D as an example. Enzyme

A is activated by input (I) and active enzyme A activates both

enzyme B and C. In contrast to enzyme A, active enzyme B can

deactivate enzyme C, thus forming an incoherent feedforward

loop. Since both node A and node B have only positive incoming

links, basal deactivating enzymes are added to regulate the two

nodes. With the assumption that the total concentration of each

enzyme is a constant, the network is modeled as an ordinary dif-

ferential equation with three variables (Figure 1D). Each variable

represents the concentration of the active enzyme and

fi ði =A;B;CÞ is the reaction rate of the active enzyme. Each

term in fi takes the form of the Michaelis-Menten equation with

the Michaelis-Menten constantK and the catalytic rate constant

k. Any three- or four-node network follows the same way to

construct the model. Given all the values of kIA; KIA; kFAA; /,

sensitivity and precision are calculated through the dynamics

of enzyme C when input changes from I1 to I2, and NAR is

derived by linear noise approximation when input fluctuates

around IssðIss = I1 or I2Þ with autocorrelation time t0 (see STAR

Methods).

There Exists an Intrinsic Trade-Off between Robust
Adaptation and Noise Attenuation in Three-Node
Networks
We first try to answer whether three-node networks can robustly

execute adaptation and buffer noise simultaneously. For each

network topology, we measure its robustness by using the Q

value, which is defined by the number of parameter sets that

can yield the target functions (Ma et al., 2009). To be more pre-

cise, we sample 10;000 parameter sets for each topology and

quantify three Q values: QA for adaptation, QN for noise attenu-

ation, and QA&N for dual function. Here, adaptation is defined

by sensitivity > 1 and precision > 10, and noise attenuation is

defined by NAR < 0.2. Dual function of adaptation and noise

attenuation is achieved if sensitivity > 1, precision > 10, and

NAR < 0.2 are satisfied simultaneously. In our simulation, the

initial input ðI1 = 0:4Þ increases by 12.5% ðI2 = 0:45Þ. If the output
first changes by more than 12.5% and finally enters its steady

state that is less than 1.25% different from the initial state, sensi-

tivity is larger than 1, and precision is larger than 10. If NAR < 0.2,

the normalized standard deviation (i.e., coefficient of variation) of

the output is smaller than one-fifth of that of input. There are a to-

tal of 16,038 possible three-node network topologies, and only

395 networks have been found as the robust adaptation net-

works (Q value is larger than 10) (Ma et al., 2009). However,

since finite sampling of parameters may lead to some random-

ness in Q values and the threshold Q = 10 for defining

adaptive network can be somewhat arbitrary, to avoid missing

some other possible adaptation networks, we enumerate all

three-node networks rather than taking directly the 395 adapta-

tion networks found previously to investigate the dual function.
Enumeration of all possible 16,038 three-node network topol-

ogies shows that none of them leads to a robust dual function.

Figure 2A shows the QA �QN �QA&N space of 16,038 three-

node network topologies. Among all these network topologies,

4.65% can achieve non-zero QA and 96.97% non-zero QN.

However, there is no parameter set that can meet the criterion

of dual function for all 16,038 networks ðQA&N = 0Þ. Although
there are non-zero QA&N for several network topologies when

the sample size of parameter sets increases to 106, the

maximal QA&N is less than 10. These results indicate that

some network topologies may have good performance of indi-

vidual function but are still facing difficulties in achieving dual

function. For example, circuits (a circuit is defined as a network

topology with certain specific parameters) buffering noise al-

ways show little response to external stimuli while adaptive cir-

cuits with high sensitivity are usually accompanied with a large

noise (Figures 2B and 2C).

To dissect the difficulty of achieving dual function, we investi-

gate the interdependencies among three quantities (sensitivity,

precision, and NAR). Pearson’s correlation coefficients are

calculated to measure correlations among three quantities for

all 16,038 network topologies (Figures 2D–2F). It can be seen

that sensitivity is highly positively correlatedwith NAR,with Pear-

son’s correlation coefficients ranging from 0.8 to 1 (Figure 2D).

This means that larger sensitivity generally results in higher

NAR, which implies a trade-off between adaptation and noise

attenuation, hindering the achievement of dual function. In

contrast to sensitivity, precision is negatively correlated with

NAR, which benefits dual function (Figure 2E). It should be noted

that adaptation alone requires to overcome the negative correla-

tion between sensitivity and precision (Figure 2F), which results

in an IFFLP or NFBLB architecture in three-node adaptive net-

works (Ma et al., 2009). Additionally, a similar analysis in three-

node transcriptional regulatory networks (see STAR Methods)

further confirms the trade-off between adaptation and noise

attenuation (Figures S1A–S1D).
Fine-Tuning Timescales in Three-Node Networks Can
Partially Mediate the Trade-Off between Sensitivity and
NAR with a Cost
In order to minimize the trade-off between sensitivity and NAR,

we analyze the effect of timescales on these two quantities.

We use IFFLP as an example to illustrate how timescale modifi-

cation is performed (Figure 2G). First, for the three-node network

modeled by
dA

dt
= fAðI;A;B;CÞ, dB

dt
= fBðA;B;CÞ, and dC

dt
= fCðA;B;

CÞ, we choose one set of parameters capable of good precision

(i.e., precision > 10) (see Table S1 for parameters). Then, with all

of the parameters in fA, fB, and fC fixed, we introduce three pa-

rameters tA, tB, and tC to simulate a new system tA
dA

dt
= fA,

tB
dB

dt
= fB, and tC

dC

dt
= fC, where tuning tA, tB, or tC can change

the timescale of the corresponding node. Since changing tA,

tB, or tC has no influence on precision, we can investigate how

timescales affect sensitivity andNAR. For IFFLP, when tA is fixed

as a constant ðtA = 1Þ, decreased ratio of tC to tB results in

increased sensitivity (Figure 2H). With a fixed ratio of tC to tB,

increased tC leads to decreased NAR but has little effect on
Cell Systems 9, 271–285, September 25, 2019 273
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sensitivity (Figure 2I). Similar results can be obtained for NFBLB

(Figures S1E and S1F; see Table S2 for parameters). The reason

for the decreased ratio of tC to tB leading to higher sensitivity can

be given in this way: the small ratio of tC to tB causes a steep

slope of the node C trajectory at the initial response when the

input intensity changes from I1 to I2, and therefore themaximum

of node C in the phase plane becomes large (Figure 2J). This can

be further validated by mathematical analysis (see STAR

Methods). With a fixed ratio of tC to tB, analytical derivation of

NAR using linear noise approximation shows that NAR is a

decreasing function of tC when tC is large enough compared

to the autocorrelation time of input noise (see STAR Methods).

In fact, with themore general form of rate equations (i.e., whether

it is enzymatic regulation or transcriptional regulation), IFFLP and

NFBLB still obey the same monotonicity of sensitivity and NAR

as functions of tB and tC (see STAR Methods).

Taken together, one feasible strategy for reducing the trade-

off in IFFLP or NFBLB is to increase tC for small NAR while

decreasing the ratio of tC to tB to ensure high sensitivity. For

instance, when we fix a small ratio tC=tB and increase tC ten

times, noise can be greatly reduced while sensitivity is almost

unchanged (Figure 2K). However, the cost to improve dual func-

tion by adjusting timescales is a large increase of the adaptation

time tAD that is defined as the time required for the output to re-

turn to halfway between the peak value and the steady-state

value after change of the input (Barkai and Leibler, 1997) (Figures

2K and 2L). That is to say, to obtain a small NAR while maintain-

ing adaptation, the system is required to take a long adaptation

time, which depends on the timescale of input noise and network

topology. If the time scale of the input noise is faster (corre-

sponding to a smaller autocorrelation time), the adaptation

time required to reach a certain level of NAR will be shorter for

both IFFLP (Figure 2M) and NFBLB (Figure 2N). Sampling within

the same parameter space, NFBLB tends to have a shorter

adaptation time while IFFLP can reach a smaller NAR (Figures

2O and S1G–S1I). Overall, there is a trade-off between NAR

and adaptation time.
Figure 2. The Trade-Off between Robust Adaptation and Noise Attenu

(A) Q values (including QN, QA, and QA&N) of 16,038 three-node network topolog

(B and C) Two kinds of typical output of IFFLP with two different parameter sets. In

gray dashed line is the average of all random trajectories. In both (B) and (C), the re

themean behavior of output. Both the output in (B) and (C) have high precision, bu

one in (C) has a high sensitivity with large fluctuations.

(D–F) The histograms of Pearson’s correlation coefficients of sensitivity NAR, pre

Sensitivity, precision, and NAR are log transformed before calculating Pearson’s

(G) Network topology of IFFLP with timescales tA, tB, and tC.

(H and I) The scatter diagrams of sensitivity and NAR for IFFLP. All parameters exc

of 0.2 and so is logðtCÞ, leading to 121 pairs of sensitivity and NAR. The only differe

indicate the values of tC=tB and tC, respectively. The lower-right rectangle bound

sensitivity > 1, NAR < 0.2, and precision > 10. The black and the red circle in (H)

(J) The phase plane of nodes B andC for IFFLP.When the input signal changes from

start point of the trajectory is the stable point under I1 while the end point is the

(K) Comparison of the dynamics under two sets of tC and tB. tC = tB = 10 and

respectively. Adaptation time tAD is illustrated for the dynamics under tC = tB = 1

(L) tAD as a function of tB and tCfor IFFLP.

(M and N) NAR as a function of adaptation time for different timescales of input n

same as those used in Figures 2H–2L (for IFFLP) or Figures S1E and S1F (for NF

proportionally (with tC=tB = 1), NAR and adaptation time tADvary accordingly.

(O) Scatter diagram of NAR and adaptation time for IFFLP and NFBLB when t0
precision > 10 are illustrated for both IFFLP and NFBLB. See Figures S1G–S1I fo
In fact, for all adaptive three-node networks (not limited to sim-

ple IFFLP or NFBLB), the trade-off between sensitivity and NAR

can be partially lifted by fine-tuning the timescales of node B and

node C to obtain both high sensitivity and low NAR (see STAR

Methods). However, besides the side effect of increasing the

adaptation time, changing the timescales is equivalent to ex-

panding the search space of kinetic parameters, which may be

out of the biologically realistic range.

Combinations of Function-Specific Modules in Four-
Node Networks Can Achieve Dual Function
Since dual function in three-node networks is difficult to

obtain, we next study four-node networks as more nodes

often provide more flexibility in controlling functions. If we

just consider networks that contain at least one direct or indi-

rect causal link from the input node to the output node and

exclude redundant networks that are topologically equivalent,

the number of possible four-node networks is 19,805,472,

which is about 1,200 times more than that of possible three-

node networks (16,038). Besides, compared to three-node

networks, the number of parameters in a four-node network

is typically larger, leading to an exponential increase in the

volume of the parameter space to be sampled. Thus, enumer-

ation with effective parameter sampling of all four-node net-

works is computationally too expensive. Alternatively, we

construct four-node networks by assembling two function-

specific modules: adaptation module and noise attenuation

module. A straightforward strategy is the sequential connec-

tion of these two modules, including N-A types and A-N types

(Figure 3A), where N represents noise attenuation and A rep-

resents adaptation. N-A types indicate that the input signal

passes through an upstream noise attenuation module and

then the downstream adaptation module, while A-N types

require that the adaptation module is placed upstream of

the noise attenuation module. We choose IFFLP and NFBLB

as adaptation modules (red nodes in Figure 3B) and PF and

NF as noise attenuation modules (blue nodes in Figure 3B).
ation in Three-Node Networks

ies. QA&N are zero for all three-node network topologies.

set in (B): the blue solid line represents one trajectory of the input signal and the

d solid line is one output trajectory under noisy input, and the gray dashed line is

t the dynamics in (B) shows good noise attenuation with low sensitivity while the

cision NAR, and sensitivity precision in 16,038 three-node network topologies.

correlation coefficients.

ept tB and tC are fixed. Here, logðtBÞ is sampled from 0 to 2 with an increment

nce between (H) and (I) is the content of the color bar. The color bar in (H) and (I)

by the black dashed line represents the functional region for dual function, i.e.,

correspond to tC = tB = 10 and tC = tB = 100, respectively.

I1 and I2, the trajectory of B andC are drawn for different ratios of tC to tB. The

stable point under I2.

tC = tB = 100 correspond to the black circle point and red circle point in (H),

00.

oise in IFFLP (M) and NFBLB (N). Kinetic parameters except tB and tC are the

BLB). For a fixed autocorrelation time of input noise t0, as tBand tC are tuned

= 2. In the diagram, 1,000 points satisfying adaptation i.e., sensitivity > 1 and

r the same diagram with t0 = 1; 0:2 and 0:1.
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Thus, by combining minimal adaptation modules and noise

attenuation modules, we obtain eight four-node networks

including four N-A types (the first row of Figure 3B) and four

A-N types (the second row of Figure 3B). These networks

do not have redundant links and thus may constitute minimal

four-node networks capable of dual function. Since we allow

the input node and the output node to be the same for these

modules, IFFLP and NFBLB can be reduced to two-node

adaptive networks in Figure 3B.

We explore the capability of these A-N and N-A networks to

achieve dual function. As an illustration, the Q value of the

PF-IFFLP type is computed as follows. First, we randomly

assign 23106 parameter sets for PF and IFFLP, respectively.

For IFFLP, circuits capable of adaptation are recorded, and

we use a to denote the number of these adaptive circuits.

For PF, circuits capable of noise attenuation are selected

out and its number is denoted by n. Here, the criterion for

an adaptation circuit is sensitivity > 1 and precision > 10 while

the criterion for a noise attenuation circuit is modified as

sensitivity > 1 and NAR < 0.2. The reason why sensitivity >

1 is added to the criterion for noise attenuation is because

we expect to maintain the system’s sensitivity when the signal

is passing through the noise attenuation module. Because of

the extremely low percentage of functional NF circuits

(~0.0036%, Figure S2A), we increase the number of sampling

parameter sets to 23 106. Then, we assemble function-

specific circuits to construct a3n four-node circuits and char-
Figure 3. Dual Function Can Be Achieved by Module Combination in F

(A) Two strategies for sequential combination of the adaptation module and nois

(B) Eight networks obtained by two different ways of module combination shown

nodes the noise attenuation module (PF or NF).

(C) Q
‾

of dual function for the eight four-node networks in (B). Q
‾

is defined as th

adding 10�8 to ensure logðQ
‾

Þ is well defined. For each bar graph, the criterion for

NAR < y, and precision > 10. Green bars represent N-A networks and red bars A

(D and E) The joint histogram of sensitivity and NAR for noise attenuation modu

in a given region. The lower-right rectangle bound by the red dashed line re

NAR < 0.2.

(F and G) The joint histogram of sensitivity and precision for adaptation module

sets in a given region. The upper-right rectangle bound by the red dashed line

cision > 10.

(H) Compatibilities (upper panel) and percentages of assembled circuits satisfying

networks. The four N-A networks are ranked by percentages of assembled circu

(I) Distribution of the upstream response time in N-A networks. For each nois

NAR < 0.2 are chosen to calculate the response time and the probability densi

parameter of the gamma distribution are estimated to be (2.14 and 79.38) for PF

(J) The percentage of assembled N-A circuits satisfying sensitivity >1 as a func

upstream output with specific response time and sensitivity, 200 adaptation c

sensitivity > 1 and precision > 10 are chosen as downstream circuits to calculate

(K) Distribution of the upstream response time in A-N networks. For each adaptatio

> 10 are chosen to calculate the response time, and the probability density is fitted

the gamma distribution are estimated to be (0.57 and 1.22) for IFFLP and (1.09 a

(L) The percentage of assembled A-N circuits satisfying sensitivity >1 as a fu

given upstreamoutput with a specific response time and sensitivity, 200 noise atte

> 1 and NAR < 0.2 are chosen as downstream modules to calculate the sensitiv

(M) Schematic illustration of the relationship between compatibility and response

time for the four modules are sketched using Gaussian distributions with the sam

(N) Frequency of 36 IFFLP-based topologies among 115 four-node circuits obta

ranked by their percentages of occurrence. Topologies in the red parallelogram a

ranking topologies.

(O) Frequency of 36 NFBLB-based topologies among 18 four-node circuits obtain

ranked by their percentages of occurrence. Inset: the three appeared topologies
acterize corresponding dynamic behaviors to calculate the

Q value.

We first compute the Q values for the eight networks listed in

Figure 3B under different thresholds of sensitivity and NAR (Fig-

ure 3C). For each bar graph, the criterion for dual function is

determined by the x coordinate and y coordinate: sensitivity >

x, NAR < y, and precision > 10. We define Q
‾

as the averaged

Q value calculated by eight repeated simulations, and it is modi-

fied by adding 10�8 to ensure logðQ
‾

Þ is well defined. Green bars

denote four N-A networks: PF-IFFLP, NF-IFFLP, PF-NFBLB, and

NF-NFBLB while red bars denote four A-N networks: IFFLP-PF,

IFFLP-NF, NFBLB-PF, and NFBLB-NF. The results show that

combinations of function-specific modules in four-node net-

works can lead to dual function (Figure 3C). With sensitivity >

1, NAR < 0.2, and precision > 10 as the criterion, seven of the

eight four-node network topologies (excluding NFBLB-NF) can

achieve non-zero Q values. Although stricter criteria result in

smaller Q values, the Q value rankings of the eight networks

are almost consistent under different combinations of thresholds

of sensitivity and NAR. Moreover, most N-A networks perform

better than A-N networks with the same adaptation and noise

attenuation modules except for the combination of PF and

NFBLB, and networks with IFFLP have higher Q values than

those with NFBLB.

Next, we investigate which factors affect Q values of assem-

bled four-node networks. Clearly, the robustness of each

component module, i.e., the number of adaptive circuits a or
our-Node Networks

e attenuation module.

in (A). Red nodes represent the adaptation module (IFFLP or NFBLB) and blue

e averaged Q value calculated by eight repeated simulations and modified by

dual function is determined by the x coordinate and y coordinate: sensitivity > x,

-N networks.

les: PF (D) and NF (E). The color bar indicates the density of parameter sets

presents the functional region of noise attenuation, i.e., sensitivity > 1 and

s: NFBLB (F) and IFFLP (G). The color bar indicates the density of parameter

represents the functional region of adaptation, i.e., sensitivity > 1 and pre-

sensitivity > 1, precision > 10, or NAR < 0.2 (lower panel) for the eight four-node

its satisfying sensitivity > 1 and so are the four A-N networks.

e attenuation module (PF or NF), only circuits satisfying sensitivity > 1 and

ty is fitted using the gamma distribution. The shape parameter and the scale

and (3.06 and 30.09) for NF.

tion of the upstream response time and the upstream sensitivity. For a given

ircuits (100 for the IFFLP module and 100 for the NFBLB module) satisfying

the sensitivity of assembled circuits.

n module (IFFLP or NFBLB), only circuits satisfying sensitivity > 1 and precision

using the gamma distribution. The shape parameter and the scale parameter of

nd 0.27) for NFBLB.

nction of the upstream response time and the upstream sensitivity. For a

nuation circuits (100 for PFmodule and 100 for NFmodule) satisfying sensitivity

ity of assembled circuits.

time of modules in both N-A and A-N networks. The distributions of response

e variance and different mean values.

ined by the evolution algorithm. The 36 IFFLP-based four-node topologies are

re those whose percentages of occurrence are larger than 5%. Inset: #1 and #3

ed by the evolution algorithm. The 36 NFBLB-based four-node topologies are

(whose labels are marked in the red parallelogram).
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the number of noise attenuation circuits n, can affect Q values

since the network topology with larger a or n has greater poten-

tial to generate more parameter sets capable of dual function.

With sufficient simulations, we find that adaptation modules

NFBLB and IFFLP do not share a same value of a, neither do

noise attenuation modules PF and NF. Furthermore, n of PF is

about fifty times larger than that of NF, while a of NFBLB is

roughly double that of IFFLP (Figure S2A). A closer look at the

robustness of four modules (PF, NF, IFFLP, and NFBLB) is

shown in Figures 3D–3G. Joint distributions of sensitivity and

NAR for noise attenuation modules show that PF has a broader

and denser functional region than NF, implying a larger n (Figures

3D and 3E). For adaptation modules, the functional region of

NFBLB is larger than IFFLP, indicating a larger a for NFBLB (Fig-

ures 3F and 3G).

However, more robust component modules cannot guarantee

to constitute better dual function. For instance, PF-IFFLP per-

forms better dual function than PF-NFBLB, despite that, the

NFBLB module can achieve more robust adaptation than the

IFFLP module. Thus, we define the compatibility as the probabil-

ity of successful combination of adaptation modules and noise

attenuation modules, i.e.,

Compatibility =
Q

a3 n
:

We use this quantity to measure the level of compatibility of

the two modules when combined sequentially to perform the

dual function (upper panel in Figure 3H). Given the same adap-

tation and noise attenuation modules, N-A networks have bet-

ter compatibilities thus better performance than A-N networks,

with the exception of PF-NFBLB. For N-A networks, topologies

with NF upstream have better compatibilities than those with

PF when the downstream module is fixed, and IFFLP down-

stream leads to better compatibility than NFBLB. The A-N net-

works obey similar rules, where IFFLP-NF is more compatible

than others.
The Response Time of UpstreamModule Is a Key Factor
for Dual Function
To identify the key factor that determines the compatibility be-

tween modules, we investigate how sensitivity, precision, and

NAR are affected in the eight assembled four-node networks.

The lower panel in Figure 3H shows the percentages of

parameter sets in the eight networks that meet the require-

ment of sensitivity, precision, and NAR for dual function. It

can be seen that less than 10% of parameter sets can satisfy

sensitivity > 1 for all eight networks except NF-IFFLP. Instead,

percentages of parameter sets for good precision and NAR

are relatively high. Thus, loss of sensitivity after module com-

bination can be the bottleneck to achieve dual function.

Furthermore, the order of N-A networks sorted by percent-

ages of sensitivity > 1 is consistent with that sorted by

compatibility, indicating the impact of sensitivity on the

compatibility.

Since the downstream module receives the output of the

upstream module, the output dynamics of the upstream mod-

ule play a role in the downstream output sensitivity. Two

quantities can be used to collectively characterize the up-
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stream output dynamics: sensitivity and response time (the

time required to reach halfway to the peak value). However,

we pay particular attention to the upstream response time

because the upstream circuits (noise attenuation circuits or

adaptation circuits) with different topologies have been limited

to those with the same requirement of sensitivity (i.e., sensi-

tivity > 1) but with no restriction in response time. Thus, in

what follows, we investigate how the upstream response

time affects the downstream output sensitivity and its depen-

dence on network topology.

First, we focus on N-A networks. As the noise attenuation

module, PF tends to have a longer response time than NF

(Figure 3I). Such difference of response time between PF

and NF may cause divergence in the output sensitivity of

PF-A and NF-A (where A represents adaptation module IFFLP

or NFBLB). To test this hypothesis, we construct a series of

dynamics to imitate the outputs of the upstream noise atten-

uation module where response time and sensitivity of the up-

stream outputs can be assigned manually. The general form of

the dynamics is defined as follows:

OupðtÞ=

8>>><
>>>:

Oup
1 ; t<T0

Oup
1 +

�
Oup

2 �Oup
1

� t � T0

Tup
on + t � T0

; tRT
:

In this dynamic, OupðtÞ increases from its pre-stimulus

steady-state value Oup
1 after the input changes from I1 to I2at

time T0and finally stabilizes at Oup
2 . The sensitivity and the

response time of OupðtÞ are given by

��ðOup
2 �Oup

1 Þ=Oup
1

��
jðI2 � I1Þ=I1j and

Tup
on , respectively. Then, we calculate the sensitivity of assem-

bled N-A circuits, in which the output of the upstream noise

attenuation module is replaced by OupðtÞ. By varying Oup
2

(with fixed Oup
1 ) and Tup

on , we can change the upstream sensi-

tivity and the upstream response time respectively, and study

how these two quantities affect the sensitivity of assembled

circuits. Figure 3J shows that the percentage of the assem-

bled circuits satisfying sensitivity > 1 decreases with

increasing upstream response time for a given upstream

sensitivity whether the downstream module is IFFLP or

NFBLB. However, to maintain a high output sensitivity, IFFLP

can tolerate a longer upstream response time than NFBLB

given the same level of the upstream sensitivity. These results

indicate that in order to generate a high output sensitivity for

N-A networks, the upstream noise attenuation module should

be fast enough and the downstream adaptation module needs

to allow a long upstream response time. Thus, NF is a more

compatible upstream module than PF because of its shorter

response time and IFFLP is a more compatible downstream

module than NFBLB since IFFLP relaxes the requirement of

fast upstream dynamics.

Next, we conduct a similar study in A-N networks. Distribu-

tions of response time indicate that IFFLP tends to have longer

response time thanNFBLB as the adaptationmodule (Figure 3K).

Then, we construct a series of dynamics to imitate the outputs of

the upstream adaptation module, which are defined by following

equations:
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In this dynamic, OupðtÞ initially increases from Oup
1 to the peak

value Oup
peak and then eventually decreases to Oup

2 with half-time

Tup
off . The sensitivity and the response time of OupðtÞ are given by���ðOup

peak �Oup
1 Þ=Oup

1

���
jðI2 � I1Þ=I1j and Tup

on , respectively. Using the constructed

adaptation dynamics, we can explore how response time and

sensitivity of upstream adaptation module outputs affect sensi-

tivity of assembled circuits with PF or NF as the downstream

module. Figure 3L illustrates that the percentage of assembled

circuits satisfying sensitivity > 1 increases with increasing up-

stream response time, which is opposite to the N-A networks.

Given the same upstream sensitivity and upstream response

time, A-NF can maintain sensitivity better than A-PF. These re-

sults indicate that to maintain downstream output sensitivity,

the upstream adaptation module should be slow enough and

the downstream noise attenuation module should allow a rela-

tively short upstream response time. The possible reasons can

be: a fast response in the upstream adaptation module will be

severely filtered by the downstream noise attenuation module

(as a low-pass filter), which is harmful for high sensitivity or a

fast downstream noise attenuation module has high cutoff fre-

quency and thus retains most of the high-frequency signal,

which is beneficial for high sensitivity. As a result, IFFLP, the

one with longer response time, has better compatibility than

NFBLB as an upstream module, and NF is more compatible as

a downstream module because of its higher cutoff frequency

than PF. It should be noted that NFBLB-NF can better maintain

sensitivity than NFBLB-PF (lower panel in Figure 3H) but has

worse compatibility (upper panel in Figure 3H), which results

from a lower percentage of adaptation circuits in NFBLB-NF

(Figure S2B).

The relationship between compatibility and response time

of modules in both N-A and A-N networks is summarized in

Figure 3M. We notice that response time of these modules

is limited by their individual function topologies. For adapta-

tion modules, sensitivity is negatively correlated with response

time (Figures S2C and S2D), so high sensitivity often leads to

short response time. Within the limit of short response time,

IFFLP shows a longer response time than NFBLB, thus lead-

ing to better compatibility. For noise attenuation modules,

NAR is also negatively correlated with response time (Figures
S2E and S2F), and thus a longer response time usually results

in lower NAR, i.e., less noise. To match the response time of

adaptation modules, NF is more compatible than PF because

of its shorter response time. As a result, a combination of NF

and IFFLP optimizes the compatibility and thus maximizes the

success rate of the dual function.
Evolution Algorithm Demonstrates the High
Performance of Dual Function for N-A Networks
The four-node networks considered in the previous sections

are limited to a special class in which two functional modules

(adaptation and noise attenuation) are sequentially connected.

It would be ideal to expand the search to more classes of

four-node networks in order to see if new types of dual func-

tion topology would emerge, although, as discussed before, it

is not feasible to enumerate all four-node networks. Since

adaptation necessarily requires three nodes (i.e., input node,

output node, and control node), we focus on the four-node

networks containing a minimal three-node adaptive network

but allowing the fourth node D with more flexibility. Specif-

ically, we limit ourselves to explore the set of four-node net-

works with the fourth node D connecting to a three-node

IFFLP or NFBLB network via two additional links. The two

additional links are one incoming link to and one outgoing

link from node D, i.e., node i0 node D0 node j; i; j˛fA; B;
Cg, and the combination of signs of these two links can be

(+,+), (�,�), (+,�) or (�,+). Thus, there are a total of 3 3 3 3

4 = 36 different realizations of the two additional links when

added to a three-node minimal adaptive network. By this

method, we construct two subsets of networks in the whole

four-node network space, i.e., the IFFLP-based subset and

the NFBLB-based subset, each of which has 36 different

four-node networks. Note that these sets include N-A net-

works (added links are A0D0A) and A-N networks (added

links are C0D0C.

To find the network topologies in these subsets that best

perform the dual function, we employ an evolution algorithm

(François and Hakim, 2004). For each subset, the algorithm be-

gins with an initial collection of circuits whose topologies are

randomly chosen from the subset and parameters are randomly

assigned. Through many rounds of growth and selection, the
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circuit collection evolves toward higher performance of the dual

function (see STAR Methods).

For the IFFLP-based subset, we obtain 115 circuits capable of

dual function from 400 implementations of the evolution algo-

rithm. Six network topologies emerge with relatively high occur-

rences among the 115 functional circuits (Figure 3N). Two of the

six networks (ranked #2 and #4) are N-A networks, in which

added links A/D—|A and A—|D—|A form one negative and

one PF loop, respectively. This is consistent with the fact that

N-A networks have advantage over A-N networks found previ-

ously. Interestingly, some new dual function four-node networks

emerge. The network with the highest frequency of occurrence

has added links C—|D—|B, forming a coherent feedforward

loop from node A to node B (i.e., A/C—|D—|B and A/B; see

the inset of Figure 3N). The #3 ranking network with added links

A—|D—|B also has a coherent feedforward loop from node A to

node B (i.e., A—|D—|B and A/B; see the inset of Figure 3N). For

these two networks, the additional coherent feedforward loop is

analogous to coherent type 4 (Mangan and Alon, 2003), which

delays the activation of node B and thus may enhance the tran-

sient response of node C. Comparisons between these two net-

works and IFFLP show that the additional links C—|D—|B or A—|

D—|B benefit high sensitivity (Figure S3A) with little effect on

noise buffering capability (Figure S3B). Moreover, IFFLP added

with C—|D—|B or A—|D—|B can achieve higher sensitivity than

IFFLP given the same level of NAR (Figure S3C), which essen-

tially results from the slow response of node B caused by the

additional coherent feedforward loop (Figure S3D). For the other

two networks with added links B—|D/A and B/D—|A, the

additional NF loop through node A coupled with IFFLP results

in smaller adaptation error (Ma et al., 2009).

For the NFBLB-based subset, only 18 circuits capable of dual

function are obtained from 400 implementations. This is consis-

tent with the previous conclusion that N-A and A-N networks

containing NFBLB show worse performance of dual function

than those containing IFFLP. The 18 circuits correspond to

only three topologies (Figure 3O). Similar to the IFFLP-based

subset, two of the three topologies (ranked #1 and #3) have an

additional coherent feedforward loop from node A to node B

(A—|D—|B or A/D/B), which may achieve high sensitivity by

delaying the response of node B. The third topology (ranked

#2) has links B—|D—|B, a PF loop that also slows down the acti-

vation of node B and thus enhances sensitivity. As expected,

simulation results show that all of the three topologies improve

sensitivity without compromising noise buffering capability

compared with NFBLB (Figures S3E–S3G). Further investiga-

tions on node B validate that the additional loop (coherent feed-

forward loop or PF loop) indeed slows down the response of

node B to improve dual function in these three topologies

(Figure S3H).

We also investigate the robustness of dual function for the

IFFLP- andNFBLB-based subset and find that top-ranked topol-

ogies obtained by the evolution algorithm also have higher

robustness (Figures S3I–S3L). To avoid zero Q values for almost

all topologies, we calculate Q values using a relaxed criterion for

dual function, i.e., sensitivity >0.8, precision >10, and NAR <0.3.

For the IFFLP-based subset, the #1 and #3 ranking topologies

obtained by the evolution algorithm (Figure 3N) have the top

2 Q values, and the N-A network with added links A—|D—|A
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has the 7th highest Q value (Figure S3I). Moreover, different

thresholds of sensitivity and NAR have little effect on the Q value

rankings of 36 IFFLP-based topologies (Figure S3J). For the

NFBLB-based subset, the three topologies with the highest Q

values are exactly those obtained by the evolution algorithm (Fig-

ures S3K and S3L).

The design principles for dual function revealed by exploring

a larger four-node network space are consistent with those

found in previous sections. First, the N-A networks still show

relatively high performance of dual function even within a larger

network space. Second, besides the sequential connection of

two modules, all the new topologies emerged achieve more

robust dual function by a better performance in adaptation

function, in particular by enhancing the sensitivity. This is

consistent with our finding that maintaining sensitivity while

reducing noise is the key for the dual function. This can be

accomplished either directly by the sequential connection of

two modules (e.g., N-A networks) or indirectly by ways of

enhancing sensitivity.

Biological Examples
In previous sections, we have used three- and four-node net-

works as coarse-grained approximation to biological networks.

Although the vast majority of biological networks are more com-

plex and tend to have more than three or four nodes, many of

them are likely to be abstracted into simpler networks with

proper coarse graining. Also, despite the apparent complexity,

the underlying core network topology responsible for robustly

executing the biological function might be simple. Thus, the

principles obtained from the simple three- or four-node

networks may also help to understand more complex biological

systems.

By examining several adaptation networks in the literature

(Batchelor et al., 2011; Beltrami and Jesty, 1995; Bode and

Dong, 2004; Bonner and Savage, 1947; Cesarman-Maus and

Hajjar, 2005; Ferrell, 2016; Jackson and Nemerson, 1980; Li

et al., 2009; O’Donnell et al., 2005; Ohashi et al., 2014; Shah

et al., 2016; Sinha and H€ader, 2002; Tago et al., 2015; Zhang

and Lozano, 2017; Zhang et al., 2014), we found that the positive

or NF loop is often coupled with the adaptation module (Fig-

ure 4A). For example, in Dictyostelium discoideum, under the

change of ligand cyclic AMP (cAMP), the Gbg subunit on the

membrane is activated and then modulates Ras guanine nucle-

otide exchange factor (GEF) along with Ras GTPase-activating

protein (GAP). RasGEF activates Ras, whereas RasGAP inacti-

vates Ras. So Gbg, RasGEF, RasGAP, and Ras constitute an

adaptationmodule. Meanwhile, PIP3, a vital intermediate molec-

ular downstream of Ras, is involved in a PF loop composed of

phosphatidylinositol 3-kinase (PI3K), PIP3, RacGEF, Rac, and

F-actin. Since PF is a noise attenuation module, co-occurrence

of these two kinds of signaling pathways can be roughly re-

garded as an A-N network. Here, we use the Dictyostelium dis-

coideum chemotaxis network and p53 activation as biological

examples to study whether these modularized signaling path-

ways can perform robust dual function.

Dictyostelium discoideum Chemotaxis
Chemotaxis describes the directional movement of biological

system when exposed to a chemical gradient. This behavior is
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Figure 4. Examples of Biological Systems Capable of Dual Function

(A) A list of biological systems that include both an adaptation module and a noise attenuation module. Biological process (along with the references), network

topology, and category of module combination are illustrated for each system.

(B and C) The joint histogram of NAR sensitivity without and with the PF loop between PI3K and PIP3 in the chemotaxis model. The color bar indicates the density

of parameter sets in a given region. The area bound by the red dashed line is the region of dual function, i.e., sensitivity > 1, NAR < 0.2, and precision > 10. The

corresponding Q value is indicated on the right.

(D and E) The joint histogram of NAR sensitivity without and with the PF loop between ATR and TopBP1 in the p53 model. The color bar indicates the density of

parameter sets in a given region. The area bound by the red dashed line is the region of dual function, i.e., sensitivity > 1, NAR < 0.2, and precision > 10. The

corresponding Q value is indicated on the right.
crucial for organisms to seek food, chase a signaling cue, or

avoid a harmful environment, and is observed inmany organisms

such as bacteria (Barkai and Leibler, 1997; Berg and Brown,

1972), amoebae (Bonner and Savage, 1947), neutrophils (Li

Jeon et al., 2002), and tumor cells (Roussos et al., 2011). In

chemotaxis systems like bacteria and amoebae, perfect adapta-

tion to changes in chemoattractant is essential to gradient

sensing. At the same time, these systems face diverse kinds of

noise such as receptor-ligand binding noise (Berg and Purcell,

1977; Sartori and Tu, 2011), chemoattractant fluctuations, and

intrinsic noise (Sartori and Tu, 2011). In the Escherichia coli

and Dictyostelium discoideum chemotaxis system, adaptation

is driven by hydrolysis of S-adenosylmethionine (SAM), ATP, or

guanosine triphosphate (GTP) (high-energy biomolecules under
physiological conditions), whichmakes the system far from equi-

librium and the detailed balance condition broken. Therefore, it is

feasible for bacteria and amoebae to buffer noise while respond-

ing and adapting to signal change (Sartori and Tu, 2015).

The signaling pathways of Dictyostelium discoideum chemo-

taxis have been well studied (Han et al., 2006 ; Kimmel and

Parent, 2003; Park et al., 2004; Sasaki et al., 2004; Takeda

et al., 2012). The whole regulatory network can be regarded as

an IFFLP-PF-type network (Figures 4A and S4A). Signaling

from the ligand (cAMP) to Ras constitutes the adaptation mod-

ule. The ligand binds to the G-protein coupled receptor

(GPCR), activating the GPCR. Upon activation of GPCR, the het-

erotrimeric G-protein dissociates into a Ga subunit and a free

Gbg subunit. The free Gbg subunit activates both RasGEF and
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RasGAP. RasGEF catalyzes GDP-bound Ras (inactive form of

Ras) to GTP-bound Ras (active form of Ras), while RasGAP

converts active Ras to its inactive form by catalyzing GTP hy-

drolysis. Hence, the regulations of Ras form an incoherent

feedforward loop, which is the core of the adaptation module

(Takeda et al., 2012). Downstream of the adaptation module

is the noise attenuation module, characterized by the PF loop

between PI3K and PIP3. Accumulation of upstream output

Ras activates PI3K on the plasma membrane. Active mem-

brane PI3K phosphorylates the membrane lipid PIP2 into

PIP3, a second messenger. Accumulation of PIP3 activates

Rac by stimulating the activity of RacGEF, and activation of

Rac leads to polymerization of F-actin. F-actin polymerization

promotes the localization of PI3K on the plasma membrane

from the cytoplasm. Thus, PIP3 can facilitate the membrane

localization of PI3K through F-actin polymerization and forms

a PF loop with PI3K.

By merging the multi-steps in the linear pathway of regulation

from PIP3 to PI3K into one step, this system can be simplified to

seven species (Figure S4B) andmodeled by following equations:

dGbg

dt
= k1,cAMP,ðGbg0 �GbgÞ � kd1,Gbg

dRasGEF

dt
= k2,Gbg � kd2,RasGEF

dRasGAP

dt
= k3,Gbg � kd3,RasGAP

dRas

dt
= k4,RasGEF,ðRas0 � RasÞ � kd4,RasGAP,Ras

dPI3K

dt
= k5,Ras,PI3Km � kd5,PI3K

dPI3Km

dt
= k7,ðPI3K0 � PI3Km � PI3KÞ,ðPIP3+ k70Þ

� kd7,PI3Km � k5,Ras,PI3Km + kd5,PI3K

dPIP3

dt
= k6,PI3K,

P0 � PIP3

P0 � PIP3+K6

� kd6,PIP3:

To investigate the importance of the noise attenuationmodule,

we destroy PF by artificially deleting the regulation from PIP3 to

PI3K as comparison. This is achieved by replacing PIP3 with a

(arbitrary) constant 0.44 in the equation of PI3Km (other choices

of the constant gave the same results). Parameters of the up-

stream adaptation module are selected to achieve an adaptive

response of Ras (Table S3). Parameters of the downstreammod-

ule with or without PF are randomly chosen with a sample size of

106 (Table S3). The adaptation precision of PIP3 is well main-

tained because of the good precision of Ras. The distributions

of sensitivity and NAR without and with PF are shown in Figures

4B and 4C, respectively. The area bound by the red dashed line

is the region of dual function, within which the network with PF

(Figure 4C) has a higher Q value than that without (Figure 4B).

Moreover, the superiority of the network with PF in the Q value

remains consistent for different combinations of thresholds of
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sensitivity and NAR (Figure S4C). It demonstrates the critical

role of PF as a downstream noise attenuation module in the

IFFLP-PF network of Dictyostelium discoideum chemotaxis to

achieve dual function.
p53 Activation
In mammalian cells, tumor suppressor p53 is a common medi-

ator of many stress-related signaling pathways and plays a

role in cell-cycle arrest, senescence, and apoptosis (Zhang

and Lozano, 2017). However, different kinds of stress can

induce distinct temporal dynamics of p53, which may encode

different information (Batchelor et al., 2011; Levine et al.,

2013). For example, double-strand breaks (DSBs) caused by

g-radiation can lead to stereotyped pulses of p53, while sin-

gle-stranded DNA (ssDNA) damage caused by UV light can

induce a dose-dependent adaptive dynamic of p53 (Batchelor

et al., 2011).

The signaling pathway involved in the response to UV can be

regarded as a PF-NFBLB-type network (Figure 4A). Exposure

to UV light can cross-link adjacent cytosine or thymine bases

and create pyrimidine dimers, leading to ssDNA damage (Sinha

and H€ader, 2002). ssDNA damage lesions lead to recruitment of

ataxia telangiectasia mutated and Rad3-related (ATR) kinase

and phosphorylation of ATR itself. Then, the kinase activity of

ATR is stimulated by TopBP1 with the help of other regulators

such as Rad17 and 9-1-1 complexes (Zhang and Lozano,

2017). Once stimulated, ATR phosphorylates Chk1 and activa-

tion of the ATR-Chk1 checkpoint pathway further increases the

accumulation of TopBP1 to the DNA damage lesions, thus

creating a PF loop between ATR and TopBP1 (Ohashi et al.,

2014). Phosphorylation of p53 by Chk1 can activate p53 for

DNA binding, which enhances the expression of the target genes

such as those related to DNA-repair processes, cell-cycle arrest,

and apoptosis (Bode and Dong, 2004). The function of p53 can

be controlled by two negative regulators, Mdm2 and Wip1,

both of which are also target genes of p53. Mdm2 is a ubiquitin

E3 ligase and can induce p53 degradation through the ubiquitin-

proteasome pathway, while Wip1 is a phosphatase that can de-

phosphorylate p53 and thus reduce the activity of p53 (Batchelor

et al., 2011). So, in this network, ATR-Chk1-TopBP1-ATR forms

the PF loop, while Mdm2 andWip1 act as the negative regulators

of p53 and thus form two NF loops with p53.

Dynamics of the signaling network can be modeled by

following equations:

dATR

dt
= k1,UV,ðTopBP1+ l1Þ,ðATR0 � ATRÞ � kd1,ATR

dTopBP1

dt
= k2,Chk1,ðTopBP10 � TopBP1Þ � kd2,TopBP1

dChk1

dt
= k3,ATR,

Chk10 � Chk1

K3 +Chk10 � Chk1
� kd3,

Chk1

Kd3 +Chk1

dp53inactive

dt
= kg4 � kd4,p53inactive + k4,Wip1,

p53active

K4 +p53active

� k5,Chk1,
p53inactive

K5 +p53inactive



dp53active

dt
= k5,Chk1,

p53inactive

K5 +p53inactive

� k4,Wip1,
p53active

K4 +p53active

� kd5,Mdm2,
p53active

Kd5 +p53active

dMdm2

dt
= k6,

p53active

K6 +p53active

� kd6,
Mdm2

Kd6 +Mdm2

dWip1

dt
= k7,

p53active

K7 +p53active

� kd7,
Wip1

Kd7 +Wip1
:

Using this p53 model, we perform the same simulations as the

chemotaxis model. PF can be eliminated the by replacing

TopBP1 with a (arbitrary) constant 0.5 in the equation of ATR

(other choices of the constant gave the same results), and other

parameters are shown in Table S4. We find that the PF loop as

the upstream noise attenuation module can increase the param-

eter region for dual function (Figures 4D, 4E, and S4D), indicating

that such PF-NFBLB network for p53 dynamic is able to perform

robust dual function.
DISCUSSION

A longstanding question in biology is how complex biological

networks in the cell perform sophisticated regulatory functions

with a remarkable degree of accuracy, reliability, and robust-

ness. Do ‘‘universal’’ design principles underlie cellular systems?

Rather than searching for naturally occurring circuits on a case-

by-case basis, one strategy is to understand the design logic

from the bottom-up to achieve single or multiple functions (Lim

et al., 2013; Zhang and Tang, 2018).

Here, we have investigated both three- and four-node net-

works to search for the design principle for the dual function of

adaptation and noise attenuation. An intrinsic trade-off was

found to exist in three-node networks between system sensi-

tivity, which is required in adaptation and noise attenuation.

Although fine-tuning timescales in three-node adaptive networks

can partially mediate such trade-off, it introduces prolonged

adaptation time and additional parameter constraints. Our re-

sults show that the required adaptation time to reduce noise

can be unrealistically long. For example, to achieve a noise

reduction of NAR = 0.1, the adaptation time has to be about

10,000 times longer than the autocorrelation time of the input

noise (Figures 2O and S1G–S1I). A too slow adaptation time

can be harmful for detecting rapid changes of signal (Andrews

et al., 2006; Berg, 1988), leading to a further trade-off between

noise buffering capability and signal tracking ability.

In four-node networks, the dual function can be achieved

robustly. The key challenge of maintaining system sensitivity

while reducing noise can be met via the sequential combination

of two sub-function modules. By evaluating effects of response

times in noise attenuation and adaptation modules on the func-

tional performance, we found that the combination of a slow

adaptation module and fast noise attenuation module can

achieve better dual function. Our work highlights the importance

of timescales in the relationship between topology and function.

In some cases, timescale can be a key factor linking topology to

function. For adaptation alone, the determining factor is topology
(Ma et al., 2009). On the other hand, noise attenuation is closely

related to timescale. Many works have shown how output noise

depends on kinetic parameters such as degradation rate (Hor-

nung and Barkai, 2008; Paulsson, 2004). Since different topol-

ogies can have distinct timescales, topology can therefore play

a crucial role in noise resistance. For example, compared with

NF, PF slows down the dynamics and therefore enhances noise

buffering for a given steady susceptibility (Hornung and Barkai,

2008) or transient sensitivity (Figures 3D and 3E). Interlinked

fast and slow PF loops have a short activation time and a long

deactivation time, resulting in the small fluctuation of the on state

(Brandman et al., 2005). Our work of exploring the criterion to

combine adaptation module and noise attenuation module fol-

lows a similar scenario: the topology determines the response

time and therefore determines compatibility (Figure 3M). In N-A

networks, NF has a shorter response time, which is beneficial

for high sensitivity after combination, so NF is more compatible

than PF as an upstream module. In A-N networks, IFFLP, the

one with the longer response time, maintains a higher percent-

age of sensitive output and thus has better compatibility than

NFBLB as an upstream module. Thus, together with previous

works, our finding highlights the significance of timescale and

its dependence on the network topology in reverse engineering.

In biological systems, ample examples of singling pathways

adopt the topologies capable of the dual function of adaptation

and noise attenuation. In two cases, Dictyostelium discoideum

chemotaxis and the p53 signaling network, we showed that

these networks can effectively resist the noise while performing

adaptation. Although many regulatory networks could be high-

lighted as in Figure 4 using sequentially connected modules,

our explorations on many existing systems have suggested

that in many adaptive systems a PF loop or NF loop is coupled

with an adaptation module, creating an expanded dual-function

module. In addition, the detail dynamics induced by such added

PF/NF is clearly related to noise attenuation in our analysis—an

area not explored in previous studies that have focused only on

adaptation. Interestingly, we found that in biological systems

N-A networks appear more frequently than A-N networks. This

is consistent with our finding that N-A architecture has an

increased compatibility for dual function. However, some adap-

tive systems such as the chemotaxis network in Dictyostelium

discoideum (Han et al., 2006; Kimmel and Parent, 2003; Park

et al., 2004; Sasaki et al., 2004; Takeda et al., 2012) and EGFR

signaling pathway in mammalian cells (Ferrell, 2016) adopt the

A-N architecture. One possible reason is that placing the adap-

tation module upstream may be advantageous if the same

upstream signal activates several downstream pathways of

different characters (Levchenko and Iglesias, 2002). Since the

noise attenuation module is generally non-adaptive, placing

the noise attenuation module upstream may also cause persis-

tent activation of downstream signaling pathways. Thus, it is

conceivable that A-N networks could be more suitable in certain

circumstances.

In this work, the noise is assumed only from the input signal.

Besides extrinsic noise due to the input fluctuation, the adapta-

tion module also faces intrinsic noise in the adaptation reaction

(Colin et al., 2017; Sartori and Tu, 2011). Such noise exhibits

different characteristics (e.g., frequency and amplitude) and

may require different mechanisms to attenuate (Colin et al.,
Cell Systems 9, 271–285, September 25, 2019 283



2017; Sartori and Tu, 2011; Shankar et al., 2015). Therefore,

different design principles may emerge when considering mixed

sources of noise.

Although this work was limited to enzymatic regulatory net-

works, our approach can be naturally extended to other types

of regulations or forms of networks. For instance, the topologies

for three-node adaptive networks with transcriptional regulation

can still be grouped into the same two categories: NFBLB and

IFFLP (Shi et al., 2017). Furthermore, other types of modules

can also be used for network assembly. For adaptation, besides

NF and incoherent feedforward, mechanisms such as state-

dependent inactivation and antithetical integral feedback could

generate perfect adaptation (Briat et al., 2016; Ferrell, 2016;

Friedlander and Brenner, 2009). For noise attenuation, linear

cascades, time delay, and zero-order, kinetics can also buffer

noise (Hornung and Barkai, 2008). It would be interesting to sys-

tematically investigate the design principles for dual function

made of other or mixed regulation types and functional modules,

especially considering that the timescales of different regulations

and modules can be very different.
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METHOD DETAILS

Mathematical Model
Enzymatic Regulatory Networks

We use enzymatic regulatory networks andMichaelis-Menten rate equations to model both three-node and four-node networks (Ma

et al., 2009). An enzymatic regulatory network with IFFLP topology is illustrated in Figure 1D as an example. Each node (representing

an enzyme) is assumed to have active form and inactive form, with the total concentration as a constant (set to be 1). A positive regu-

lation from node i to node j (denoted by i/j) implies that the inactive form of the enzyme j can be converted to its active form by active

enzyme i. Similarly, a negative regulation from node i to node j (denoted by i—|j) implies that the active form of enzyme j can be con-

verted to its inactive form by active enzyme i. If the node i has only positive (or negative) incoming regulations, a basal enzyme (Fi) with

constant concentration (set to be 0.5) is assumed to deactivate (or activate) the node. Thus, a three-node enzymatic regulatory

network can be modeled by following equations:

dA

dt
= fA = IkIAð1�AÞ 1� A

1� A+KIA

+
X
i

XikXiA

1� A

1� A+KXiA

�
X
i

YikYiA

A

A+KYiA

;

X
dB

dt
= fB =

i

XikXiB

1� B

1� B+KXiB

�
X
i

YikYiB

B

B+KYiB

;

X
dC

dt
= fC =

i

XikXiC

1� C

1� C+KXiC

�
X
i

YikYiC

C

C+KYiC

;

where I is the input intensity, and A, BandC are concentrations of the three enzymes in active form, respectively. Since the total con-

centration of each enzyme is set to be 1, 1� A, 1� Band 1� C represents concentrations of the three enzymes in inactive form,

respectively. Xi in each equation represents the activating enzymes of the node while Yi the deactivating enzymes. Each term in

above equations takes the form of Michaelis-Menten equation where capitalized K denotes Michaelis-Menten constant and lower-

case k denotes the catalytic rate constant. For a four-node network there is an additional equation for node D:

dD

dt
= fD =

X
i

XikXiD

1� D

1� D+KXiD

�
X
i

YikYiD

D

C+KYiD

:

Unless otherwise specified, all our simulations are based on enzymatic regulatory networks.

Transcriptional Regulatory Networks

The transcriptional regulatory network depicts interactions among genes’ products where each gene product can regulate the tran-

scriptional activity of other genes as the transcription factor (TF). In a transcriptional network topology, nodes and links represent

gene products and transcriptional regulations respectively. In our model, transcriptional regulations are assumed to only affect

the gene activation and have no effect on the degradation of gene products. If multiple TFs regulate the same gene, AND logic

(i.e., the gene expression is active if all activators are at high concentrations and all repressors at low concentrations) is applied.

By modeling the regulated production rate with Hill function and the degradation rate with linear function, the three-node transcrip-

tional regulatory network with AND logic can be modeled by following equations:

dA

dt
= fA = vA

InIA

InIA +KnIA
IA
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nXiA
i
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i +K
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tC
;
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where I is the input intensity, and A, Band C are concentrations of the three gene products respectively. Each gene product has a

degradation rate constant t�1
i and a maximal production rate vi(i=A, B, C). Xi in each equation represents the activator of the

node while Yi the repressor. The Hill function representing positive regulation (e.g.
X
nXiA
i

X
nXiA
i +K

nXiA
XiA

) has two parameters K and n, which

denote the activation coefficient and Hill coefficient, respectively. Likewise, the Hill function representing negative regulation (e.g.

K
nYiA
YiA

Y
nYiA
i +K

nYiA
YiA

) also has parameters K and n, except that K is termed as the repression coefficient. When calculating Q values for

16,038 three-node transcriptional regulatory networks, above equations are normalized by setting vi = t�1
i for parameter reduction.

Calculation of Sensitivity, Precision and NAR
In our simulations, we set I1 = 0:4 and I2 = 0:45. When calculating Q values for enzymatic regulatory networks, the Latin hypercube

method is used to sample the catalytic rate constants k’s and Michaelis-Menten constants K0s, which are from log-uniform distribu-

tions with the parameter ranges [0.1,10] and [0.001,1000], respectively. For transcriptional regulatory networks, the degradation rate

constants t�1
i ’s and the activation (or repression) coefficients K0s are sampled from log-uniform distributions with ranges [0.1,10] and

[0.001,1000], respectively; the Hill coefficient n is sampled based on uniform distribution from 1 to 4.

By performing ODE simulation, the deterministic dynamics for a given circuit is obtained and thus the sensitivity and the precision

are calculated directly according to their definitions. We use linear noise approximation (LNA) (Elf and Ehrenberg, 2003; Paulsson,

2004) to calculate NAR. By assuming the noise is only from the input signal Iand autocorrelation function of fluctuations exponentially

decays with timescale t0 = 1=u (u is set to 0.5 unless otherwise specified), Ornstein-Uhlenbeck process is applied to approximate

the dynamics of I:

dI

dt
= � I� Iss

t0
+

ffiffiffiffiffiffiffiffi
2h2

0

t0

s
xt

where xt is the white noise satisfying xt = 0 and xtxs = dðt � sÞ, and h20is the variance of I as t/N. We set Iss = I1 and I2 to calculate the

NAR when system is at the steady state under I1 and I2 respectively. For saving calculation costs, we linearize the model to obtain an

approximate NAR instead of a long-time simulation. According to LNA, we can solve the following equation to get NAR:

Mh + hMT +D= 0:

In three-node networks, the matrix M, h, D are

M =

2
6666666666666664

� 1

t0
0 0 0

vfA
vI

vfA
vA

vfA
vB

vfA
vC

vfB
vI

vfB
vA

vfB
vB

vfB
vC

vfC
vI

vfC
vA

vfB
vB

vfC
vC

3
7777777777777775

; h=

2
66664

h2
0 covðI;AÞ covðI;BÞ covðI;CÞ

covðI;AÞ h2
A covðA;BÞ covðA;CÞ

covðI;BÞ covðA;BÞ h2
B covðB;CÞ

covðI;CÞ covðA;CÞ covðB;CÞ h2
C

3
77775;
2

D =

66666666664

2h2
0

t0
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3
77777777775
:

Then NAR is just

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2C=hCi2
h20=I

2
ss

vuut (h ,i denotes the steady-state value of the node). In practice, we transformedMij toMij
xj
xi
, hij to

hij

xixj
,Dij to

Dij

xixj
, where x1 = Iss, x2 =A, x3 =B, x4 =C so that we can get the square of NAR directly by dividing the last element in new h by the first

element. These matrices are evaluated in steady state. As there are two different levels of input signal (i.e., I1and I2Þ, we have two

steady states and thus two values of NAR. When calculating Q values, the larger value of NAR is used. The method above can easily

expand to four-node network. In fact, the NAR obtained by LNA can well approximate that obtained by a long-time simulation of sto-

chastic differential equation (Figure S2G).
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Analytical Derivation of NAR and Sensitivity
IFFLP with General Form of Regulations

To simplify the derivation, we assume that the dynamics of node A is the same as the input I. Then equations of IFFLP can be writ-

ten as 8>>>>><
>>>>>:

tB
dB

dt
= fBðA;BÞ

tC
dC

dt
= fCðA;B;CÞ

:

First, we use LNA to derive NAR for the above system. We assume the fluctuation of A is an Ornstein-Uhlenbeck process with time

scale t0 = 1=u and variance h20. Then we can calculate

M = ðMijÞ=

0
BB@

�u 0 0
k1=tB �k2=tB 0
k4=tC �k5=tC �k6=tC

1
CCA

and

D =

0
BB@2h2

0u 0 0
0 0 0
0 0 0

1
CCA，

where k1 =
hAi
hBi

vfB
vA

, k2 = � vfB
vB

, k4 =
hAi
hCi

vfC
vA

, k5 = � hBi
hCi

vfC
vB

, k6 = � vfC
vC

. All ki ði = 1; 2;4;5;6Þ are positive according to the sign of reg-

ulations in IFFLP. hAi; hBi; hCi denote steady states of A;B; C respectively. By solving the equation with respect to h

Mh + hMT +D= 0;

we get the expression of NAR:

NAR =

ffiffiffiffiffiffi
h2
C

h2
A

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1k5 � k2k4Þ2ðk2tC + k6tB + tBtCuÞ+ k2k6k

2
4t

2
Bu

k2k6ðk2tC + k6tBÞðk2 +utBÞðk6 +utCÞ

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi � � �vu

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1k5 � k2k4Þ2 k2

tB
tC

1

tB
+ k6

tB
tC

�2
1

tB
+

�
tB
tC

�
u

!
+ k2k6k

2
4

�
tB
tC

�2

u

k2k6

�
k2 + k6

�
tB
tC

��
ðk2=tB +uÞ

�
k6

�
tB
tC

�
+utB

�
uuuuut :

From the expression of NAR, we can easily find that NAR is a decreasing function of tC (or tB) if tBtCR
k2k6
u2

when the ratio of tB to

tC is fixed as a constant.

Then we approximate sensitivity by linearizing the system around steady state ðhAi;hBi; hCiÞ :2
666664
dDB

dt

dDC

dt

3
777775 =

2
666664

�k2
tB

0

�k5hCi
tChBi

�k6
tC

3
777775
2
4DB
DC

3
5+DA

2
666664
k1hBi
tBhAi
k4hCi
tChAi

3
777775

where hAi; hBi; hCi denote the steady states of A;B; C. The condition of perfect adaptation is assumed, that is, k1k5 � k2k4 = 0. By

solving above equations, we get the expression of DCðtÞ:

DCðtÞ = k4hCi
tChAiDA

el2t � el1t

l2 � l1

where l1 = � k2
tB

, l2 = � k6
tC

. Let DC0ðtÞ= 0, and we obtain the peak time of DC:

tpeak =

ln

�
l2

l1

�
l1 � l2

=

tCln

�
k6tB
k2tC

�
�
k6 � k2

tC
tB

� :
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Then the highest (or lowest) value of DC is:

DCðtpeakÞ = DA
k4hCi
tChAi

1

�l1

�
l2

l1

� l2

l1 � l2 =
k4hCi
k2hAi

tB
tC

�
k6tB
k2tC

� 1

k2tC
k6tB

� 1
DA:

The sensitivity is derived naturally:

Sensitivity =

����DCðtpeakÞ
�hCi

DA=hAi
����= k4

k6

k6tB
k2tC

�
k6tB
k2tC

� 1

k2tC
k6tB

� 1
=
k4
k6

�
k2tC
k6tB

�
k2tC
k6tB

1� k2tC
k6tB

From the expression of sensitivity, it can be seen that sensitivity is a constant when
tC
tB

is fixed. Furthermore, smaller ratio of tCto tB

causes larger sensitivity because of decreasing function x

x

1� x.

Next, we show the special case in enzymatic regulatory IFFLP. If conditions of perfect adaptation are assumed, that is, ð1�BÞ[
KAB and B � KFBB, equations of enzymatic regulatory IFFLP can be written as8>>>>><

>>>>>:
tB
dB

dt
=AkAB � FB

kFBB
KFBB

B

tC
dC

dt
=AkAC

1� C

1� C+KAC

� BkBC
C

C+KBC

,ð � Þ

Then we have k1 = k2 = kFBBFB=KFBB, k4 = k5 =
kAChAið1� hCiÞ

ð1� hCi+KACÞhCi =
kBChBi

hCi+KBC
, k6 =

�
KAChCi

ð1� hCi+KACÞð1� hCiÞ +
KBC

hCi+KBC

�
k4. The

expressions of NAR and sensitivity can thus be obtained directly:

NAR=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k24t

2
Bu

ðk1tC + k6tBÞðk1 +utBÞðk6 +utCÞ

s

�

=

k24
tB
tC

�2

u�
k1 + k6

�
tB
tC

���
k6

�
tB
tC

�
+utB

�
ðk1=tB +uÞ

;

and

Sensitivity =

����DCðtpeakÞ
�hCi

DA=hAi
����= k4

k6

�
k1tC
k6tB

�
k1tC
k6tB

1� k1tC
k6tB :

When tC
tB
is fixed, we can see that sensitivity is a constant and NAR is a decreasing function of tB(or tC) if tBtCR

k1k6
u2

.

NFBLB with General Form of Regulations

To simplify the derivation, we assume that the dynamics of node A is the same as the input I. Then equations of NFBLB are8>>>>><
>>>>>:

tB
dB

dt
= fBðB;CÞ

tC
dC

dt
= fCðA;B;CÞ

First we use LNA to derive NAR for the above system. We assume the fluctuation of Ais an Ornstein-Uhlenbeck process with time

scale t0 = 1=u and variance h20. Then we can calculate

M = ðMijÞ=

0
BB@

�u 0 0
0 �k1=tB k2=tB

k3=tC �k4=tC �k5=tC

1
CCA
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and

D =

0
BB@2h2

0u 0 0
0 0 0
0 0 0

1
CCA，

where k1 = � vfB
vB

, k2 =
hCi
hBi

vfB
vC

, k3 =
hAi
hCi

vfC
vA

, k4 = � hBi
hCi

vfC
vB

, k5 = � vfC
vC

. All ki ði = 1; 2; 3;4;5Þ are positive according to the sign of reg-

ulations in NFBLB. hAi;hBi; hCidenote steady states of A;B; C respectively. By solving the equation with respect to h

Mh + hMT +D= 0;

we get the expression of NAR:

NAR =

ffiffiffiffiffiffi
h2
C

h2
A

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23


k21ðk1tC + k5tB + tBtCuÞ+ ðk1k5 + k2k4Þt2Bu

�
ðk2k4 + k1k5Þðk5tB + k1tCÞðtBtCu2 + k5tBu+ k1tCu+ k2k4 + k1k5Þ

s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k23

"
k21

 
k1

1

tC

�
tC
tB

�2

+ k5
1

tC

�
tC
tB

�
+

�
tC
tB

�
u

!
+ ðk1k5 + k2k4Þu

#

ðk2k4 + k1k5Þ
�
k5 + k1

�
tC
tB

���
tCu

2 + k5u+ k1

�
tC
tB

�
u+

1

tC

�
tC
tB

�
ðk2k4 + k1k5Þ

�
vuuuuuut :

From the expression of NAR, we can easily find that NAR is a decreasing function of tC (or tB) if tBtC>
k1k5 + k2k4

w2
when the ratio of

tB to tC is fixed as a constant.

Then we approximate sensitivity by linearizing the system around steady state ðhAi;hBi; hCiÞ:2
666664
dDB

dt

dDC

dt

3
777775 =

2
666664

�k1
tB

k2hBi
tBhCi

�k4hCi
tChBi �k5

tC

3
777775
2
4DB
DC

3
5+DA

2
664

0

k3hCi
tChAi

3
775

where hAi; hBi; hCi denote the steady states of A;B; C. The condition of perfect adaptation is assumed, that is, k1 = 0. By solving

above equations, we get the expression of DCðtÞ:

DCðtÞ = k3hCi
tChAiDA

el2t � el1t

l2 � l1

�
k5
t

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k5
t

�2

� 4
k4k2
t t

s
�k5

tC
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k5
tC

�2

� 4
k4k2
tBtC

s

where l1 =

C C B C
2 , l2 =

2
. Let DC0ðtÞ= 0, and we obtain the peak time of DC:

tpeak =

ln

�
l2

l1

�
l1 � l2

=

ln

0
BBBBB@

�k5
tC

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k5
tC

�2

� 4
k4k2
tBtC

s

�� k5
tC

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k5
tC

�2

� 4
k4k2
tBtC

s
1
CCCCCA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k5
tC

�2

� 4
k4k2
tBtC

s :

Then the highest (or lowest) value of DCis:

DCðtpeakÞ = DA
k3hCi
tChAi

1

�l1

�
l2

l1

� l2

l1 � l2 :

The sensitivity is derived naturally:

Sensitivity =

����DCðtpeakÞ
�hCi

DA=hAi
����= k3

tC

1

�l1

�
l2

l1

� l2

l1 � l2 :
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The expression of sensitivity and tpeak also holds for complex eigenvalues. However, the monotonicity with
tC
tB

and tC is easy to

analysis when eigenvalues are both negative real number. So only the situation with negative real eigenvalues is considered.

Let x =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk5Þ2 � 4

k2k4tC
tB

s
;l1 =

�k5 + x

2tC
;l2 =

�k5 � x

2tC
, then

Sensitivity =

DCðtpeakÞ
hCi
DA

hAi
=
k3
tC

1

�l1

�
l2

l1

� l2

l1 � l2f
1

k5 � x

�
k5 + x

k5 � x

�k5 + x

�2x f
1

1� x=k5

�
1+ x=k5
1� x=k5

�1+ x=k5
�2x=k5 :

Use x to denote x=k5, and let fðxÞ= 1

1� x

�
1+ x

1� x

�1+ x

�2x ;x˛ð0; 1Þ. According to the monotonicity of fðxÞ, sensitivity is an increasing

function with x, and thus a decreasing function with
tC
tB

.

Fine-Tuning Timescales in Three-Node Networks
For a three-node network capable of perfect adaptation, we aim to maintain sensitivity and lower NAR by tuning tB and tC. Here, S

denotes sensitivity and N denotes NAR. Maintaining sensitivity means

vS

vtB
DtB +

vS

vtC
DtC = 0

by neglecting the high-order terms. Similarly, lowering NAR means

vN

vtB
DtB +

vN

vtC
DtC<0

by neglecting the high-order terms. Taking the first equality and the second inequality together, we have0
BB@vN

vtC
� vN

vtB

vS

vtC
vS

vtB

1
CCADtC<0 :0

B vN vN
vS
1
C vS
For instance, ifB@vtC
�
vtB

vtC
vS

vtB

CA>0;we can reduce tC;i.e.,DtC<0, and setDtB = � vtC
vS

vtB

DtCin order to lower NARwhilemaintaining

sensitivity. It is similar to the case of

0
BB@ vN

vtC
� vN

vtB

vS

vtC
vS

vtB

1
CCA<0:

Module Combination in Four-Node Networks
We take PF-IFFLP as an example to show how to construct equations and parameters of the assembled four-node network. Before

module combination, we assume that equations of PF are

dA

dt
= IkupIA ð1� AÞ 1� A

1� A+Kup
IA

+BkupBA
1� A

1� A+Kup
BA

� FAk
up
FAA

A

A+Kup
FAA

;

dB

dt
=AkupAB

1� B

1� B+Kup
AB

� FBk
up
FBB

B

B+Kup
FBB

;

and those of IFFLP

dC

dt
= IkdwIC

1� C

1� C+Kdw
IC

� DkdwDC
C

C+Kdw
DC

;

dD

dt
= IkdwID

1� D

1� D+Kdw
ID

� FDk
dw
FDD

D

D+Kdw
FDD

:

However, in PF-IFFLP, node C and node D receive the regulation from node B rather than the input I. So, to obtain equations of PF-

IFFLP, we need replace variable I with variable B in equations of node C and node D while keeping other equations unchanged, i.e.,

dA

dt
= IkupIA ð1� AÞ 1� A

1� A+Kup
IA

+BkupBA
1� A

1� A+Kup
BA

� FAk
up
FAA

A

A+Kup
FAA

;
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dB

dt
=AkupAB

1� B

1� B+Kup
AB

� FBk
up
FBB

B

B+Kup
FBB

;

dC

dt
=BkdwIC

1� C

1� C+Kdw
IC

� DkdwDC
C

C+Kdw
DC

;

dD

dt
=BkdwID

1� D

1� D+Kdw
ID

� FDk
dw
FDD

D

D+Kdw
FDD

:

Equations and parameters for other assembled four-node networks can be obtained in a similar way.

Evolution Algorithm
The evolution algorithm (François and Hakim, 2004) begins with an initial circuit collection including different networks with random

parameters. Then the circuit collection evolves towards dual function with many rounds of growth and selection. In the growth phase,

the circuit collection is doubled by adding a mutated copy of each circuit in the collection. The mutation of each circuit is carried out

as following: (1) randomly select one parameter based on the equal probability principle; (2) modify the chosen parameter by multi-

plying a random number uniformly distributed between 0 and 2. In the selection phase, high-performance circuits are selected to form

a new circuit collection with the original size. The performance of dual function is measured using a score function, which reaches

maximum score when the circuit performs dual function (i.e., sensitivity>1, precision>10, NAR<0.2). Here, the size of the initial circuit

collection is set to be 1000, so each network in the subset will have about 27~28 (1000O36z27:8) different parameter sets in

average. The score function we use is defined as the product of three factors, each of which ranges from 0 to 1. The first factor is

defined by the minimum between the value of sensitivity and 1. The second factor is the minimum between precision/10 and 1.

The third factor is the minimum between 0.2/NAR and 1. These three factors reflect how close the circuit’s sensitivity, precision

and NAR approach to corresponding thresholds. The evolution process is terminated if the circuit with score=1 (i.e., capable of

dual function) occurs or the maximum number of iterations (set to be 300) is reached.

DATA AND CODE AVAILABILITY

This paper presents no new data or code to make available.
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