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Background: Time-lapse live cell imaging of a growing cell population is routine in many biological investigations. A
major challenge in imaging analysis is accurate segmentation, a process to define the boundaries of cells based on raw
image data. Current segmentation methods relying on single boundary features have problems in robustness when
dealing with inhomogeneous foci which invariably happens in cell population imaging.
Methods: Combined with a multi-layer training set strategy, we developed a neural-network-based algorithm —

Cellbow.
Results: Cellbow can achieve accurate and robust segmentation of cells in broad and general settings. It can also
facilitate long-term tracking of cell growth and division. To facilitate the application of Cellbow, we provide a website
on which one can online test the software, as well as an ImageJ plugin for the user to visualize the performance before
software installation.
Conclusion: Cellbow is customizable and generalizable. It is broadly applicable to segmenting fluorescent images of
diverse cell types with no further training needed. For bright-field images, only a small set of sample images of the
specific cell type from the user may be needed for training.
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Author summary: Using microscope to study cells growing and dividing is one of the common tasks in a biological lab.
However, having taken the pictures of the cells is only half way through. A challenging and often time-consuming work is to
recognize, label and track each individual cell from the raw image. These images usually vary greatly in their features and
qualities depending on the focal field, experimental conditions, cell types, different labs, etc. Current methods are very
limited to solve these generic problems. Here we employed a machine learning method to develop a robust software that is
automated, flexible and customizable for this task.

INTRODUCTION

Imaging has become a standard tool for the detection and
analysis of cellular phenomena. Bright-field (BF) and
fluorescent microscopy are widely used to quantify
single-cell features [1]. The accurate quantification of
such features critically depends on cell segmentation [2].
Segmentation (the identification of cell boundaries for

individual cells) is based on cell edge properties in images
[3]. In fluorescent images, the edge properties of cells are

very uniform, and only depend on the expression of
fluorescent proteins (Fig. 1A). However, the typical
appearance of a BF image depends on the imaging
depth. As the depth changes, the images of cells change
from bright border and dark interior to dark border and
bright interior (Fig. 1B). Although this is often being used
as an advantage to achieve the segmentation of cells, most
of the existing methods rely solely on a single boundary
feature [4,5]. However, due to the cell size variability and
the imperfect alignment of cells with the focal plane, the
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problem of inhomogeneous focus often occurs [6].
Especially during cell growth, when the cell density
changes rapidly, cells exhibit multiple edge features in the
same image, e.g., when large cells exhibit bright edge
features, small cells would exhibit dark edge features
(Fig. 1C). As an algorithm based on a single feature
would typically miss a subpopulation of cells, a large
amount of subsequent manual correction work is required.
In addition to local features such as dark or bright

edges, cells also display many non-local features, such as
specific shapes, size and length-to-width ratio. Such
information is useful in identifying cells [3]. For example,
floating agglomerated cells and impurities can exhibit
edge characteristics similar to cells, but unlike cells, they
have very different shapes (Fig. 1D, E). However, the
discrimination of non-local features does not have a
general solution [7], so traditionally, different algorithms
have been designed based on different cell shapes [5,8].
For example, algorithms for yeast cells are usually
classified into either ball-shaped budding yeast algorithms
[9–11] or rod-shaped fission yeast algorithms [6,12,13].

In practice, we often need to integrate and discriminate
many aspects of shape. For example, rod-shaped fission
yeast appear spherical under certain culture conditions
(Fig. 1F). Therefore, a universal algorithm for non-local
feature recognition is needed.
Another common problem with the design of cell

segmentation program was user friendliness. Although a
large number of algorithms have been designed, they are
rarely accessible to users. Users have to overcome the
cumbersome steps of full software installation before
determining whether or not the algorithm is useful for
analyzing their own data. One solution would be that the
algorithm designer provides users with an easy demo
which is very convenient to test user’s own image, such as
a website or familiar image processing platform like
ImageJ [14].
In the current study, we set out to develop a

segmentation algorithm based on a deep neural network
[15] that can identify cell boundaries with inhomoge-
neous focus, using yeast cells as an example. It is a
universal algorithm that can be applied to segment cells

Figure 1. Most encountered problems in fluorescent and bright-field images. (A) Fluorescent images of differently shaped cells, the
fission yeast images were from this study. The images of synthetic cells (BBC005) and the human U2OS cells (out of focus,

BBBC006) were from the Broad Bioimage Benchmark Collection database. (B) The appearance of cells in a bright-field image
depends on the imaging depth. As the depth changes, the images of cells change from a bright border and dark interior to a dark
border and bright interior. (C) Inhomogeneous focus leads multiple edge features in the same image. (D, E) Agglomerated cells and

culture dish edge exhibited similar local features to cells, even though they owned very different non-local features. (F) Rod-shaped
and ball-shaped fission yeast cells.
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with multiple shape features and/or different imaging
methods, such as ball-shaped budding yeast cells and rod-
shaped fission yeast cells with bright-field images as well
as fluorescent images. We then set out to design a website
and ImageJ plugin for easy users’ test. Software for the
algorithm is also available on the website.

RESULTS

Multi-layer training dataset strategy solves the
inhomogeneous foci problem

The difficulty of the inhomogeneous foci problem is that
when the cells are at different imaging depths, their
boundary characteristics will change (Fig. 1B). It could be
solved by summarizing all the boundary features at
various imaging depths, and carefully designing algo-
rithms to identify them separately. This seemingly
difficult task can be naturally accomplished by deep
learning algorithm. Deep neural networks are good at
extracting and summarizing boundaries features from the
provided training images. Therefore, we trained the
network to recognize multiple cell boundary features by
providing a multi-layer training set.
We chose budding yeast to test the multi-layer training

dataset strategy. Five layers of budding yeast images from
40 different fields of view, in which the cell boundary
characteristics changed from bright border/dark interior to
dark border/bright interior, were collected as the budding
yeast dataset (Fig. 2A). Among that, 80% were used for
training, 20% for testing. As the five layers of images
were all from the same field of view, they shared a
common labelling mask. Therefore, this strategy did not
increase the annotation burden. As a control, we made a
second layer of the 40 fields of view to provide a single-
layer budding yeast training set in parallel.
For the design of the neural network, we used fully

connected neural network (FCNN) which has been
applied to image segmentation tasks [16] (Fig. 2B). The
coding part consisted of two down-sampling convolu-
tional and max pooling operators, and the de-coding part
consisted of two up-sampling de-convolutional and max
pooling operators. The activation function was defined as
sigmoid. Other detailed network structure parameters and
training parameters are explained in the Methods. We
name the network architecture “Cellbow”. After training,
Cellbow was used to predict the cell body and back-
ground from a given new image. The predicted pixel
values showed a bimodal distribution with peaks at 0 and
1, in which the background pixels were close to 0, and the
cellular interior pixels were close to 1. Further threshold-
ing was used to convert the prediction image into a binary
mask.
Firstly, we demonstrated that the network trained with

the multi-layer dataset strategy (Cellbow-M) successfully
recognized cells from all five layers (Fig. 2C). Meanwhile
the network based on the single-layer training dataset
(Cellbow-S) only captured cells from the second layer
(Fig. 2C). As expected, Cellbow-S failed to deal with the
inhomogeneous focused cells. However, Cellbow-M
captured both brighter and darker cell boundaries in the
same image (Fig. 2C). Thus, the multi-layer training
dataset strategy enabled Cellbow to overcome the most
commonly encountered inhomogeneous focus problem
during the imaging process, resulting in robust cell
segmentation.
In order to quantify the prediction performance, we

calculated the pixel-based F1, DI [17] (Dice index), and JI
[17] (Jaccard index) based on the network prediction R
and ground truth images S. The equations for F1, DI, and
JI are given in the Methods. The average F1 of Cellbow-
M was 0.93 (DI value, 0.93; JI value, 0.87).

Cellbow: universal local and non-local feature
extraction

To further investigate the ability of Cellbow to integrate
and discriminate multiple cell shapes, we provided
another multi-layer training set of bright-field rod-shaped
fission yeast (Fig. 3A). In total, it contained 40 labeled
focuses (each had five layers in depth). 180 images were
used for training and 20 were left for testing. Together
with the ball-shaped budding yeast dataset, we retrained
the neural network. Now named Cellbow-BF, it success-
fully identified both the rod-shaped fission yeast cells as
well as ball-shaped budding yeast cells (Fig. 3B). In
addition to the cell shape, we noted that it excluded
floating agglomerated cells and culture medium edges
which exhibited local characteristics similar to cells (Fig.
3C). This indicated that Cellbow was able to discriminate
non-local features in the training set. The average F1 of
Cellbow-BF was 0.87.

Cellbow is universal and individually customizable

Cellbow was shown to be a rather universal algorithm that
can summarize the local and non-local features in the
training set. This would greatly improve cell recognition
tasks. Traditionally, recognition algorithms were designed
based on fixed boundary features of a given type images.
Often different imaging methods and cell types used
completely different algorithms. The user needed to
search for a suitable software for his/her own project. This
process was quite time consuming and energy exhausting.
Now the user can personalize Cellbow by offering their

own training sets. Despite the fact that Cellbow can be a
very accurate cell segmentation program, the required
training set was small or even none. We demonstrated its
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versatility through the fluorescent image examples. In the
fluorescent image, the cell boundaries only depend on the
expression of fluorescent protein (Fig. 1A). Although the

size and shape of different types of cells vary greatly, the
feature of cell boundary is very consistent.
The training dataset contained 40 images of the

Figure 2. Multi-layer training dataset strategy solves the inhomogeneous focus problem. (A) Multi-layer training dataset included images from
five different layers and one common labelling mask. (B) Cellbow architecture: for the coding part, there were two down-sampling

convolutional and max pooling operators, and the de-coding part consists of two up-sampling de-convolutional and max pooling operators.
Sigmoid was chosen as the activation function. (C) Top row: Test input images from five different layer and an inhomogeneous focus test
image. Middle row: Output masks from multi-layer training dataset strategy (Cellbow-M). It successfully recognized cells from all five different

layers. Simultaneously, it overcame the inhomogeneous focus problem. Bottom row: Output masks from single-layer training dataset strategy
(Cellbow-S). It only recognized cells from the 2nd layer. However, it failed to overcome the inhomogeneous focus problem.
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fluorescence-labelled cytoplasm of fission yeast. We
trained the same network as above, and named the trained
network Cellbow-Fluo. We found that using only rod-
shaped fission yeast as a training set, Cellbow-Fluo
accurately segmented multiple cell types, such as the
synthetic cells (BBC005) and the Human U2OS cells (out
of focus, BBBC0060) from Broad Bioimage Benchmark
Collection [18] (Fig. 4A).
We compared Cellbow-Fluo with two fluorescent cell

segmentation algorithms, the cell segmentation general-
ized framework (CSGF) [19,20] and the human cell
pipeline in CellProfiler [5]. According to the ground truth
provided by the database and segmented masks from
three algorithms, F1, DI and JI were compared (Table 1).
The Cellbow-Fluo consistently outperformed the other
two algorithms. This can also be seen from the scatter
plots in Fig. 4A. We further analyzed where the accuracy
has been improved. As it can be seen in Fig. 4A and B, the
improvement of Cellbow was mainly located within the
inter-cell gap, and these improvements were essential for
accurate cell separation. In addition, we noticed that
Cellbow’s differentiation of intercellular space was even
better than the provided ground truth (Fig. 4B). Therefore,

it can be seen that Cellbow not only achieved a significant
improvement over the previous algorithms, but also
needed no more training with further specific data for
segmenting fluorescent images of diverse cell types. For
bright field images, it may need training with a small set
of customer-provided images.

Accurate segmentation facilitates long-term
monitoring of cell populations

Automated image analysis at the cellular level provides
rich information. However, time-lapse cellular analysis is
often hampered by inhomogeneous foci and the exponen-
tially increasing cell density. In previous sections,
we demonstrated that Cellbow, combined with a multi-
layer training strategy, overcame the inhomogeneous foci
problem robustly. To separate and identify single cells,
we further applied distance transform-based watershed
[21] segmentation to the binary mask to achieve the final
segmentation output (Fig. 5A). Once segmented into
individual cells, we then identified the boundary, area,
and centroid for each cell in the image. By using
this algorithm, we tracked the cell number and cell

Figure 3. Cellbow can recognize multiple cell shapes in bright-field images. (A) Cellbow-BF was trained by using the multi-layer ball-shaped
budding yeast and rod-shaped fission yeast dataset, and each included images from five different layers and one common labelling mask (each
had 40 focus of view). (B) First row: test budding input images from five different layer. Second row: output masks from Cellbow-BF. Third row: test

fission input images from five different layer. Forth row: output masks from Cellbow-BF. (C) Agglomerated cells and culture dish edge input image
(upper panels), and the prediction results from Cellbow-BF (lower panels).
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Figure 4. Fluorescent images of cells of various shapes can be segmented by Cellbow. (A) Comparison of segmentation performance
among different algorithms for different datasets. First column, input image; second column, output mask from Cellbow-Fluo; third column,

output mask from CSGS algorithm; forth column, output mask from the human cell pipeline in CellProfiler software; fifth column, scatter
plots of F1 metrics of the top two algorithms, each dot represented a test image. Top row: fission yeast cell fluorescent dataset, n = 50
images, 496 cells; middle row: BBC005 dataset (synthetic cells), n = 30 images, 2009 cells; bottom row: BBBC006 dataset (out of focus,

human U2OS cells), n = 73 images, 7064 cells. (B) Cellbow improved the segmentation of inter-cell gaps. From left to right: input image,
output from Cellbow-Fluo, ground truth image, and overlap of the output image and the ground truth image.

Table 1 Comparison of segmentation performance among different datasets and algorithms
Fission yeast Synthetic cells(BBC005) Human U2OS cells (BBBC006)

Cellbow CSGF CellProfiler

(Human cell

pipeline)

Cellbow CSGF CellProfiler

(Human cell

pipeline)

Cellbow CSGF CellProfiler

(Human cell

pipeline)

F1 0.88 0.57 0.79 0.94 0.90 0.86 0.95 0.93 0.90

DI 0.88 0.57 0.79 0.94 0.89 0.86 0.93 0.91 0.89

JI 0.78 0.41 0.65 0.88 0.81 0.75 0.89 0.85 0.82
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Figure 5. Cellbow enables long-term tracking of cells. (A) Input budding yeast bright-field image (left), output image from Cellbow-
BF (middle) and final segmentation result (right). (B) Budding yeast cell number growth curve and cell size distribution. (C) Fission
yeast cell number growth curve and cell size distribution. (D) Bright field images of budding yeast cells. Masks of three
representative cells were shown. Four images represent time points 20, 50, 80 and 110, respectively. (E) Single budding yeast cell

area growth curve. Three representative cells were marked with the corresponding colors. Time points 20, 50, 80 and 110 were
labelled with thick dots, respectively. (F) Bright field images of fission yeast cells. Masks of four representative cells were shown.
Four images represent time points 20, 50, 65 and 80, respectively. (G) Single budding yeast cell area growth curve. Four

representative cells were marked with the corresponding colors. Time points 20, 50, 65 and 80 were labelled with thick dots,
respectively.
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size distribution of budding yeast and fission yeast
(Fig. 5B, C).
To track the cells, we kept the cell body position in the

image of the previous frame and searched for the most
overlapped cell in the next frame. With this simple cell-
tracking algorithm, we were able to trace the area growth
curve of individual cells (Fig. 5D–G).

Cellbow website

Users prefer to test their own images, but the cumbersome
and time-consuming software installation steps deter
many of them. To facilitate the adoption and future
development of Cellbow, we set up a dedicated website
(http://cls.pku.edu.cn:808/online/home/) and designed
two demonstration versions and one full version of
Cellbow. The demonstration versions were designed for
the users to try their own data directly and quickly. It
contained an online prediction website and an ImageJ

plugin. The full version was tensor-flow-based source
code [22].
Website submission is easy and does not require any

configuration by the user. A flowchart of how Cellbow
predicts masks of cells from given images is shown in
Fig. 6. The main webpages of the website are “Evalua-
tion” and “Image Processing”. In “Evaluation” page, user
can estimate the optimal objective magnification. It could
be slightly different from the actual objective magnifica-
tion value, because the performance of the network
critically depend on the number of pixels occupied by a
single cell. So the objective magnification difference
depends on different imaging conditions and nutritional
culture conditions. In “Image Processing” page, users can
upload an image of their own, select the parameters, and
click “Image Processing” button. Then, the cell mask
images are generated and can be downloaded.
Another easy way to test Cellbow is using ImageJ

plugin. Currently, we offer two plugins (Cellbow-BF for

Figure 6. Website and ImageJ plugin of Cellbow. (A) Two main flowcharts on Cellbow website: “Evaluation” and “Image

Processing”. (B) Two ImageJ plugins are offered (Cellbow-BF and Cellbow-Fluo).
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bright-field images of cells and Cellbow-Fluo for
fluorescent images). Since it was written by macro
language, no additional configuration is required. The
user can just download the plugin and run it with their
own image.
We strongly recommend the user use the website and/or

the ImageJ plugin as a first step. After selecting the
satisfactory version of Cellbow, they can apply the fully
version.

DISCUSSION

In this work, we built a segmentation model Cellbow
which simultaneously captured many features of cell
boundaries in cell images. It overcame the most
commonly-encountered inhomogeneous foci problem
and facilitated long-term single-cell monitoring. Through
the Cellbow website, users can test their input images
following these steps:
1. For fluorescent images of diverse types of cells, user

can upload their input images and get the output masks on
the website (Cellbow-Fluo). Usually no custom training is
needed.
2. For bright-field budding/fission yeast cells, users can

upload their input images and get the output masks on the
website (Cellbow-BF). Usually no custom training is
needed.
3. For other types of images or when the user does not

get a satisfactory results, one can personalize Cellbow
with a labelling set of ~40 images.
Although in this article, we used multi-layer training set

from the same field of view, but this is not necessary.
Images can also come from different fields of view. As
long as the training set contains multiple layers of data
sets, the same improvement can be achieved. Compared
with the two strategies, training sets from the same field of
view reduces the labeling workload, and there is no
essential difference otherwise.
When testing on the budding yeast, we noticed that the

small buds of budding cells were sometimes missed by
Cellbow. The main reason for this was that the manually
labeled daughter cells in the training set were not perfect,
and some smaller bud cells were omitted when they were
manually labeled. Also, the daughter cells accounted for a
small proportion in the training set, so they were biased.
After discovering this problem, we perfected the labelling
of daughter cells in the training set and retrained the
network. Part of the daughter cells were identified, but
there were still failed daughter cells. We need to work
more in the future to solve this problem. This problem did
not happen in the fission yeast cells. Therefore, the current
algorithm was very successful for the statistics of mother
cells, but caution should be taken when dealing with the
budding daughters in budding yeast.

Finally, in applications we found that the follow-up
segmentation and tracking procedure could be critical.
Here we only used a simple watershed algorithm and
centroid recognition to segment and track. In some cases,
over-segmentation or under-segmentation can occur.
Thus, for better performance it can be combined with
some current downstream processing software.

METHODS

Input datasets

Training set generation is one of the most crucial steps for
any neural network application. We first generated ground
truth masks for the first layer. Then, the ground truth
masks were generalized to the remaining layers which
were acquired under the same focus of view. The filled
cell body was chosen for the facilitation of final
segmentation.
In this study, five input datasets were generated:

budding yeast bright-field dataset (256�256 pixels),
fission yeasts bright-field dataset (512�512 pixels),
fission with various shape dataset (512�512 pixels),
various contrast bright-field dataset (512�512 pixels),
fluorescent dataset (512�512 pixels).

Image preprocessing

This section mainly includes image labelling and
augmentation step. The input images are regarded as
matrixes of their original size square with labels in which
inner-cell area is marked as 1 while background 0. In the
process of data augmentation, we tend to acquire more
images from origin sets to train the network with several
ways like cropping, resizing and flipping, even though
these new sub-images are exactly part of the original
training set. However, they can actually provide efficient
segment features to help the neural network achieve its
best performance.

Deep neural network architecture and training

For encoding, we used down-sampling convolutional and
max-pooling operators; the down-sampling ratio was 1/2.
For example, the input image size was 256�256 pixels.
It changed the image size from 256�256�1 to
128�128�16 in layer 2 and 64�64�32 in layer 3, and
for decoding, we used two up-sampling de-convolutional
and max-pooling operators. Notably, we chose sigmoid as
the activation function following the convolutional and
de-convolutional operators. The receptive field size of the
FCNN was 5 in each layer, which is close to the diameter
of a cell.
Several training hyperparameters are set as iteration
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steps = 100,000 while learning rate = 0.0001 based on
AdamOptimizer. After trained network predicting, one
image for evaluating is transferred into a matrix of the
same size while pixels are real numbers near 0 and 1, then
the watershed algorithm is used to recognize independent
cells. Our code is based on the open-source framework
Tensor-flow, and trained on CLS H.P.C. (website: http://
cls.pku.edu.cn:8080/clshpc/).

Segmentation and post-processing

Yeast-bow network had a same input and output size,
which realized pixel-to-pixel prediction. However, cells
boundaries in the output probability mask may not be
separated perfectly under the condition like cells from a
high-density population or mother-daughter cells. To
further separate and identify single cells, watershed
segmentation was applied to the probability mask to get
the final segmentation output. The input of watershed is a
distance map, where the intensity of seeds has the lowest
value. Finally, cell binary centers and minimal convex
closure polygon boundaries are presented using another
MatLab built-in function REGIONPROPS. Here, we
ignore cells with an area less than a given threshold, here
say it is 20 (default value).
First, only keeping the cells you want to track in the

first image and erase the rest of the cells. Followed by
iterative tracking. During each iteration, the position of
the center of mass of the cells in the next image is first
identified, and then it is determined whether each mass
center is in the presence of cells in the previous image,
and if so, the cells where the mass center is located are
retained.

Evaluation metrics

F1, DI and JI were used to evaluate the pixel-based
segmentation performance of the FCNN by using an
evaluation dataset. The prediction R from the network and
ground truth images S determines these three metrics. The
calculation of these metrics is given below.

PrecisionðR,SÞ=jR \ Sj
jSj

RecallðR,SÞ=jR \ Sj
jSj

FðR,SÞ=2 � Precision � Recall
Precisionþ Recall

DiceðR,SÞ=2jR \ Sj
jRj þ jSj

JaccardðR,SÞ=jR \ Sj
jR[ Sj
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