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Earthquakes as a Self-Organized Critical Phenomenon 

PER BAK AND CHAO TANG 

Brookhaven National Laboratory, Upton, New York 

The Gutenberg-Richter power law distribution for energy released at earthquakes can be understood 
as a consequence of the earth crust being in a self-organized critical state. A simple cellular automaton 
stick-slip type model yields D(E) • E -• with r = 1.0 and r = 1.35 in two and three dimensions, 
respectively. The size of earthquakes is unpredictable since the evolution of an earthquake depends 
crucially on minor details of the crust. 

INTRODUCTION 

The distribution of energy released during earthquakes has 
been found to obey the famous Gutenberg-Richter law 
[Gutenberg and Richter, 1956]. The law is based on the 
empirical observation that the number N of earthquakes of 
size greater than rn is given by the relation 

model must necessarily be grossly simplified. The immediate 
goal is not to produce an accurate model but to point out a 
general mechanism leading to the power law distribution of 
earthquakes. In the following section an effort will be made 
to connect the concept of self-organized criticality to earth- 
quakes. 

log10 N = a -bm (1) 

The precise values of a and b depend on the location, but 
generally b is in the interval 0.8 < b < 1.5. The energy 
released during the earthquake is believed to increase expo- 
nentially with the size of the earthquake, 

log lo E = c -dm (2) 

so the Gutenberg-Richter law is essentially a power law 
connecting the frequency distribution function with the 
energy release E (or other physical quantities such as the 
"seismic moment") 

dN/dE o• m -• - b/d .__ m-" (3) 

with 1.25 < r < 1.5. 

Despite the universality of the Gutenberg-Richter relation, 
there is essentially no understanding of the underlying mech- 
anisms. It has been suggested that the power law is related to 
geometric features of the fault structure [Kagan and Knop- 
off, 1987], and indeed it has been pointed out by Mandelbrot 
[1982] that earthquakes occur on "fractal" self-similar sets. 
But, of course, this just shifts the problem to identifying the 
dynamical mechanism producing these geometric structures 
which are ultimately responsible for the earthquake dynam- 
ics. 

In fact, power laws (an,d the lack of understanding of 
those) are quite common in nature. Recently, we have 
shown that dynamical systems may self-organize into a 
critical state similar to that of systems undergoing continu- 
ous phase transitions, with power law spatial and temporal 
correlation functions. In the following section we show that 
this behavior can be related fairly directly to earthquakes. 
Thus the Gutenberg-Richter law can be interpreted as a 
manifestation of the self-organized critical behavior of the 
earth dynamics. The fractal geometric distribution and the 
earthquake dynamics are the spatial and temporal signatures 
of the same phenomenon. Of course, any specific dynamical 

Copyright 1989 by the American Geophysical Union. 

Paper number 89JB01265. 
0148-0227/89/89JB-01265 $05.00 

8ELF-ORGANIZED CRITICALITY 

AND MODEL CALCULATIONS 

It is generally assumed that the dynamics of earthquakes is 
due to a stick-slip mechanism involving sliding of the crust of 
the earth along faults [Stuart and Mavko, 1979; Sieh, 1978; 
Choi and Huberrnan, 1984]. When slip occurs at some 
location, the strain energy at that position is released, and 
the stress propagates to the near environment. While this 
picture is rather well established, no connection between 
stick-slip models and the actual spatial and temporal corre- 
lations has been demonstrated. It has been suggested that 
the stick-slip picture can be modeled as a branching process 
[Kagan and Knopoff, 1987]. The observed power law behav- 
ior is then rather remarkable since one would naively expect 
some exponential distribution, e.g., D(E) • e-œ/œo, where E0 
is roughly the energy released at a single slip. 

In simple dynamical systems with few degrees of freedom, 
and in extended equilibrium statistical systems, power laws 
are rare. One has to fine tune a parameter such as a 
dynamical coupling or temperature to arrive at a "critical 
point" in order to get power law correlations. But for 
dynamical systems in nature there is nobody to turn the 
knob, so where does the apparent criticality come from? 

We have found that certain interacting dynamical systems 
naturally evolve into a statistically stationary state, which is 
also critical, with power law spatial and temporal correla- 
tions [Bak et al., 1987, 1988; Tang and Bak, 1988a, b]. It is 
essential that the systems are dissipative (energy is released) 
and that they are spatially extended with an "infinity" of 
degrees of freedom. Energy is fed into the system in a 
uniform way, either directly into the bulk or through the 
boundaries. The crust of the earth, subjected to the pressure 
from tectonic plate motion, may be viewed as a system of 
this kind. 

At the stationary state there is a fragile balance between 
the local forces, adjusting the probability that a slip will 
propagate to a near neighbor precisely to unity. The proba- 
bility of branching of the activity is compensated by the 
probability of "death" of the activity. The stationary state 
can be thought of as a critical chain reaction. Visually, the 
critical state can be thought of as the state of a steep sand 
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heap which has been built from scratch by slowly adding 
particles. The avalanches caused by adding additional parti- 
cles represent earthquakes. As the pressure builds up, the 
avalanches become bigger and bigger. At the critical state 
there is no characteristic time, space, or energy scale, and all 
spatial and temporal correlation functions are power laws. 
The power law size distribution is intimately related to the 
geometric self-similarity of active earthquake regions. The 
assumptions are that the system is large and that the driving 
force, i.e., the tectonic plate motion, is slow. 

The models that we have studied are extremely simple 
"cellular automata" (see, for example, Wolfram [1985]). In 
principle, we could study three-dimensional partial differen- 
tial equations, but the numerical calculations would be 
prohibitively time consuming, and we believe that the dis- 
cretization does not affect the asymptotic long time and 
space behavior that we are interested in. 

Consider a two-dimensional array of particles, for in- 
stance, on a square lattice 0 -< (i, j) -< N, representing 
segments of a sliding surface. The particles are subjected to 
a force from their neighbors plus a constantly increasing 
"tectonic" driving force. When the total force on a particle 
exceeds a maximum local pinning force at the fault, the 
particle slips to a nearby position. Let the maximum pinning 
force be an integer Z c. If at time t the system is in the sate 
Z(i, j), then the system at time t + At (where At is of the 
order of the distance between the locked elements divided 

by something like the speed of sound) is given by the rule 

Z(i, j) --> Z(i, j) - 4 

Z(i _+ 1, j)--> Z(i _ 1,j)q- 1 

Z(i, j _+ 1)--> Z(i, j _+ 1)+ 1 Z(i, j) > Zc (4) 

where the first equation simulates the release of strain (in 
proper reduced units) on the slipping particle and the subse- 
quent equations represent the increase of force on the 
neighbor particles. Forces are conserved except at the 
boundaries; the macroscopic external forces are released 
only at the boundaries. The conservation of the propagating 
force may be appropriate for earthquakes but is not a general 
prerequisite for self-organized criticality. 

The model is actually very close to the generally accepted 
"block spring" picture of earthquakes [Burridge and Knop- 
off, 1967; Mikumo and Miyatake, 1978, 1979]. This is pre- 
cisely why we believe that our results apply to earthquakes; 
we do not have to invoke a new and different local mecha- 

nism. 

Starting with a situation with no force, Z = 0, we simulate 
the increase in the driving force by letting 

Z(i, j) --> Z(i, j) + 1 (5) 

at a random position (i, j). One may think of a slow and 
uniformly increasing force. Since we are interested only in 
whether or not the force exceeds an integer critical value, it 
is enough to monitor the integer value of the force, which of 
course exhibits integer jumps like (5) only. The time scale of 
this process (a geological time scale) is assumed to be very 
large. This process is repeated until somewhere the force 
exceeds the pinning force Zc and the rule (4) is applied: a unit 
energy is released. This may lead to instability at a neighbor 
position, in which case the rule (4) is applied to that position, 
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Fig. 1. Energy release versus time during a typical earthquake. 

and so on. Eventually, the system will come to rest, namely 
when all Z values are less than Zc. The total "domino" 
process initiated by (5) is the earthquake. Then (supposedly 
at a random much later time) the rule (5) is applied again, and 
so on. In the beginning there will be only small events, since 
Z values are generally small and a local slip is unlikely to 
propagate very far. But eventually, following rule (5), the 
average force (Z) will reach a statistically stationary value 
which just allows the chain process to continue indefinitely. 
At that point there is no length scale and rule (5) may trigger 
earthquakes of all sizes limited only by the size of the 
system. This is the self-organized critical state. 

Figure 1 shows the temporal evolution of the activity 
during a typical earthquake. Note the irregularity of the 
event. At several points the earthquake is almost dying, and 
its continued evolution depends on minor details of the crust 
of the earth far from the place of origin. Thus in order to 
predict the size of the earthquake, one must have extremely 
detailed knowledge on very minor features of the earth far 
from the place where the earthquake originated. If a mech- 
anism of the type discussed here is indeed responsible for 
earthquakes, there is virtually no hope for ever making 
specific predictions. Perhaps the features at the beginning 
and the end can be thought of as foreshocks and aftershocks, 
respectively. K. Ito and M. Matsuzaki (Earthquakes as 
self-organized critical phenomena, submitted to Journal of 
Geophysical Research, 1989, hereinafter referred to as IM, 
1989) have studied a slightly generalized version of our 
model in order to account for the Omori law for aftershock 

distribution. 

The total number of segments which have slipped during 
the event is a measure of the total energy, E, released during 
the earthquake. Figure 2 shows the energy distribution at the 
stationary critical state. The distribution function indeed fits 
a power law D(E) -• E -• with r = 1. (The falloff at large E 
is a finite size effect.) Actually, it might be useful to think of 
the crust in the earthquake region as a three-dimensional 
medium developing ever-changing fault structures rather 
than considering a single fault. It is the crust as a whole 
rather than a single fault which is critical. The model can 
easily be generalized to three dimensions where one finds r 
= 1.35 in even better agreement with observations. 

Extensive numerical simulations in two and three dimen- 

sions have been carded out to further test the criticality [Bak 
et al., 1987, 1988; Tang and Bak, 1988a, b]. In addition, 
there is now a substantial amount of analytical work, based 
mostly on renormalization group considerations, which 
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Fig. 2. Distribution of the total energy release E. 

throws further light on the origin of the critical behavior and 
supports the conjecture of universality [Obukhov, 1989; 
Kadanoff et al., 1989]. We refer the reader to this literature 
for further understanding of the mechanisms at work. 

We have also studied models with random distribution of 

critical stress and random local connectivity of individual 
blocks. We find that this does not affect the exponents; this 
is essential for our mechanism to have any chance of success 
for a realistic system. Of course there is some ambiguity as 
to how to relate energies, areas, or "seismic moments" of an 
earthquake to the magnitude m of the earthquake, which is 
the quantity which is actually measured; this may change the 
estimate of the exponents but does not affect the main 
observation that the distribution is a power law. The powers 
may differ from different models, but there is also the distinct 
possibility, known from equilibrium critical phenomena as 
"universality," that the power depends only on geometric 
and topological features such as the spatial dimension. In 
this case the exponent derived from the model, however 
unrealistic, can be taken at face value for comparison with 
observations. 

Since our model is essentially identical to previous stick- 
slip models, one might wonder why the criticality and the 
power law distributions have not been observed before. 
Mikumo and Miyatake [1978, 1979] studied the evolution of 
earthquakes from an initial random distribution of critical 
stresses but did not follow through to observe the emergence 
of the stationary critical state. Burridge and Knopoff [1967] 
studied a one-dimensional model and observed an exponen- 
tial energy-frequency relation, implying a characteristic 
earthquake magnitude. Indeed, one-dimensional models are 
likely to decay exponentially because the low connectivity of 
the lattice prevents amplification of the activity [Bak et al., 
1987, 1988]. 

It has been suggested that earthquakes are a deterministic 

"chaotic" phenomenon with few degrees of freedom. The 
criticality found here is of a fundamentally different nature 
since the infinity of degrees of freedom can not be reduced to 
a few. The unpredictability is caused by critical fluctuations 
rather than exponential sensitivity to initial conditions of a 
chaotic low-dimensional system. Dynamical phenomena 
with power law correlation functions are widespread in 
nature (weather, landscapes, biology, evolution of the uni- 
verse [Mandelbrot, 1982]). We suggest that some of these 
can be viewed as "snapshots" of dynamical systems at the 
stationary critical state, although the specific modeling may 
be less straightforward than for earthquakes. 
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