
Proc. Natl. Acad. Sci. USA
Vol. 81, pp. 1276-1279, February 1984
Physics

Escape from strange repellers
(dynamical system/mapping/cycles/derivative matrix)

LEO P. KADANOFF AND CHAO TANG
The James Franck Institute, The University of Chicago, 5640 Ellis Avenue, Chicago, IL 60637

Contributed by Leo P. Kadanoff, October 17, 1983

ABSTRACT In a dynamical system described by a map, it
may be that a "strange" sets of points is left invariant under
the mapping. The set is a repeller if points placed in its neigh-
borhood move away. An escape rate is defined to describe this
motion. An alternative method of evaluating the escape rate,
based on the consideration of repulsive cycles, is proposed. In
the several cases examined numerically and analytically, the
escape rate is shown to agree with the proposed formula.

positive number; ifR contains neither repeller nor attractor,
one may expect a to be infinite.
The quantity r, is then of considerable physical interest,

but it is hard to calculate, especially ifM has a high dimen-
sionality. There is an alternative approach based on the set
of repulsive cycles of f, which gives a related quantity that is
much easier to calculate. Let r be an element of the set Fix
fn, if r = fn(r) and if this fixed point of fn is repulsive. Then
define

1. Introduction

The description of dynamical systems often involves the
consideration of sets of points that are left unchanged by the
flow. When these invariant sets have a complex topological
structure, they are termed "strange." Both strange attractors
and strange repellers play a major role in our description of
dynamical systems. Attractors are important because, as the
system advances, the motion can approach the attractor
more and more closely.

Conversely, of course, the motion of the system tends to
move away from repellers. Nonetheless a repeller might be
important because, for example, it might describe a sepera-
trix that serves to divide two different attractors or two dif-
ferent types of motion. Alternatively, the motion might be
one in which almost all initial points lead to an orbit that
escapes to infinity. The remaining nonescaping points will
then be a repeller, which might be sufficiently complex to
term "strange."
One can introduce a wide variety of numbers that charac-

terize these strange sets and the motion on them. Many of
these characterizers have the nature of one kind or another
offractal dimension (1-6). In this paper, we describe the mo-
tion in the immediate vicinity of the set by an "escape rate"
that states quantitatively how fast the repulsion occurs.
To define the escape rate, imagine that we have a mapping

f that maps a point r in a manifold M into another point in
the manifold. Consider some finite-sized region R within the
manifold. Unlike the repeller, R is a set that is supposed to
be very simple and not strange in any way whatsoever. Start
with a set of No initial points that are distributed uniformly
(with Lebesque measure) within R. Let the mapping f oper-
ate n times and find out how many of the initial points lie in R
after n iterations. Call the number N,. As No goes to infinity
and n remains fixed, the staying ratio F, = N,/N0 will ap-
proach a limit (6, 7). The escape rate a is then defined via

A =I2 1
rEFixf' Idet[l - Dfn(r)]l' [1.2]

Here, if the manifold is of dimension d, 1 is a d by d unit
matrix and Df' is the derivative matrix. The basic idea we
propose is that, for large n, A, and rn are proportional to one
another. In particular we define an exponential decay rate
for An in analogy to Eq. 1.1 as

5 = -lim n .
?I-*3 n

[1.3]

We then assert the basic identity that, for a wide variety of
maps,

8 = a. [1.4]

It is our hope that this assertion can be proven for some wide
class of maps, perhaps all maps that have a hyperbolic repel-
ling set. However, we do not know any general proof of
statement 1.4.
Lacking such a theorem, we must examine some more

fragmentary evidence. In the next section, we reformulate
condition 1.4 and list a variety of simple cases in which this
condition is known to be satisfied. We then notice that all
strange repellers known to satisfy Eq. 1.4 arise in a situation
in which there is a hyperbolic, but fully repulsive, set. For
this reason, we examine in Section 3 a map with both expan-
sion and contraction (7) and show that the basic result 1.4
equally holds in this case.

2. Formulation

The definition of F, in terms of Lebesque measures can be
converted into an integral statement, namely

a = -lim n F,,
n-+x n [1.1]

so that exponential decrease of the number of points in R
implies nonzero a. If R contains an attractor, a will be zero;
if it contains a repeller but no attractor, a may be a finite

Fn = dr'f drb[r' - fn(r)] dr". [2.1a]

An analogous expression for A, is obtained from Eq. 1.2. If
all the unstable cycles of fn lie in R, we have

An = dr8[r - f'(r)]. [2. lb]

To understand the asymptotic relation between these two
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expressions, introduce the Frobenius-Perron operator P, de-
fined as operating to the left on states (b1. If the state (k1
corresponds to a function 0(r), then the state (kIP has

(0IP = (411 [2.2]

if

if(r) = 44f(r)].

Now let us assume that the set R has the very special proper-
ty that if ro lies within R but r1 = f(r0) does not, then rn =
fn(ro) will not be elements ofR for each value n = 2, 3, .... If
all this is true, we can comfortably define an inner product

(k1I42) = f drk1(r)42(r) [2.3]
and then write expressions 2.1 as

Fn = (0¢PnJ0)/(0j0) [2.4a]

An = trace pn. [2.4b]

Here (01 is a state with 00(r) = 1 and pn is an operator with a
matrix realization (rPIPnlr) = 8[r' - fn(r)], as is obtained by
multiplying P n times.

If P were a function of a hermitian operator, all the rest
would be easy. Then P would have a set of eigenvalues
exp(-eduA= 0, 1, 2, .... The eigenvalue (say the one with A
= 0) having the smallest real part of EA would dominate for
large n. In the large n limit, Eqs. 2.4 would reduce to

F, ye-nEy
An ---Ieoe [2.5]

Here Io is the multiplicity of the hypothetical lowest lying
state. Then Eq. 2.5 would guarantee the correctness of our
basic result (1.4), with a being given by the lowest eigenval-
ue Eo.

But this last paragraph is a pipe dream because P is cer-
tainly not known to be a function of a hermitian operator.
But, we can get closer to the results (2.5 and 1.4) if the map-
ping f is hyperbolic and has a Markov decomposition. In
that case, one can use one-dimensional statistical mechanics
to show (8) that An does indeed have a kind of property anal-
ogous to a spectral decomposition-namely, that one can
write

An = Z I,. e [2.6]

where the I,.s are integers but are not necessarily positive.
When the eigenvalues are widely spaced, representation 2.6
is a great help in obtaining accurate estimates of E0 based on
values of An for relatively low n.
One case in which Eq. 1.4 is certainly valid is the one in

which the region R is a small neighborhood of a hyperbolic
fixed point, ro. Let A = Df(ro) be the derivative matrix at the
fixed point. Then, according to Eq. 1.2,

An = Idet(l -An)1-. [2.7]

For large n, we need consider only the eigenvalues of the
matrix A that lie outside the unit circle. If these eigenvalues
are of the form A' = e8', Eqs. 2.7 and 1.3 give

8 = >13. [2.8]

matrix, A, and the sum is constrained by the condition Re 8,
> 0. Thus only the expanding directions enter.
To see that Eq. 2.8 is right for the fixed point, visualize a

case with one expanding direction, "x," and one contracting
direction, "y," and let R be a rectangle with sides parallel to
x and y (Fig. 1). The image of this rectangle is the region R'.
One can calculate F1 (which is e-a) as the ratio of the area of
overlap between R and R' to the total area of R'. This ratio
gives the staying probability. But notice that the ratio does
depend on the expansion rate but is independent of the con-
traction rate. This argument then establishes the result a = 8
for this kind of fixed point.
The case in which r is a number so that f is a mapping on

the real line was considered in a previous publication (16).
The situation in which f(x) = X2 + p with x and p real and p
< -2 was investigated in detail. In this case, the strange
repeller is a Cantor set. The quantities F, could be accurate-
ly evaluated by using the inverse images of x = 0, while An
could be found from the cycles. The speculation a = 8 was
substantiated by this calculation, at least for the example in
question.

This same publication also considered the complex ver-
sion of this mapping problem, f(z) = Z2 + p. Now the repel-
ler is a Julia set (9). Numerical and analytical arguments
were presented that strongly suggested that a = 8 in this
case. The analytic nature of the map leads to a simpler form
of Eq. 1.2-namely,

1
An = I
An Z P 1-_dfn (Z) 2-

dz
[2.9]

In these two examples of escape from strange sets, all the
cycles have only repulsive directions. There is no attraction.
To increase our range of experience with Eq. 1.4, we consid-
er in the next section a case in which there is both an expand-
ing and a contracting direction.

3. Escape Rates on a Two-Dimensional Manifold

In an earlier paper (7), a localization problem led the con-
sideration of the escape rate for a mapping in a three-dimen-
sional space in which r = (x, y, z) and

f((x, y, z)) = (2xy - z, x, y). [3.1]

It turns out that the mapping has a simple "time-reversal"
symmetry. If you have an orbit rj+1 = f(rj) that has x-values
.. xi, xi+1, xi+2 ..., then one has an equally good solution
with x-values ... xj+2, xj+1, x; .... As a result, for every cycle,

x

FIG. 1. A mapping with one direction (x) expanding and the oth-
er direction (y) contracting.Here 8is are the logarithms of the eigenvalues of the Floquet

Physics: Kadanoff and Tang



1278 Physics: Kadanoff and Tang

Table 1. Comparison of a and 8 for the mapping 3.1

n 0 0.5 1 10 50

2 0 0.183919
4 0 0.286357
5 0 0.306945
6 0 0.267650
7 0 0.301200
8 0 0.300088
9 0 0.311232
10 0 0.13794706 0.300361 1.3986 2.226
11 0 0.13796868 0.300457 1.4140 2.293
12 0 0.14021587 0.298761 1.4026 2.235
13 0 0.13795662 0.300434 1.4107 2.281
14 0 0.13795567 0.300426 1.4048 2.242
15 0 0.13821219 0.301026 1.4092 2.273
16 0 0.13795594 0.30042795 1.4059 2.246
17 0 0.13795606 0.30042868 1.4983

00 0.13795600 0.3004283 1.4071 2.26
+ 0.00000006 ± 0.0000003 ± 0.0012 + 0.014

a 0.13796 0.3003 1.42 2.29
+ 0.00005 ± 0.0005 ± 0.02 ± 0.1

1/2 In 2X 1.50 2.30

Values of 8n = -ln A,/n as a function of X and n are presented. The line labeled infinity gives the
extrapolated values of &, with a quoted error that is the half difference between the last two 8, shown,
which may not be conservative because 8,, has larger variations when n = 0 (mod 3) than for other
values of n. The a-values given are a direct calculation of escape rate, with a statistical quoted error.
Note the satisfactory agreement between & and a. For completeness, the values of the asymptotic
estimate 8 - (1/2) ln 2X (X ), which was derived in Eq. A.1, are also given.

if there is a Floquet multiplier outside the unit circle, there is
also one inside.
There is a conserved quantity associated with the mapping

(3.1). Form the combination:

X2(r) = X2((x, y, z)) = x2 + y2 + Z2 - 1 2xyz. [3.2]

A brief calculation shows that

X2[f(r)] = X2(r)

so that combination is unchanged in the course of the map-
ping.
For this reason, we do not consider an escape problem in

the entire three-dimensional euclidean space R3 but instead
focus our attention on manifolds in which the quantity 3.2 is
fixed. We focus on the case in which the fixed value of the
right-hand side of Eq. 3.2 is a number greater than or equal
to zero, so that we can define our manifold by giving a real
value of X between 0 and oo.

Notice that the manifold in question is certainly not com-
pact. Topologically, it is similar to the surface of a sphere
with four arms coming out of the sphere and moving out to-
ward infinity. The manifold contains points with x, y, and z
all very large but with the requirement that the product xyz
be positive.

In addition to these regions at infinity, the manifold con-
tains a central region where x, y, and z are all of order uni-
ty-assuming that X itself is of order unity. If a point is
placed "at random" within the central region, it is very likely
that after a few iterations its coordinates will start to grow
with greater than exponential rapidity. When this happens
we say that a point "has escaped."
To make this definition more precise notice that the recur-

sion relation rj+1 = f(rj) may be combined with Eq. 3.1 to
give the relation

r = (xj, Xj-1, Xj-2)

and the statement

Xj+2 + Xj-1 =2xjxj+l [3.4]

From Eq. 3.4, one can prove (10) that escape to infinity
will occur whenever

IXjl > 1

Ixi-iI > 1

IXji-1 Ixjl > IXJ-21. [3.5]

We then use conditions 3.5 as our requirement for asserting
that rj "has escaped."

In ref. 7, we chose a set of initial points with x and y each
uniformly distributed between -1 and 1. We then calculated
the escape rate a via Eq. 1.1 (Table 1).
The other approach involves finding cycles of the map-

ping. A very straightforward way for doing this is presented
in ref. 10.
To work out A, in the two-dimensional constant X

manifold, one may first calculate the derivative matrix
Df'(r)lr=fn(r) of Eq. 3.1 in three-dimensional euclidean space
by a simple matrix multiplication. The eigenvalues of the ma-
trix are of the form 1, 77, (-1)'/ r7. The last two of them are
also the eigenvalues of the derivative matrix tangent to the X
manifold. Once we know A,, Eq. 1.3 gives the value of S. In
Table 1 are shown the results for different ns and As. Notice
that for large n, 8 and a agree within error.

Appendix

Here we discuss the derivation of the formula

6 = 2ln2X (X---*oo). [A.1]
2
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Ref. 10 describes a simple way to calculate all the cycles
for X : 0. Any n-length cycle can be expressed symbolically
by writing a string containing n symbols from the set L, S,
and L. For large X, these stand respectively for a value of x
of order A, of order unity, and of order - A. If B stands for L
or L, the permitted strings include all possibilities save ones
in which two Bs are adjacent, or there are three Ss in a row,
or in which the combinations LSSL or LSSL appear. Each
permitted string of length n that does not repeat itself corre-
sponds to one and only one cycle of length n.
We can represent points on the constant-X manifold by

giving the value of x;, xj_1 and an additional quantity Ej~½-
with values plus or minus one.

In terms of the auxiliary quantity

Zi-½t = NA2 + (1 - 2

the mapping can then be written as

(u', v', E') = T(u, v, E) [A.2] and

where m is the number of Ss in the cycle. Particularly, for an
even-length cycle of the type BSBS ... BS ... BS (alternate B
and S, m = n/2), we can show that

n

j71 =2nA2 (X -oo).

Since 1711 > 1,

[A.8]An = 17-reixn|71

For large A, the contributions of the cycles with smallest m
(the type described above) dominate. A little counting work
shows that the total number of such cycle elements is

.+1
22 Therefore,

n

221 n

An = n = 2(2K) 2
2n X2

with

U = UV - EZ(U, V)

V = U

E'= sign(v- u").

The derivative matrix has the simple form

8 = - ln 2K
2

where Eq. 1.3 has been used.
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= [u1 ui+ivj Ej+ Zj+ [A.4]
Ej-1½Zi-V Sij-/Zi-½2J

1 0

and for an n-length cycle

a(uO, vO)= Mnl Mn-2 * ... M . [A.5]
a(u v 0)

Let 71, (-l)nl/7 be the eigenvalues of Mn. In the limit -* o0,
Eqs. A.2, A.4, and A.5 may be analyzed to give

1711 km,
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