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Patterns and Scaling Properties in a Ballistic Deposition Model
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We study a ballistic deposition model in 1+1 dimensions in which the incident angles (the angles
between the incident trajectories and the substrate) of incoming particles are randomly distributed
in the range [0, ir —8]. We find a sharp morphological transition at a critical angle 0, = 10'. For
0 ) I9„ the scaling properties of the interface are described by the Kardar-Parisi-Zhang equation.
For 0 & 0„ the shadowing eKect leads to a very di8'erent morphology. We determine the scaling
properties of this new universality class numerically and analytically.
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Growth and form have been a subject of interest for
a long time [1]. Much progress has been made recently
in understanding how patterns emerge under nonequilib-
rium growth conditions. A well-studied example is the
ballistic deposition model [2] which, among other things,
models the growth in sputter and vapor depositions. The
growth rule of the model is very simple: particles rain
down vertically to a d-dimensional substrate and stick to
the aggregate or the substrate upon first contact. Such a
simple model gives rise to a rather interesting structure

while the aggregate is compact [3] the growing sur-

face of the aggregate is a self-afIine fractal and its scaling
properties are well described by the Kardar-Parisi-Zhang
(KPZ) equation [4]. Models with fixed incident angles
other than 90' were also studied and were found to pro-
duce columnar structures [5]. On the other hand, some
experiments on sputtering showed a very difFerent mor-

phology [6]. The most striking feature of the morphology
is that the surface structures have an obvious length scale
which grows with the film thickness [6]. This "coarsen-
ing" is believed to be due to the nonlocal shadowing of
the incoming particle flux by the surface structures; i.e. ,

bigger structures shadow smaller ones and hence grow
faster. Karunasiri, Bruinsma, and Rudnick [7] first stud-
ied the effect of shadowing by a simple "grass model" and
showed that nonlocal shadowing leads to a growth insta-
bility. Several authors also studied the shadowing efFect

by various models [8—10]. Despite the extensive studies
on the ballistic deposition model and studies on various
"shadow" models, the relationship between the growth
condition and the morphology in sputtering is still not
well understood.

In this Letter, we study a ballistic deposition model in
which the incoming particles can have a range of incident
angles. The model retains the simplicity of the unidirec-
tional ballistic deposition model and yet is more realistic
for sputter and vapor deposition. We shall see that this
model has some very interesting behaviors. In particular,
as the range of the incident angles is varied, there is a
sharp transition in morphology. For not very large ranges
of incident angles, the scaling properties of the interface

are described by the KPZ equation. At very large ranges
of incident angles, shadowing leads to nonlocal competi-
tion for incoming flux between different branches of the
aggregate. The competition on all length and time scales
gives rise to a scale-invariant morphology characterized
by the coarsening of an apparent length scale. The mor-
phology is similar to that seen in the experiments of Ref.
[6] and is-in a difFerent universality class than the one
given by the KPZ equation.

The growth rule of the model in 1+1 dimensions is
the following. Start with a substrate line of length L;
particles (disks of diameter unity) are released from a
line source of the same length L which is far above and
parallel to the substrate. The particles move towards
the substrate ballistically with incident angles (the angle
between the particle trajectory and the substrate) ran-
domly distributed in [0, m —9], and the particles stick to
the growing aggregate or the substrate at first contact.
We use a periodic boundary condition so that a parti-
cle leaving the left edge comes in from the right edge at
the same height and with the same incident angle. Our
simulations were carried out off lattice to eliminate any
lattice effect.

In Fig. 1, we show a series of snapshots of a growing
aggregate in the case of 0 = 0 in which the shadowing
effect is the largest. We can clearly see that initially many
treelike branches compete with one another and that the
bigger ones win the competition. The bigger branches
then compete among themselves and so on. For a finite
substrate, eventually there will be only one branch left
growing. We note that almost all the branches, including
the dominating one, are stable to the tip splitting. We
also note that there is a characteristic wedge angle at
the tips of the large branches. Define the width of the
interface to be tv2 = ([y(x, t) —(y(x, t))]2), where y(x, t)
is the maximum height of the aggregate at position x
(ignoring overhangs), t is the number of particles in the
aggregate, and ( ) denotes spatial average [11]. In a finite
substrate and for very large t, there is only one branch
with the wedge angle. If we ignore the deep groves, the
width of the tip of the branch is simply m L&, with
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FIG. 2. The width m of the interface as a function of t for

L = 2000 and 0 = 5'.
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FIG. 1, Snapshots of a growing aggregate for L = 500 and
6I = 0. The shadowing efFect is apparent. The smaller clusters
are shadowed by the larger ones and hence grow slower. The
number of particles in the aggregates are, from bottom to top,
10000, 20000, and 40000. Note the wedge angles in the big
clusters. The dotted lines in the uppermost figure indicate
the wedge angle of 104.4' as given by Eq. (1).

( = 1. We measured I,
' in the simulation and we found

( = 1.0+ 0.1. For small t, ui increases with t. In Fig. 2,
we show the log-log plot of m vs t in the case of |9 = 5'.
If we write tu t~, then P = 0.7 and seems to increase
with t. The scaling arguments presented later in the
paper would suggest that P = 1 for small 8. It may well
be that there is some kind of finite size or crossover efI'ect.
For the morphology like Fig. 1, a more natural quantity
to measure is, perhaps, n(s, t)—the number of branches
per unit length with s particles at time t [12]. We found
that n(s, t) s f(s /t) with 7. = 1.47+0.05 and cr =
0.53 6 0.05 (Fig. 3). The identity J sLn(s, t)ds = t
implies that ~ + cr = 2 [12], and our data are consistent
with this equality. For a nonzero but small 6I, we found
that the morphology is similar to Fig. 1 with a slightly
difI'erent wedge angle and that all the scaling exponents
(apart from the uncertainty for P) are the same as for
6I = O. Thus for small 6I the scalings are difFerent from
KPZ and we have a new universality class.

Naively, one may expect that the shadowing should not
be important at large length scales. The KPZ scaling im-
plies a "fiat" interface. The tilt angle of the interface on
length scale E is tii/E, and there will be no shadowing on
length scales larger than E if ui/E ( tan 8. In KPZ scaling,
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FIG. 3. Cluster size distributions at difFerent times for
L = 9898 and 8 = 0. The time t in the figure (number of
particles in the aggregate) is measured in the unit of 14000.
v. = 1.47 and o. = 0.53 are used in the figure to scale the
curves of difFerent times.

gi/2 for t ))pi [4], giving m// 1/I i So t.here
will be no shadowing on large enough length scales after
long enough times if the interface is governed by the KPZ
scaling. However, the KPZ scaling has to build up "lo-
cally" (the KPZ equation is a local equation). Therefore,
if there are some "local" structures which scale differ-
ently from and propagate faster than KPZ, a difI'erent
universality class could emerge. We think that the stable
wedge angles in Fig. 1 play such a role.

To understand the wedge angle one would need a com-
plete knowledge of the growth velocity, which we do not
have at present. We make the plausible assumption that
the local normal growth velocity at a point on the inter-
face is proportional to the exposure angle within which
it can receive the incoming particle flux [7]. Let us first
consider the case of 8 = 0. If we ignore the shadowing
from other branches, the normal velocity of one side of
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the wedge is simply v„= x —o. , where o, is the angle
between the wedge side and the substrate (so the wedge
angle is x —2o.). The velocity in the y direction is then
v„= v„/cosa = (7r —o.)/cosa. Equating v„on the
wedge side with the velocity of the tip which is z, we
have the equation for steady state solutions:

it —0,'

cos 0!

There are two solutions for Eq. (1): a. = 0 and o. = n' =
37.8'. It is easy to see that the first solution is unstable
and the second one is globally stable. The later solution
corresponds to a wedge angle of about 104', which is
in very good agreement with the simulations (Fig. 1).
Encouraged by the success, we extend the analysis to the
case of 8 g 0. In this case, v„= [vr —8 —max(n, 8)]/ cos o.
on the side of the wedge and the velocity at the tip is
~ —28. The steady state equation is

vr —8 —max(o. , 8) = 7t —20.
cos o.'

(2)

For small 8 there are three solutions for Eq. (2): n = 0,
nq = 8+(x/2)8, and o.q = a' —8(2cos8* —1)/(7rsin8*—
1) = o.* —0.638, as depicted in Fig. 4(a). It is easy to
see that the solution o.2 is stable and the solution a.j is
unstable. The solution o, = 0 is marginally stable; i.e. ,

dv&/du~~ —e = 0 and d v&/da
~ e ) 0. Therefore, for

small 6I, the aggregate has a similar morphology as that
of Fig. 1 with a slightly different wedge angle. We have
done simulations with small L9 and found that the ob-
served wedge angles are consistent with the values given
by the stable solution of Eq. (2). The most interesting
aspect of Eq. (2) is that as 8 increases it goes through
a bifurcation. Namely, as L9 increases the two roots o, z

and o.2 move toward each other and at 8 = 8, = 10.4'
they merge into one root n = a., = 21.1, corresponding
to a wedge angle of about 138' [Fig 4(b)]. For 8 ) 8„
n = 0 is the only solution for Eq. (2) and there will be
no wedge angles at the interface [Fig. 4(c)]. The growth
velocity close to o. = 0 depends on o, quadratically —the
same as that in the KPZ equation. Thus in this case, we
expect that the interface would be "flat" and its scaling
properties would be in the universality class of KPZ. In
Fig. 5 we show a series of snapshots of the aggregate for
6I = 15 which is slightly above 6W, . Indeed, there are no

dbh bh

dt (3)

So, bh = e exp(t/E), where e is the initial height difference
of the two competing clusters. We see that the initially
slightly higher cluster will "take over" the other in a time
scale of the order of t E. Thus there is a "hierarchi-
cal" picture of competition —nearby clusters compete in
early times and the winners which are further apart will
compete in later times, and so on. We can see this in
Fig. 1. Since the time or the height when clusters of
distance 8 apart compete with each other is proportional
to 8, the number of clusters with heights larger than h,
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apparent wedge angles and the interface is very similar
to that of the original unidirectional ballistic deposition
model. We have measured the width m of the interface
and it scales like m —t/ at early times and tu —L~ at
large times, with P = 0.34 + 0.05 and g = 0.5 + 0.02,
confirming that it is in the same universality class as the
KPZ equation.

We now proceed to calculate the cluster-size distribu-
tion of the new morphology (8 ( 8,). For simplicity we
consider the case of 0 = 0. I et us examine the competi-
tion between two clusters which are distance l apart. We
ignore the presence of all other clusters at this point. If
one cluster is higher than the other by the amount of bh,
its tip will receive more particle flux by the amount of
tan ~(bh//) —6h/E, for 6h (( /. The equation governing
the evolution of 6'h is then [7,10]
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FIG. 4. The sketch of the left and right hand sides of Eq.

(2) as functions of o. . (a) 8 ( 8, ; (b) 8 = 8, ; and (c) 8 ) 8, . FIG. 5. Same as Fig. 1, except that 0 = 15'.
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N(h), is proportional to h ~. We found numerically that
the horizontal width of a cluster is proportional to its
height, which implies that the number of particles in the
cluster s h2. Combining this with K(h) h ~, we get
K(s) s o.s which gives n(s) s 's, in good agree-
rnent with the simulation results (Fig. 3).

In conclusion, we have studied the ballistic deposition
model in which incoming particles come from a range of
angles at random. As the range of incident angles is in-
creased, we found a sharp morphological transition from
the KPZ growth to a new regime with morphology char-
acterized by stable wedges [13]. We have developed a
simple equation for the wedge angle. The morphological
transition is due to a bifurcation in the equation. The
scaling properties in the new morphology are different
from the KPZ universality class. There is an apparent
coarsening process in the morphology, similar to what
has been observed in some sputtering experiments. This
coarsening can be characterized by the cluster-size distri-
bution function n(s, f) whose exponents can be calculated
analytically by considering competitions of different clus-
ters due to shadowing.
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