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Dynamics of a driven single flux line in superconductors
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We study the low-temperature dynamics of a single Qux line in a bulk type-II superconductor,
driven by a surface current, both near and above the onset of an instability which sets in at a critical
driving. We found that above the critical driving, the velocity profile of the Qux line develops a
discontinuity.

The dynamics of a driven elastic string have at-
tracted much recent attention. ' While most of the work
has been focused on the interesting physics of pinning-
depinning transitions in the case of bulk driving, a pa-
per by Tang, Feng, and Golubovic studied the case of
a surface-current-driven flux line in a bulk type-II super-
conductor. They found a novel instability of the flux line
motion at large driving currents. The instability sets in
at a critical driving, where the line loses its steady state
motion and (presumably) will be stretched longer and
longer. Their finding depends crucially on the boundary
condition they use. Physically, the surface driving cur-
rent is within a boundary layer of thickness A, where A is
the penetration depth. The boundary condition used in
Ref. 2 is somewhat equivalent to taking the limit A —+ 0
in a plausible but uncontrolled way. Since the instability
sets in at or near the boundaries, it is necessary to exam-
ine the situation carefully using a more physical bound-
ary layer. Also, it is important to see what happens when
the driving current is larger than the critical driving —a
question which cannot be addressed by using the bound-
ary condition in Ref. 2.

In this paper we analyze the flux motion with the
more physical boundary layer Lorentz driving force. We
first use the method of matching asymptotic expansions
to study the steady state solutions. The lowest-order
matching condition justifies the form of the boundary
conditions used in Ref. 2 and gives the relation of the
driving force to the current. We then study, both numer-
ically and analytically, the complete equation below and
above the onset of instability.

Let us first derive the equation for the flux line motion
which involves the Lorentz force as a term in the equa-
tion, as opposed to just a boundary condition. As we
will be mostly interested in fairly large driving forces, we
neglect pinning effects. The Lorentz force on a flux line
is just F = —fj x hdsdA, where s is the arclength along
the flux line and dA a section of infinitesimal area trans-
verse to the flux line. If the applied current j is slowly
varying in the direction transverse to the line, then the
integration in these coordinates may be carried out to
give

where Pp is the flux quantum and t is the unit tangent
vector in the direction of the local magnetic field (the
arclength is taken to be increasing in the direction of the
magnetic field). The exact form of the current depends
on the geometry of the sample; however, it is known that
the magnitude of the applied current drops exponentially
with distance &om the boundary of the sample.

For simplicity we model the dynamics of a single flux
line as a two-dimensional problem, defined by its shape
function r(s, t), or where the parametrization is well de-
fined, y(x, t) (see Fig. 1). The applied field is in the
negative x direction, and the applied current in the neg-
ative z direction, thus giving the driving Lorentz force
predominantly in the y direction. The Lorentz force per
unit length is then

dF Pp (x —I./2 ) (—x —I,/2 )
) & ~ )
I+ex'

I I

n

(2)

where jo is the current density at the surface, the sample
boundary is at x = +I/2, and n = —z x t is the local
unit normal vector of the flux line.

The equation of motion for the flux line becomes

~(w, t)
y'

FIG. 1. Sketch of the cross section of the sample. The
driving current I is near the sample surfaces. The direction
of the magnetic field B and the direction of the general motion
of the line v are also indicated.
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The left-hand side, the viscous damping, and the first
term on the right, the normal force due to line ten-
sion, are the same as in Ref. 2, and the last term is the
Lorentz force, from Eq. (2). p is the damping coefficient

2

(p =
2 &, ', from the Bardeen-Stephen model, s with

( the coherence length and p the normal state resistiv-
I

ity), and o is the line tension, given approximately by
0

4vr( 1n(K), with H, the critical field and r = A/( the
Ginzburg-Landau parameter. K is the curvature, and we
have the relations t = O, r and O, t = Kn.

In cases where the tangent vector never becomes verti-
cal (i.e. , By/Bx remains finite), Eq. (3) can be rewrit-
ten in terms of the x and y coordinates of r, now
reparametrized by x. Note that a displacement of Ln in
the direction of the normal is related to a displacement
&y = &iigl + (By/Bx)2 and the curvature in terms of
x and y is given by K = [1 + (By/Bx) ]

s~ (B y/Bx )
Thus we get the equation

1+(' )'
0 s ", Ppjp (x —L/2l (—x —L/2 t

+ exp! ! + exp!
1+ (~a), ~ c (, & 2 & ~ )

We now examine the steady state solutions of Eq. (4). Steady state iinplies v = By/Bt is constant, which allows

us to rewrite (4) as a first-order equation in the sine of the tangent angle 0. Setting f = ~'~' and ip = sine =
&" / gl + (By/Bx) 2 we get

OQJ (x —L/2) ( —x —L/2l
A = —v A 1 —iv2 —f exp! ! + exp!

Ox 0 r.

For x far from the boundaries (i.e., !x+ L/2! )) A) the driving term is negligible and the equation becomes

—v 1 —QJ (6)

which has solution

'Y
m = sin —vx

Now we examine the solution near the boundary at x = L/2. The coordinate appropriate in this region is g =—
In terms of q, our Eq. (5) becomes

~i 2—v A 1 —iv,. +fe
O'I7 0

If we expand w; in powers of Pv) A as ur; = ip,. + (~v) Azv, +,we obtain a series of equations for the ip, The
Grst two of these equations are

(o)

&g

a~, '
0'g

e )

( (o))2

Assuming an applied Geld perpendicular to the boundary, these have the solution

() f(1 e n)

= gl —f2 (1 —e 'p) 2 —1 —f arcsin f(1 —e ")

1 —f2 ln
1 —f (1 —e ") + g(l —f2)[1 —f2(1 —e ~)2] +9 .

f2

If we expand ur about x = L/2 (g = 0) and zv; for large q, we get
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Matching m to ni gives, to order ~"

2o . (yves'l
arcsin f +

I I
gl —f2 1 —ln —1 —f arcsin f (f &1) (12)

Note that the velocity found in Ref. 2 is obtained by
dropping the term of order ~" on the right-hand side
of (12) and thus is the zeroth order of our asymptotic
solution. This matching procedure is illustrated in Fig.
2(b) which shows Iv = sin 8 as a function of 2: for f = 0.9.
The solid line is a steady state numerical solution, and
the dot-dashed and dashed lines show the inner and outer
solutions, respectively. We see that the outer and inner
solutions agree very well with the numerical result within
their respective domains of validity. A composite solu-
tion, valid on the whole domain, can be formed by adding
m and mi and subtracting their common part &om Eq.
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FIG. 2. (a) Steady state flux line profiles for, from top
to bottom, f=0.2, 0.4, 0.6, 0.8, 1.0, and 1.1. (b) Matched
asymptotic expansions for f = 0.9: numerical solution (solid
line), av (dashed line), and ao, (dot-dashed line).

(11). This is indistinguishable from the numerical solu-
tion in Fig. 2(b).

The numerical solutions shown in Fig. 2 were produced
from solutions of Eq. (3). This was chosen, rather than
Eq. (4), in x-y coordinates, due to problems arising in
the continuity of By/Bt and the diverging values of By/Bx
found at large values of f (see below). As our equation
involves the position vector r explicitly, we must evolve a
set of vectors {r(s))of positions along the curve (as op-
posed to, for instance, following the curvature). We solve
Eq. (3) using a finite-difference approach. The viscous
term pr and the curvature term Kn = r„can be dealt
with using a Crank-Nicholson-type approach for di6'usive
equations. This yields two, x and y, tridiagonal systems
linked only at the boundaries. The Lorentz force in (3)
is then dealt with in a semi-implicit manner. The system
is remeshed at each time step to preserve point spacing
in regions of high curvature.

For a specific case, we take a sample width I of 100A
and measure the velocity in the unit of a/p. Figure
2(a) shows the line shapes for f = 0.2—1.1. We see that
the slope remains fairly small within a penetration depth
A of the boundary, consistent with the assumptions for
Eq. (1). Also, the analytic solution of Ref. 2 starts to
deviate &om our numerical solution near the boundary
for large f

Figure 3 shows v as a function of f The cro.sses are
&om steady state numerical solutions, the dashed line
is the zeroth-order matching condition &om Ref. 2, and
the dotted line (for the region f ( 1) is from Eq. (12).
The zeroth-order solution suggests that as f + 1, v +
v „=mo/pL, implying 0 —+ z/2; i.e., the flux line
"wets" the boundary. The more accurate expression, Eq.
(12), suggests that v ~ & arcsinI1 —(~" )(1+Ir/2)] (
v „, and so the Aux line does not become vertical as
f ~ 1 (see also the numerical solution in Fig. 2). What
then does happen for f greater than 1? As we shall see
below, the flux line becomes vertical (0 —+ vr/2) at an
interior point, but not until f = f* = 1.07623 for our
sample case where A/L = 0.01. Above f* the speed of
the Aux line develops a discontinuity, becoming piecewise
constant.

Note that in the above analysis av( & 1 for f & 1,
and so it cannot be extended to the region where f & 1.
This problem can be remedied by adjusting the arbitrary

(o) (o)constant in m, so that m; does not exceed 1. This
means that tu,. will no longer satisfy the boundary con-
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dition ui,. ~„o ——0. We can, however, adjust the con-(o)

stant in m,. to compensate for this discrepancy so that

tv, + (~ )ur,. = 0 at il = 0. This results in a solution
to Eq. (9), for f ) 1, of

FIG. 3. The velocity of the Bux line as a function of driving
force: numerical simulations (crosses), Eqs. (12), (15), and
(16) (dotted line), and Eq. (10) of Ref. 1 which is also the
zeroth order of Eq. (12) (dashed line). Inset: a blowup of the
figure near f = 1.

We see that as A/L m 0, f* ~ 1.
The question now arises as to what happens above f'

Figure 4(a) shows the numerical evolution of the flux line
shape for f = 1.1, just above the transition, and f = 1.5.
There are two important things to note in this figure.
First, the flux line is approaching a vertical asymptote
at about x = 40.5 in what seems to be an asymptotic
manner (i.e. , the flux line does not become vertical in a
finite amount of time). Second, the portion of the flux
line to the boundary side of this vertical asymptote has
a constant shape, implying it is moving with a constant
speed in the y direction. This last observation can be
verified by applying a finite-difference approximation to
Eq. (4) to compute Oy/Ot for the points on the flux lines
of Fig. 4(a). The result of this computation is shown in
Fig. 4(b). We see from this velocity profile that, indeed,
the speed is constant in the boundary layer, but that a
discontinuity has developed in the velocity profile. The
constant speed of the boundary layer can be deduced as
follows.

Equation (14) gives the constant asymptotic value of
iv, for large rI. Above f* this asymptotic value can only
be 1 (io; = sin8 & 1), as the flux line becomes vertical. So
setting (14) to one gives the speed of the inner solution,
v, , forf) f*as

2
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Expanding this mi for large g gives

fpvAlt 2
; f —

~ ~

——1+2arcsin
1

(14)
400

~I

~, I

I

Matching this to iv at z = L/2 gives, to order ~"", -600
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Note that for f = 1, v =
& arcsin[f —(~"")(I+sr/2)], the

same result as taking f ~ 1 in Eq. (12). Equation (15)
has only real solutions for f & f* = 1.07623 (for I
100A). It suggests that the instability should occur at
J' = f* where v = v „= irrr/pL. Equation (15) is
shown as the continuation of the dotted line for 1 & f &
f* in Fig. 3. For general A/L, f* is found as the root of
Eq. (15) for v = v „=ma/pL For small A/L, . the case
we are interested in, this root is

Af* = 1 + —(7r + 7r /4) .
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FIG. 4. (a) The shape of the flux line at different times for
f = 1.1 (solid lines) and f = 1.5 (dotted lines). The solutions
which extend further down the plot are at later times. (b)
Velocity profiles of the flux lines of (a) at the. latest times
shown.
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&i =
——1+ 2arcsin2
f 2f

(17)

This is shown as the dotted line in Fig. 3 for f ) f*.
Comparison of this speed to the speed obtained in the
numerical simulations shows excellent agreement.

Now, what about the outer solution, m ? We see from
Fig. 4 that as time progresses the speed of the outer so-
lution approaches a constant value and that the position
of the discontinuity in the velocity profile [or the vertical
asymptote in Fig. 4(a)] seems to approach a fixed value.
The location of the vertical asymptote and the asymp-
totic (large time) speed of the inner solution are quite
related. Requiring that m —+ 1 at the vertical asymp-
tote gives the speed of the outer solution.

In conclusion, we have studied the flux line motion, in
particular the dynamical instability found in Ref. 2, using
a more physical boundary layer driving. The boundary
condition used in Ref. 2 is consistent with our zeroth-
order (in A) asymptotic matching. The analytic solution
of Ref. 2 is quantitatively valid for f ( 0.8. For larger
f, the deviations both in line shape near the boundary
and in the velocity are significant. We have shown that
the instability occurs at f = f* = 1+ (A/L)(vr + ~2/4)
where the flux line starts to lose steady state motion. We
have observed numerically that above this instability the
flux line velocity profile develops a discontinuity. This
instability has a clear mark on the I-V curve, Fig. 3,
that is a sharp upward turn at f*. As pointed out in
Ref. 2, this instability should also occur in dense flux
line systems.
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