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Diffusion-limited aggregation and the Saffman-Taylor problem
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A random-walk model is proposed to simulate Darcy-law two-dimensional flows in hydrodynamics in the
limit of zero-surface tension. The simulation is compared with the analytic and numerical results of the
latter in steady-state and dynamic cases, respectively. The instabilities of the model in a flat interface are
studied in the linear region. It is clear that the mean-field .limit of diffusion-limited aggregation is a
Saffman-Taylor problem.

Recently, there has been increasing interest in nonequili-
brium dynamic problems, for example, models for dendritic
growth' and diffusion-limited aggregation (DLA).z Another
simple example is the Saffman-Taylor problem: the interfa-
cial motion of two incompressible fluids with different
viscosities in a two-dimensional channel (Hele-Shaw cell).
In the limit that the viscosity of one fluid and the interfacial
surface tension go to zero, the equations governing the hy-
drodynamic motion here pre very simple indeed. Since in
the fluid with zero viscosity there is no friction inside the
fluid and from the conte. incr, the pressure field is constant
therein. In the viscous fluid, on the other hand, the veloci-
ty of the fluid is proportional to the pressure gradient be-
cause of the friction from the third dimension (from the
plates containing the fluids). Let P be the pressure field in
the viscous fluid, the incompressibility implies that P satis-
fies Laplace's equation:

V' P=O (la)

The continuity of pressure at the interface gives the boun-
dary condition for P there:

P l interface (lb)

aP
~g X= +So

(1c)

The last boundary condition for P is that far away from the
interface

Pi„„=— "x,U
(ld)

where U is the velocity of the viscous fluid far away from
the interface and ~ some positive constant containing the
viscosity and the (z direction) thickness of the channel (per-
meability). The interface will move according to

I n
= rc 7nP lintert'ace (le)

where n is the normal of the interface.
Equations (la)—(le) are all we need to describe the inter-

facial motion. Interestingly, Witten and Sander, when
deriving a mean-field equation for their DLA, got the same
set of equations. It has been pointed out recently by Pater-
son that a similarity exists between the interfacial motion

Assume that the channel is in the x —y plane and in the x
direction. At two sides of the channel (y = +yp), the velo-
city of the fluid must be parallel to the side; that is,

of two fluids in porous media, which is also described by the
above set of equations, and DLA. He compared his DLA
simulations with some experiments of fluids in porous
media. Kadanoff pointed out that there is a connection
between the Saffman-Taylor problem and DLA, while
Nittmann, Daccord, and Stanley did some experiments and
DLA simulations of fluids in a Hele-Shaw ce11 in the zero-
surface tension case where they concentrated on the fractal
structures. In this paper, we study quantitatively the other
limit —the mean-field limit —and show that the mean-field
limit (MFL) of DLA is exactly the Saffman-Taylor problem.

The mode1 we propose is very simple and somewhat dif-
ferent from DLA. We use the probability distribution p of
random walkers to simulate the solution of Laplace's equa-
tion. Concerning Eq. (1), we make the substitution
p —P. The simulation takes place in a channel of a two-
dimensional lattice. Each lattice site is either "occupied" or
"unoccupied. " The occupied region represents the zero-
viscosity fluid and the unoccupied the viscous one. An in-
teger P is stored at each nearest neighbor to the occupied
region. Starting with some initial interface, a random walk-
er is released in the unoccupied region far away from the in-
terface [refer to Eq. (ld)]. It walks randomly [refer to Eq.
(la)] until it reaches an occupied site. When this happens,
the random walker is removed [refer to Eq. (lb)] and the
last unoccupied site it visited wi11 be registered once; i.e., its
P value will be increased by 1. Another random walker
then is released far away and starts a random walk in the
unoccupied region until it is removed and some unoccupied
site is registered. The process continues like this. When an
unoccupied site has been registered M times, it becomes oc-
cupied [refer to Eq. (le)]. The boundary condition on the
walls [Eq. (lc)] is reahzed by letting a walker which hits the
wall be reflected.

For M= 1, the model is DLA. When M goes to infinity,
the model should be the MFL of DLA. Unfortunately, the
solution of Eqs. (1) with negative P (positive p), which is
the case .when the nonviscous fluid is pushing the viscous
one and is the origina1 Saffman- Taylor problem, is un-
stable. Furthermore, the instabilities will lead to singulari-
ties. ' Hence, it is very hard (if not impossible) to simulate
the hydrodynamic motion in this case or equivalently, to
find the MFL of DLA in discrete latice. Now, let us look at
Eqs. (1) more carefully. Notice that the transformation
P —P is identical to the time-reversal transformation.
As in quantum-field theory, an antiparticle moving forward
in time is identical to the particle moving backward in time.
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Moreover, we know that if a solution of a differential equa-
tion is unstable in time it is then stable backward in time.
So we can use antirandom walkers to get the time-reversed
pictures of the Saffman-Taylor problem and DLA. Experi-
mentally, this corresponds to switching the pressure gradient
and therefore the viscous fluid pushing a nonviscous one.
The algorithms described in the previous paragraph are all
applicable, except that now the registrations are in the boun-
dary of the occupied region (when an antirandom walker
hits some occupied site, the site is registered once) and
when an occupied site has had M registrations it becomes
unoccupied (annihilated). Since this antiparticle simulation
is stable, the discreteness of the lattice manifests itself as lit-
tle as possible. Hence, a relatively small lattice channel is
enough to get rather nice pictures. In fact, most of our
simulations are done in a channe1 of 64-lattice-site width
( W'= 64).

The steady-state motion of the Saffman-Taylor problem
has been solved analytically, which is a finger of the non-
viscous fluid penetrating a viscous one. There exists a fam-
ily of solutions with different finger widths and the shape of
finger tip depends on its width. The time reversal of these
solutions are also steady-state motions and we can simulate
them easily. We start with a finger of occupied region (non-
viscous fluid) of certain width and arbitrary tip shape, and
then do an anti-random-walker simulation. Soon we get a
steady-state motion (the tip shape will not change any
more). In Fig. I are shown simulations with different finger
widths together with the analytic results.

Shariman and Bensimon studied the dynamics of Eq. (1)
numerically (Fig. 2). They found that a small perturbation
(c) on a flat interface will develop a cusp (singularity) (a)
within finite time. In Fig. 2 is also shown our simulation
result in excellent agreement with their dynamic picture.
We start from (a), and by annihilating the occupied region
(the region under the curve) by antiparticles the interface
moves to (b) and (c) successively.

In order to have a better understanding of the continuum
limit of the model, we study, in the large M limit, the insta-
bilities of a flat interface under an infinitesimal perturba-
tion. Imagine an infinite two-dimensional lattice in the x-y
plane with lattice spacing a. We are interested in the struc-
ture on a length scale much much larger than a. Suppose
initially, that a flat interface lies at x = 0. The region x ~ 0
is occupied, and the region x ) 0 unoccupied. The proba-
bility distribution of random walkers satisfies the lattice ver-
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FIG. 2. Comparison of the interfacial dynamics betwen the simu-
lation (+) and the numerical solution of Eqs. (1) (solid lines).
The initial condition is (a) for the former and (c) for the latter. In
the simulation, 8' = 64 and M = 100.

With the boundary condition on the inteface,

p(0,y) =0,
and the boundary condition far away from interface,

p (x,y )I„„=Cx

(2b)

(2c)

where C is a constant. In this model we can arbitrarily de-
fine some Monte Carlo time unit, for example, I/a2
random-walker steps. Then we can talk about the velocity
of the interfacial growth. Notice that the random-walker
flux through some bond in each step is

—„'lp(r+an) —p(r)l,
~here n is the unit vector of the x or y direction. Hence,
the flux in the unit time is given by

1 1—[p (r+ a n) —p (r) ] = V„p(r)1
a24 4a

sion of Laplace's equation,

p (x + a,y ) +p (x —a,y ) +p (x,y + a )

+p(x,y —a) —4p(x,y)=0 . (2a)

(c)

where V„is the lattice gradient defined as above. So in
large scale, the motion of the interface satisfies

V„= ' V'„p(r)
M 4a

P'„p(r)
x=0

(2d)

LAIC

FIG. 1. Comparison of the steady-state interfacial motion
between the simulation (dots) and the analytic solution (solid line),
with the finger width being (a) 0.75, (b) 0.5, and (c) 0.25 of the
channel width. In the simulation, the channel width 8'=64 and
the MF number M = 20.

Sy+ crt~x(= Ae (3)

where A )) a and kA (( 1. The solution of Eqs. (2a) and
(2c), which vanishes at the interface Eq. (3) to the first or-

The solution of Eqs. (2) is simply p = Cx and V„
= C/4M = V. Notice that in the limit a 0, Eqs. (2)
reduce to Eqs. (1).

Now let us introduce a small perturbation in the flat inter-
face such that the perturbed interface is given by
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turbed interface is

0.0%

QX Iky + crEMv„= =3 &re
QtM

a/v
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V'„p(x,y ) = Vie
4M x =x,.

where the last equality is to the first order of kA. So we
end up with
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(6)

In the corresponding simulation it is much easier to use
S, the displacement of the unperturbed interface, as the
measurement of time. Since tM = S/ V, we should be able to
get

der of kA, is

p = Cx —CA exp ( iky —qx + atM).
where k and q satisfy

coska +coshqa -2==0 .

(4)

Since ka && 1, qa (( 1 and k = q. The velocity of the in-
terfacial motion seen from the moving frame of the unper-

FIG. 3. Growth rate o- of an infinitesimal sinusoidal perturbation
on a flat interface vs the wave number k of the perturbation. The
soid line is Eq. (7) and the dots are simulation measurements.

(r/V = k

Figure 3 is a plot of the measurement with anti-random-
walker simulation. It fits Eq. (7) perfectly.
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