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We study a Josephson junction ladder in a magnetic field in the absence of charging effects via
a transfer matrix formalism. The eigenvalues of the transfer matrix are found numerically, giving

a determination of the different phases of the ladder.
exhibits a devil’s staircase as a function of the magnetic flux filling factor f.

The spatial periodicity of the ground state
If the transverse

Josephson coupling is varied, a continuous superconducting-normal transition in the transverse direction
is observed, analogous to the breakdown of the Kolmogorov-Arnold-Moser trajectories in dynamical

systems.

PACS numbers: 74.50.+r, 05.20.—y, 64.70.Rh

Two-dimensional arrays of Josephson junctions have
attracted much recent theoretical and experimental atten-
tion [1]. Interesting physics arises as a result of compet-
ing vortex-vortex and vortex-lattice interactions. It is also
considered to be a convenient experimental realization of
the frustrated XY models. In this paper, we discuss the
simplest such system, namely, the Josephson junction lad-
der (JIL) [2—4], shown in the inset of Fig. 1.

To construct the system, superconducting ele-
ments are placed at the ladder sites. Below the bulk
superconducting-normal transition temperature, the state
of each element is described by its charge and the phase
of the superconducting wave function [5]. In this paper
we neglect charging effects, which corresponds to the
condition that 4e?/C < J, with C being the capacitance
of the element and J the Josephson coupling. Let 6;
(0}) denote the phase on the upper (lower) branch of the
ladder at the jth rung. The Hamiltonian for the array [6]
can be written in terms of the gauge invariant phase dif-
ferences, y; = 0; — 6;—1 — 27 /o) f;_lAX dx, y} =
6} — 60—, — Qm/do) [l Acdx, and a;=0)—0; —

@m/do) [} A, dx:

H = _Z(Jx cosy; + Jycosy; + Jycosa;), (1)

J

where A; and A, are the components of the mag-
netic vector potential along and transverse to the lad-
der, respectively, and ¢ the flux quantum. The sum of
the phase differences around a plaquette is constrained
by v; — v; + a;j — aj—1 = 2a(f — n;), where n; =
0,=*1,=*2,... is the vortex occupancy number and f =
¢ /o with ¢ being the magnetic flux through a plaque-
tte. With this constraint, it is convenient to write Eq. (1)
in the form

H = — JD {2cosn; cos[(a;—1 —
J
+ J,cosj}, ?)

a;)/2 + @ (f — nj)]
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where n; = (y; + yj/-)/2, J=1Js,and J, = J,/J,. The
Hamiltonian is symmetric under f — f + 1 with n; —
n; + 1,and f — —f with n; — —n;, thus it is sufficient
to study only the region 0 = f = 0.5. Since in one
dimension ordered phases occur only at zero temperature,
the main interest is in the ground states of the ladder and
the low temperature excitations. Note that in Eq. (2) 5;
decouples from «; and nj, so that all the ground states
have n; = 0 to minimize J{. The ground states will be
among the solutions to the current conservation equations
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FIG. 1. Periodicity B = Arg(A)/27m vs f for kgT/J =
0.005 and (a) J, = 0.3, (b) J; = 0.7, and (c) J, = 1.0. In-
set: The Josephson junction ladder is formed by the arrange-
ment of the superconducting islands. The field H is out of the
page and the arrows indicate the direction of the gauge invari-
ant phase differences.
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OH /oa; = 0O:

Jysin; = sin[(a;—; —

a;)/2 + w(f — nj)]

aj+1)/2 + w(f — njr)]. 3)
For any given f there are a host of solutions to Eq. (3).
The solution that minimizes the energy must be selected
to obtain the ground state.

If one expands the cos[(a;j—1 — «;)/2 + @ (f — n;)]
term in Eq. (2) about its maximum, the discrete sine-
Gordon (DSG) model is obtained. A vortex (n; = 1) in
the JJL corresponds to a kink in the DSG. Kardar [2]
used this analogy to argue that this system should show
similar behavior to the DSG, which has been studied by
several authors [8—10]. This analogy is only valid for
J; very small so that the interplaquette term dominates
the behavior of the system making the expansion about
its maximum a reasonable assumption. However, much
of the interesting behavior of the DSG occurs in regions

— sin[(a; —

|

T

z-11

T {ni}

The 7; can be integrated out, resulting in a sim-
ple transfer matrix formalism for the partition function
involving only the transverse phase differences: Z =
[1Y 7 da; P(a;—y,a;) = TrPN. The transfer matrix
elements P(a, a') are

P(a,a’) = 4mexp[KJ,(cosa + cosa’)/2]
X Ip(2K cos[(a — ')/2 + wf]), (5)

where Iy is the zeroth order modified Bessel function.
Note that the elements of P are real and positive,
so that its largest eigenvalue A is real, positive, and
nondegenerate. However, since P is not symmetric
(except for f = 0 and f = 1/2), other eigenvalues can
form complex conjugate pairs. As we will see from the
correlation function, these complex eigenvalues determine
the spatial periodicity of the ground states.
The two point correlation function of «;’s is

[F[f’ [T daiP(a;-, af)]e"(a“*a’)

ilao—a)y — i
(e ) lim >
An
= n\y | 6
gc ( A0) ©6)
where the A, are the eigenvalues (|A,|=[A,+| and

n=0,1,2,...) and the constants c,=[" da’ X
b§(aYe® yR(a!) [T da yE(a)e ™y (). (Note that
since P is not symmetric both right X and left yl
eigenfunctions are needed.) If A; is real and [A{| > |A5],
Eq. (6) simplifies for large / to

L A\
(eile=ady — ¢y + cl(i), Al > ol
Ao

If A; = A5 = |A1]e27E | Eq. (6) for large [ is

Z da; dn; exp{K(2cosn; cos[(a;—;

of large J, (J, ~ 1). Furthermore, much of the work
by Aubry [8] on the DSG relies on the convexity
of the coupling potential which we do not have in
the JJL.

In this Letter we formulate the problem in terms of a
transfer matrix obtained from the full partition function
of the ladder. The eigenvalues and eigenfunctions of
the transfer matrix are found numerically to determine
the phases of the ladder as functions of f and J,. We
find that the spatial periodicity of the ground states goes
through a devil’s staircase as a function of f. We
then study the properties of various ground states and
the low temperature excitations. As J, is varied, all
incommensurate ground states are found to undergo a
superconducting-normal transition at a certain J, which
depends on f. Finally, we discuss the critical current.

The partition function for the ladder, with periodic
boundary conditions and K = J/kgT, is

= a;))/2 + 7(f — ni)] + Jicosa;)}. “

l

ﬂ !

Ao

Note that while the correlation length is given by & =
[In|Ao/A;|]7" the quantity E = Arg(A;)/27 determines
the spatial periodicity of the state. We found numerically
[7] that for f smaller than a critical value f.; which de-
pends on J;, both A; and A, are real. These two eigen-
values become degenerate at f.;, and then bifurcate into
a complex conjugate pair. = as a function of f is shown
in Fig. 1 for several different values of J,. The shape of
these curves is generally referred to as a devil’s staircase.
The steps of the staircase are at E = p/q, where p and ¢
are integers. These are commensurate states with p vor-
tices in each unit cell, which consists of g plaquettes. For
small J;, the flat steps are connected by smooth differen-
tiable curves; most states on the 2 — f curve are incom-
mensurate states. As J, increases, more and more steps
appear and grow at the expense of the smooth regions. At
J, = Jf = 0.7 the staircase becomes complete, i.e., there
is a step for every rational =, and the set of f which corre-
sponds to irrational = has zero measure. For J, > J¢, the
staircase becomes overcomplete, i.e., steps of lower order
rationals grow and steps of higher order rationals disap-
pear [11]. Another important characterization of a state
is the phase density p(«a): p(a)da is the average frac-
tion of all sites in the ladder with o < a; < a + da. If
p(a) is a smooth function for « € (=7, 7w ]at T = 0, the
ground state energy is invariant under an adiabatic change
of a’s. Consequently, there is no phase coherence between
upper and lower branches of the ladder and hence no su-
perconductivity in the transverse direction. In this case,
we say that the a’s are unpinned. If there exist finite in-
tervals of a on which p(a) = 0, the a’s are pinned and
there will be phase coherence between the upper and lower
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branches. In terms of the transfer matrix, the phase den-
sity is the product of the left and right eigenfunctions of
Ao [12], pla) = ¢ ()i ().

We first discuss the case where f < f.;. These are
the ‘“Meissner” states in the sense that there are no
vortices (n; = 0) in the ladder. The ground state is
simply @; = 0, y; = 7 f, and 'y} = —ar f, so that there
is a global “screening” current *=J, sin(7r f) in the upper
and lower branches of the ladder [2]. The phase density
p(a) = 8(a). The properties of the Meissner state can
be studied by expanding Eq. (2) around «; = O: Hy =
(J/4) 3 [cos(mf) (aj—1 — a;)? + 2J,a?]. The current
conservation Eq. (3) becomes

ajr] = 2[1 + J,/cos(ﬂ‘f)]aj - . @)

Besides the ground state «; = 0, there are another two
linearly independent solutions «; = et/ of Eq. (7)
which describe collective fluctuations about the ground
state, where

~1——1 1+ Ji +\/ 2J: +( i )2
v " cos wf cosf cos 7 f )
®)

&y is the low temperature correlation length for the
Meissner state. (Note that &3, < | for J, ~ 1, making
a continuum approximation invalid.) As f increases,
the Meissner state becomes unstable to the formation of
vortices. A vortex is constructed by patching the two
solutions of Eq. (7) together using a matching condition.
The energy €, of a single vortex is found to be

€, = [2 + (7?/8) tanh(1/2&y)]
X cos(mf) — (o + D)sin(wrf) + 2J;,

for J, close to 1. The zero of €, determines f.;, which
is in good agreement with the numerical result from the
transfer matrix. For f > f.;, €, is negative and vortices
are spontaneously created. When vortices are far apart
their interaction is caused only by the exponentially small
overlap. The corresponding repulsion energy is of the
order Jexp(—1/&py), where [ is the distance between
vortices. This leads to a free energy per plaquette of
F = €,/1 + Jexp(—1/&y)/1 [10]. Minimizing this free
energy as a function of / gives the vortex density for
f=fainy =17" = [énnlfa = fII7

We now discuss the commensurate vortex states,
taking the one with E = 1/2 as an example. This
state has many similarities to the Meissner state
but some important differences. The ground state
is  (ao,n0) = (arctan[(2/J,)sin(7 f)],0), (ai1,m) =
(—ap, 1), and (a;+2,n;+2) = (a;,n;), so that there is a
global screening current in the upper and lower branches
of the ladder of *2wJ(f — 1/2)/4/4 + J?. Global
screening, which is absent in an infinite 2D array, is the
key reason for the existence of the steps at § = p/q.
It is easy to see that the symmetry of this B = 1/2
vortex state is that of the (antiferromagnetic) Ising model.

3932

The low temperature excitations are domain boundaries
between the two degenerate ground states. The energy of
the domain boundary Je€, can be estimated using similar
methods to those used to derive €, for the Meissner state.
We found that e, = €5 — (72/4 + JDIf — 1/2,
where €} depends only on J,. Thus the correlation length
diverges with temperature as ¢ ~ exp(2Je€,/kgT). The
transition from the = = 1/2 state to nearby vortex states
happens when f is such that €, = 0; it is similar to the
transition from the Meissner state to its nearby vortex
states. All other steps E = p/q can be analyzed simi-
larly. For comparison, we have evaluated ¢ for various
values of f and T from the transfer matrix and found
that ¢ fits & ~ exp(2Je€,/kgT) (typically over several
decades) at low temperature. The value of €, as a func-
tion of f is shown in Fig. 2 for J; = 1. The agreement
with the above estimate for the E = 1/2 step is excellent.
The tips of the peaks in Fig. 2 for states with § = 1/g¢ fit
the relationship 7 ~ exp(—q/ly) with ly = 0.77, which
is in good agreement with &4 (f = 0) = 0.76 of Eq. (8).
The low temperature transverse resistance should be pro-
portional to the thermal activation rate of domain walls:
R, ~ exp(—2J€,/kgT) (with €, replaced with €, for the
Meissner state), and so facilitates direct comparison with
experiment [4].

We now discuss the superconducting-normal transition
in the transverse direction. For J;, = 0, the ground state
has y; = y; = 0 and

i=j
aj =2mfj + ag — 2w D n;. ©)

i=0
The average vortex density {n;) is f; screening currents
are absent. «g in Eq. (9) is arbitrary; the «’s are unpinned
for all f. The system is simply two uncoupled 1D XY
chains, so that the correlation length & = 1/kzT. The
system is superconducting at zero temperature along the
ladder, but not in the transverse direction. As J, rises
above zero we observe a distinct difference between
the system at rational and irrational values of f. For
f rational, the a’s become pinned for J; > 0 [p(«)
is a finite sum of delta functions] and the ladder is
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FIG. 2. Effective Ising coupling as a function of f for J, = 1.
Inset: ~ Statistical error for 2¢€, in the fit versus f.
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superconducting in both the longitudinal and transverse
directions at zero temperature. The behavior for irrational
f is illustrated in the following for the state with B =
ay, where a, = (3 — +/5)/2. Figure 3 displays p(a)
for several different J, at & = ag. We see that the
zero-frequency phonon mode [the smoothness of p(a)]
persists for small J, > 0 until a critical value J{(f) =
0.7, where the a’s become pinned and the ladder becomes
superconducting in the transverse direction. In the DSG,
the pinning transition of this state coincides with the
devil’s staircase of Fig. 1 becoming complete [8,9]. (If
the a;’s are pinned in this state, then all incommensurate
states should be pinned.) The pinning transition of
the incommensurate states can be also studied using
Eq. (3), which can be viewed as a two-dimensional map.
The disappearance of the zero-frequency phonon mode
for irrational E’s at finite small Jf(f) is equivalent to
the breakdown of the Kolmogorov-Arnold-Moser (KAM)
trajectories of the map [13].

We now turn to the subject of critical currents along
the ladder. One can obtain an estimate for the criti-
cal current by performing a perturbation expansion (i.e.,
{n;} remain fixed) around the ground state and impos-
ing the current constraint of sin<y; + sin y} =]. Let
3vj, 6’y}, and d«; be the change of v;, 'y}, and «;
in the current carrying state. One finds that stability of
the ground state requires that a; = 0, and consequently
Sy = 6y; = J/2cosy;. The critical current can be
estimated by the requirement that the y; do not pass
through 77 /2, which gives I. = 2(7/2 — Ymax) COS Ymax»
where ymax = max;(y;). In all ground states we exam-
ined, commensurate and incommensurate, we found that
Ymax < 77/2, implying a finite critical current for all f.
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FIG. 3. p(a) = ¢y§(@)yf(a) vs a at kgT/J = 0.004 and

Z = 0.381966011 ..., and for (a) J, = 0.4, (b) J, = 0.65, (c)
J;, = 0.7, and (d) J; = 0.9. Note the smaller scale for the upper
plots.

In conclusion, we have studied the equilibrium behav-
ior of a Josephson junction ladder in a magnetic field in
the absence of charging effects. Screening currents play
an important role in this system, resulting in the spatial
periodicity of the ground state climbing a devil’s stair-
case as a function of f. Incommensurate states undergo a
superconducting-normal transition in the transverse direc-
tion as J, is increased, so that for J; > J{ = 0.7 the ladder
is superconducting in both the longitudinal and transverse
directions for all f. The critical current along the ladder
is found to be finite for all f. Finally, although in one di-
mension there is no phase transition and long range order
at finite temperature, our study showed that the correlation
lengths in vortex states are extremely long for reasonably
low temperatures. Thus one could test experimentally the
predictions for the vortex configuration by, for instance,
direct imaging via a scanning Hall-probe microscope or
measuring the fractional giant Shapiro steps [14].
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