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Phases of Josephson Junction Ladders
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We study a Josephson junction ladder in a magnetic field in the absence of charging effects via
a transfer matrix formalism. The eigenvalues of the transfer matrix are found numerically, giving
a determination of the different phases of the ladder. The spatial periodicity of the ground state
exhibits a devil's staircase as a function of the magnetic Ilux filling factor f If th. e transverse
Josephson coupling is varied, a continuous superconducting-normal transition in the transverse direction
is observed, analogous to the breakdown of the Kolmogorov-Arnold-Moser trajectories in dynamical
systems.

PACS numbers: 74.50.+r, 05.20.—y, 64.70.Rh

Two-dimensional arrays of Josephson junctions have
attracted much recent theoretical and experimental atten-
tion [1]. Interesting physics arises as a result of compet-
ing vortex-vortex and vortex-lattice interactions. It is also
considered to be a convenient experimental realization of
the frustrated XY models. In this paper, we discuss the
simplest such system, namely, the Josephson junction lad-
der (JJL) [2—4], shown in the inset of Fig. 1.

To construct the system, superconducting ele-
ments are placed at the ladder sites. Below the bulk
superconducting-normal transition temperature, the state
of each element is described by its charge and the phase
of the superconducting wave function [5]. In this paper
we neglect charging effects, which corresponds to the
condition that 4e /C « J, with C being the capacitance
of the element and J the Josephson coupling. Let Oj

(OJ) denote the phase on the upper (lower) branch of the
ladder at the jth rung. The Hamiltonian for the array [6]
can be written in terms of the gauge invariant phase dif-

ferences, y~
= 0~

—
0~ I

—(2~/@p) f,A, dx, yI =
0~

—
Oi I

—(2~/Pp) f, , A, dx, and n, = 0,
' —0, —

(2'/@o) f A dx:

—p(J~ cosy~ + J~ cosy + Jy coscrJ),
J

where A and A~ are the components of the mag-
netic vector potential along and transverse to the lad-
der, respectively, and Pp the flux quantum. The sum of
the phase differences around a plaquette is constrained
by y~

—yj + n~ —
cr~ I

= 27r(f —nJ), where nJ =
0, ~1, ~2, . . . is the vortex occupancy number and f =
@/Pp with P being the magnetic flux through a plaque-
tte. With this constraint, it is convenient to write Eq. (1)
in the form

W = —J gft2cosrIJ cos[(n~ I
—n~)/2 + vr(f —n~)]

+ JI COSCl)), (2)

where rI~
= (yj + y~)/2, J = J„and J, = Jy/J, . The

Hamiltonian is symmetric under f ~ f + 1 with n~ ~
n~ + 1, and f ~ f with —nj ~ nJ, t—hus it is sufficient
to study only the region 0 ( f ( 0.5. Since in one
dimension ordered phases occur only at zero temperature,
the main interest is in the ground states of the ladder and
the low temperature excitations. Note that in Eq. (2) rIJ
decouples from nz and nj, so that all the ground states
have riJ = 0 to minimize A. The ground states will be
among the solutions to the current conservation equations
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FIG. 1. Periodicity = Arg(A~)/27r vs f for kIIT/J =
0.005 and (a) J, = 0.3, (b) J, = 0.7, and (c) J, = 1.0. In-
set: The Josephson junction ladder is formed by the arrange-
ment of the superconducting islands. The field H is out of the
page and the arrows indicate the direction of the gauge invari-
ant phase differences.
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aA/an, = 0:
J, sinn~ = sin[(n~ ~

—nl)/2 + 7r(f —nl)]
—sin[(n, —aj+i)/2 + 7r(f —nj+i)]. (3)

For any given f there are a host of solutions to Eq. (3).
The solution that minimizes the energy must be selected
to obtain the ground state.

If one expands the cos[(n~ ~

—al)/2 + vr(f —n~)]
term in Eq. (2) about its maximum, the discrete sine-
Gordon (DSG) model is obtained. A vortex (n~ = 1) in
the JJL corresponds to a kink in the DSG. Kardar [2]
used this analogy to argue that this system should show
similar behavior to the DSG, which has been studied by
several authors [8—10]. This analogy is only valid for
J, very small so that the interplaquette term dominates
the behavior of the system making the expansion about
its maximum a reasonable assumption. However, much
of the interesting behavior of the DSG occurs in regions

of large J, (J, —1). Furthermore, much of the work
by Aubry [8] on the DSG relies on the convexity
of the coupling potential which we do not have in
the JJL.

In this Letter we formulate the problem in terms of a
transfer matrix obtained from the full partition function
of the ladder. The eigenvalues and eigenfunctions of
the transfer matrix are found numerically to determine
the phases of the ladder as functions of f and J, . We
find that the spatial periodicity of the ground states goes
through a devil's staircase as a function of f We.
then study the properties of various ground states and
the low temperature excitations. As J, is varied, all
incommensurate ground states are found to undergo a
superconducting-normal transition at a certain J, which
depends on f. Finally, we discuss the critical current.

The partition function for the ladder, with periodic
boundary conditions and K = J/kIiT, is

g da; dil; exp(K(2cosrl; cos[(n; i
—a;)/2 + vr(f —n;)] + J, cosn;)).

77

(4)

The g; can be integrated out, resulting in a sim-
ple transfer matrix formalism for the partition function
involving only the transverse phase differences: Z =

f do.; P(n; i, n;) = TrP . The transfer matrix
elements P(n, n') are

P(n, n') = 4vrexp[KJ, (cosn + cosn')/2]

X lo(2K cos[(n —a')/2 + 7rf]), (5)

where Ip is the zeroth order modified Bessel function.
Note that the elements of P are real and positive,
so that its largest eigenvalue Ap is real, positive, and
nondegenerate. However, since P is not symmetric
(except for f = 0 and f = 1/2), other eigenvalues can
form complex conjugate pairs. As we will see from the
correlation function, these complex eigenvalues determine
the spatial periodicity of the ground states.

The two point correlation function of n~'s is

P, f dn, P(n;, , n, ) e'~"- l

(e' " ') = lim

(6)

where the A„are the eigenvalues (1A„1~ 1A„+i1 and
n = 0, 1, 2, . . .) and the constants c„=f d n' &&

Po (ri')e' i/I„(o.")f da' P„(n)e '
Po (n) (Note t.hat

since P is not symmetric both right P„and left
eigenfunctions are needed. ) If Ai is real and 1Ai1 ) 1321,
Eq. (6) simplifies for large l to

(e"" "') = co+ cl ', 1~11~1~21.
Ap

If A& = Az = 1Ai1e' =, Eq. (6) for large l is

( i(u on~)) + (
t2m I + i2w l)

Ap

Note that while the correlation length is given by g =
[ln1Ao/A&1]

' the quantity = Arg(Ai)/2' determines
the spatial periodicity of the state. We found numerically
[7] that for f smaller than a critical value f, i which de-
pends on J„both A~ and A2 are real. These two eigen-
values become degenerate at f, i, and then .bifurcate into
a complex conjugate pair. ~ as a function of f is shown
in Fig. 1 for several different values of J,. The shape of
these curves is generally referred to as a devil's staircase.
The steps of the staircase are at ~ = p/q, where p and q
are integers. These are commensurate states with p vor-
tices in each unit cell, which consists of q plaquettes. For
small J„ the Hat steps are connected by smooth differen-
tiable curves; most states on the ~ —f curve are incom-
mensurate states. As J, increases, more and more steps
appear and grow at the expense of the smooth regions. At
J, = J, = 0.7 the staircase becomes complete, i.e., there
is a step for every rational ~, and the set of f which corre-
sponds to irrational has zero measure. For J, ) J, , the
staircase becomes overcomplete, i.e. , steps of lower order
rationals grow and steps of higher order rationals disap-
pear [11]. Another important characterization of a state
is the phase density p(n): p(u)dn is the average frac-
tion of all sites in the ladder with n ( o. ; ( u + dn. If
p(n) is a smooth function for n H (—7r, 7r] at T = 0, the
ground state energy is invariant under an adiabatic change
of n 's. Consequently, there is no phase coherence between
upper and lower branches of the ladder and hence no su-
perconductivity in the transverse direction. In this case,
we say that the n's are unpinned. If there exist finite in-
tervals of n on which p(n) = 0, the n's are pinned and
there will be phase coherence between the upper and lower
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branches. In terms of the transfer matrix, the phase den-
sity is the product of the left and right eigenfunctions of
~p [12] C (~) = t/p(~)Pp(~).

We first discuss the case where f ( f, t. These are
the "Meissner" states in the sense that there are no
vortices (n; = 0) in the ladder. The ground state is
simply n; = 0, y~

= ~f, and y~
= —vr f, so that there

is a global "screening" current J, sin(~f) in the upper
and lower branches of the ladder [2]. The phase density
p(n) = B(n). The properties of the Meissner state can
be studied by expanding Eq. (2) around n; = 0: MM =
(J/4) gjtcos(~f) (nj ~

—nj) + 2J,n;]. The current
conservation Eq. (3) becomes

n~+t = 2[1 + J, /cos(vrf))n~ —tt'~ t. (7)

Besides the ground state o.~
= 0, there are another two

linearly independent solutions n~ = e —~l~ of Eq. (7)
which describe collective fluctuations about the ground
state, where

1 Jt=ln 1+ +
cos 7rf

2J, ( J,+
cos 7rf (cos 7rf )

is the low temperature correlation length for the
Meissner state. (Note that sM ( 1 for J, —1, making
a continuum approximation invalid. ) As f increases,
the Meissner state becomes unstable to the formation of
vortices. A vortex is constructed by patching the two
solutions of Eq. (7) together using a matching condition.
The energy e of a single vortex is found to be

e = [2 + (vr /8) tanh(1/2sM)]

X cos(~f) —(7r + 1) sin(~ f) + 2Jt,
for J, close to 1. The zero of e, determines f, t, which
is in good agreement with the numerical result from the
transfer matrix. For f ) f,t, e, is negative and vortices
are spontaneously created. When vortices are far apart
their interaction is caused only by the exponentially small
overlap. The corresponding repulsion energy is of the
order J exp( —l/sM), where l is the distance between
vortices. This leads to a free energy per plaquette of
F = e, /1 + J exp( —l/AM)/l [10]. Minimizing this free
energy as a function of I gives the vortex density for
f ~ f.i: (&J) = l ' =

I.FM»lfct —fl] '

We now discuss the commensurate vortex states,
taking the one with ~ = 1/2 as an example. This
state has many similarities to the Meissner state
but some important differences. The ground state
ls (ct'p, np) = (arctan[(2/J, ) sin(rrf)], 0), (nt, nt)
(—np, 1), and (n;~z, n;~q) = (n;, n;), so that there is a
global screening current in the upper and lower branches
of the ladder of ~27r J(f —1/2)/g4 + J~ . Global
screening, which is absent in an infinite 2D array, is the
key reason for the existence of the steps at = p/q.
It is easy to see that the symmetry of this = 1/2
vortex state is that of the (antiferromagnetic) Ising model.
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The low temperature excitations are domain boundaries
between the two degenerate ground states. The energy of
the domain boundary Jab can be estimated using similar
methods to those used to derive e for the Meissner state.
We found that eb = eb —(7r /Q4 + Jt)(f —I/2~,
where eb depends only on J, . Thus the correlation length
diverges with temperature as g —exp(2J Eb/kg T) Th. e
transition from the ~ = 1/2 state to nearby vortex states
happens when f is such that eb = 0; it is similar to the
transition from the Meissner state to its nearby vortex
states. All other steps ~ = p/q can be analyzed simi-
larly. For comparison, we have evaluated s for various
values of f and T from the transfer matrix and found
that s fits g —exp(2Jeb/k&T) (typically over several
decades) at low temperature. The value of eb as a func-
tion of f is shown in Fig. 2 for J, = 1. The agreement
with the above estimate for the ~ = 1/2 step is excellent.
The tips of the peaks in Fig. 2 for states with = 1/q fit
the relationship ~ —exp( —q/lp) with lp = 0.77, which
is in good agreement with $M(f = 0) = 0.76 of Eq. (8).
The low temperature transverse resistance should be pro-
portional to the thermal activation rate of domain walls:
R, —exp( 2Jeb/kg—T) (with eb replaced with e„ for the
Meissner state), and so facilitates direct comparison with
experiment [4].

We now discuss the superconducting-normal transition
in the transverse direction. For Jt = 0, the ground state
hasy, = y,'=Oand
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FIG. 2. Effective Ising coupling as a function of f for J, = l.
Inset: Statistical error for 2eb in the fit versus f

n, = 2~fJ + n„—2~/ , n.

i=0

The average vortex density (nj) is f; screening currents
are absent. ap in Eq. (9) is arbitrary; the n's are unpinned
for all f The system . is simply two uncoupled 1D XI'
chains, so that the correlation length s = I/k~T The.
system is superconducting at zero temperature along the
ladder, but not in the transverse direction. As J, rises
above zero we observe a distinct difference between
the system at rational and irrational values of f For.
f rational, the n's become pinned for J, ~ 0 [p(n)
is a finite sum of delta functions] and the ladder is
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