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Abstract. – Motivated by the recent observations of the peak effect in high-Tc YBCO super-
conductors, we re-examine the origin of this unusual phenomenon. We propose that the sharp
peak in the critical current as a function of temperature or magnetic field is an interesting
manifestation of vortex-lattice melting in the presence of weak random pinning. Specifically,
the rise of the critical current with increasing temperature or field is a result of a crossover from
the Larkin pinning length to a length scale set by thermal fluctuations.

The properties of type-II superconductors are largely determined by the statics and dy-
namics of vortex lines. In particular, the critical current is directly related to the pinning
of the vortex lattice by impurities and disorder. It was discovered more than 30 years ago
by LeBlanc and Little [1] that the critical current in a type-II superconductor can increase
with increasing temperature, or field, in a narrow range below the upper critical field Bc2(T ).
The critical-current density has a pronounced peak below Bc2(T ) (fig. 1). This “peak-effect”
phenomenon was found to be ubiquitous in conventional superconductors [2]-[4] and it has
been observed recently in high-Tc superconducting YBCO crystals [5], [6]. Over the years,
understanding the peak effect has been one of the most challenging tasks in the problem of
vortex-lattice pinning [7]. Although the rise of critical current at the onset of the peak effect has
been attributed to some kind of abrupt softening of the vortex lattice [8], [9], the underlying
mechanism remains unknown. Various possible close connections between the peak effect
and the vortex-lattice melting have been conjectured recently [10]-[12], [6]. In this paper,
we propose a mechanism in which the peak effect is a manifestation of the vortex-lattice
melting in realistic systems with quenched disorder. Specifically, we suggest that the rise
of the critical-current with increasing temperature is a result of a crossover from the Larkin
pinning length to the elastic length set by thermally excited free dislocations (1).

Let us first recall briefly the general features of the peak effect in both conventional and high-
Tc YBCO superconductors. Figure 1a) is a plot of the critical-current density as a function

(∗) Present address: Department of Physics, Brown University, Providence, RI 02912, USA.
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Fig. 1. – a) The temperature dependence of critical-current density for a YBCO crystal in a magnetic
field (ref. [10]). We define Tcross as the onset temperature at which jc starts to increase. b) Ic vs. H
for 2H-NbSe2 (ref. [9]). The solid line is a fit by eq. (2). The dotted lines are guide for the eyes.

of temperature extracted from ref. [5] for a YBCO crystal. With increasing temperature, jc
initially decreases monotonically, then suddenly rises, reaches a peak before finally dropping to
zero. Similar behavior is also observed in low-Tc type-II superconductors, often as a function
of the magnetic field [2]-[4]. Figure 1 b) is a reprint of fig. 1 (inset) of a recent work [4] on
2H-NbSe2. It was found that the peak effect disappears when the sample is strongly disordered
and has a high jc [2], [4]-[6]; the critical current decreases monotonically to zero with increasing
temperature or field.

The most striking aspect of the peak effect is the sharp rise of critical current with increasing
temperature or field. According to the collective pinning theory of Larkin and Ovchinnikov
(LO) [9], the critical current is determined by an elastic length: the pinning length. Larkin [14]
showed that random pinning breaks the vortex lattice into domains of correlated regions within
each of which the vortex lines interact elastically. The size of the Larkin domains can be
estimated by a simple energy consideration. The vortex lattice deforms to take advantage of
the random pinning potential at the cost of the elastic energy. The total unit volume energy
change is [9]

δF = C66

(rp

R

)2

+ C44

(rp

L

)2

− frp

( n
V

)1/2

, (1)

where C66 is the shear modulus of the lattice, C44 the tilt modulus, rp the range of the pinning
potential, f the typical force of an individual pin, n the pinning density, R and L are the
transverse (to the field) and longitudinal (along the field) dimensions of the domain, and V =
R2L. The minimization of eq. (1) gives the pinning lengths Rc and Lc: Rc ∼ C3/2

66 C
1/2
44 r2

p/nf
2,

Lc = (C44/C66)1/2Rc. In very thin samples with a perpendicular field, if the pinning is so weak
that Lc is greater than the sample thickness, the problem becomes two-dimensional (2D) and
only Rc ∼ C66rp/n

1/2f is relevant. In the LO theory, the critical-current density is determined
by equating the Lorentz force with the typical pinning force in a domain: jcB = (nf2/Vc)1/2.
Thus, the rise in jc can be accounted for if the volume of Larkin domain Vc drops faster than
nf2 in some field or temperature range. The central question here is what mechanism does
that.

It was suggested [9] that the peak effect is due to the softening of the tilt modulus C44 as
B approaches Bc2(T ) [15]. This explanation of the peak effect has serious difficulties. First,
it does not account for the temperature dependence that jc rises with increasing T [11]. The
second difficulty of this mechanism is that the peak effect has been observed in thin films [3]
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and in very thin NbSe2 crystals with pinning weak enough such that Lc well exceeds the
sample thickness [4] (2), in which C44 does not seem to play any role. A recent scenario
attributes the rise of jc to a pre-melting softening of the shear modulus C66 [12]. However, it
is difficult to imagine any specific mechanism for the softening, especially that the rise of jc
is often very sharp (e.g., see fig. 1 b)) and sometimes jc even jumps discontinuously [17]. Here
we propose that the rise of the critical current at the onset of the peak effect is a consequence
of vortex-lattice melting in a weak random potential.

Thermal fluctuations cause melting of the vortex lattice [18], [19]. In ideal systems, the
melting of a 2D algebraically ordered vortex lattice has been suggested to be either of the
Kosterlitz-Thouless-Halperin-Nelson-Young type [18], or a weak first-order transition [20].
Much less is known for the melting of a 3D lattice in general. For a perfect 3D vortex lattice
both analytic considerations [21] and numerical simulations [22] suggest a first-order transition.
In particular, it has been shown that a finite density of free edge dislocations would result in
a zero long-wavelength shear modulus [23]. In the presence of quenched random potentials,
the ground state of the vortex array no longer possesses long-range translational order and the
vortex array is pinned. However, when the quenched potential is weak the Larkin domains
are very large. In the case of 3D, the translational correlation function could even be power
laws over long distances (quasi–long-range order) [24]. Although there is no longer a melting
transition of a long-range ordered lattice, one may still consider the disordering on a short
length scale, or the melting of the Larkin domains [25]. Since, according to LO, it is the elastic
length scale of a collective volume that determines the critical current, we show below that the
melting of the Larkin domains may result in a rise of critical current in an experiment. We
first consider the case of 2D where much is known for the melting of a pure lattice [26], [27].
We then speculate on the 3D case.

In a 2D elastic lattice, thermally excited dislocation pairs are bound for temperatures
below the melting temperature Tm and, consequently, the shear modulus is finite. At Tm,
the largest dislocation pairs start to dissociate and the long-wavelength shear modulus drops
discontinuously to zero. Above Tm, the density of free dislocations rises from zero, and
the mean distance between free dislocations is the Kosterlitz-Thouless correlation length
ζ ∼ exp[c/(T − Tm)ν̄ ] with ν̄ = 0.36963 · · · [27], which diverges as T → T+

m . The correlation
length ζ also sets the length scale for the q(wave vector)-dependence of the shear modulus
µ(q, T ): roughly speaking, µ is zero for q < 1/ζ and finite for q > 1/ζ. Now imagine that
the vortex lattice is weakly pinned. For T < Tm, the Larkin length Rc sets the elastic length
scale and the critical current density jc = n1/2f/RcB. At T = Tm, the vortex lattice melts
with the (infinitely) long wavelength shear modulus dropping to zero. However, the pinned
lattice would not feel being melted at this point, as far as the jc is concerned, since the lattice
is elastically decoupled beyond the length scale of Rc by the quenched random potential. The
critical current density is still determined by Rc. For T > Tm, another length scale ζ, the
Kosterlitz-Thouless correlation length, enters the system. ζ decreases exponentially fast from
the infinity as the temperature is increased and will soon become comparable to Rc. For
ζ < Rc, the Larkin domains decompose into smaller coherent domains and the relevant elastic
length scale for the determination of jc is now ζ:

jc =
n1/2f

ζB
≈ n1/2f

B
exp

[
− c

(T − Tm)ν̄

]
, (ζ < Rc). (2)

Thus the onset of the peak effect occurs when the two length scales Rc and ζ cross each other
(fig. 2). The exponential increase of jc with T (eq. (2)) would continue until ζ is so small that

(2) The peak effect in thin 2H-NbSe2 crystals was previously interpreted as a dimensional crossover
by Koorevaar et al. [16].



                

600 EUROPHYSICS LETTERS

R c

b) c)

ζc

Tm

ζ

a)

Tm Tcross Tm Tcross

R c R c
ζ ζ

ζ c

T T T

Fig. 2. – Schematic behavior of the two length scales Rc and ζ, as functions of temperature: a) con-
tinuous melting transition; b) first-order melting transition with ζ(Tm) > Rc(Tm); and c) first-order
melting transition with ζ(Tm) < Rc(Tm). The temperature for the onset of the peak effect is Tcross,
where ζ becomes smaller than Rc. In c), Tcross = Tm. The solid part of the lines determines the
critical-current density. Note that the peak in these plots corresponds to the dip in jc.

the thermally activated vortex motion starts to dominate, causing jc to drop (3). In the very
thin 2H-NbSe2 crystal studied in ref. [4], the longitudinal Larkin pinning length Lc estimated
from jc is much longer than the thickness of the sample. Thus the pinning problem in this
system is two-dimensional. The solid line in fig. 1 b) is a fit to the experimental data using
eq. (2), assuming a simple linear relation T − Tm ∼ B − Bm and using the exact exponent
ν̄ = 0.36963 · · · . Given the simplicity of the model, the fit is remarkable. A numerical
simulation in 2D [29] also indicated that the melting temperature is at the onset of the peak
effect. Some other simulations suggested a very weak first-order melting transition in 2D [20].
In that case, one might expect to see a small jump in jc (see below).

In the 3D case, melting of a pure lattice is much less understood. If the melting transition
is mediated, or accompanied, by generation of the free edge dislocations, one would expect
a similar mechanism for the peak effect as in 2D, with the elastic length ζ now being set by
the mean distance between dislocation lines. Another length scale which may play the role
of ζ is the viscous length [30]. To make a qualitative estimate for the behavior of jc in the
peak effect regime, we take the Landau-Ginzburg–like free energy often used in 3D dislocation
systems [31]: F (ρ) = −F1ρ lnCρ + F2ρ + F3ρ

2, where ρ is the areal density of dislocation
lines, F1 and F3 are positive constants, C is a constant of the order a2 with a being the lattice
constant, F2 > 0 at low temperatures and F2 < 0 at high temperatures. The logarithmic term
is due to the long-range elastic interaction of dislocation lines. It is easy to show that this free
energy implies a first-order transition (4):

ρ =
{

0, T < Tm ,
ρc +A(T − Tm), T ≥ Tm ,

(3)

where ρc = F1/F3 and A = [F ′1(lnCρc + 1) − F ′2 − 2F ′3ρc]/F3. The mean distance between
dislocation lines, ζ = ρ−1/2, is the length scale to be compared with the Larkin length Rc:

jc =
n1/2f

V
1/2
c B

=


n1/2f

L
1/2
c RcB

≈ n2f4

C2
66C44r3

pB
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n1/2f

L
1/2
c ζB

≈ n2/3f4/3ρ
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1/3
44 r

1/3
p B
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1 +

A

ρc
(T − Tm)

]2/3
, ζ < Rc ,

(4)

(3) Strictly speaking, there is no true critical current at finite temperature due to thermal activa-
tions [28]. One can, however, combine Anderson’s picture of thermal activation with LO’s collective

pinning theory to obtain a measured jc as jcB = (nf2/Vc)1/2−αkBT/rpVc, where α is determined by
experimental sensitivity. For weak pinning where Vc is large, thermal activation (the second term) is
insignificant until the lattice melts.

(4) We are grateful to M. Rabin for pointing out an error in our original calculation.



             

CHAO TANG et al.: PEAK EFFECT IN SUPERCONDUCTORS: MELTING OF LARKIN DOMAINS 601

where in the region of ζ < Rc eq. (1) is minimized, with Rc replaced by ζ, to determine Lc.
Since ζ has a discontinuous jump at Tm (if the transition is first order), it is possible that jc
will have a jump at the onset of the peak effect which may occur in samples with “very weak”
pinning (fig. 2 c)). In fact, a jump in jc was observed experimentally in a 3D sample [17].

To conclude, we have proposed a mechanism for the peak effect based on the spontaneous
generation of free dislocations closely related to the melting of the vortex lattice in the presence
of weak pinning. The onset of the peak effect is the crossover of the two elastically relevant
length scales. Note that our argument does not depend on the detailed nature of the melting
transition, e.g., first vs. second order. We believe that this picture captures the basic physics
of the peak effect, at least for weak enough pinning. On the other hand, if the pinning is so
strong that the Larkin length is of the order of the lattice constant, the sample should not,
according to our scenario, show the peak effect.

***

We thank M. Higgins for providing the data in fig. 1 b).
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