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We compare the critical properties of the two-dimensional (X)model in a transverse magnetic
field with filling factors f = 1/3 and 2/5. To obtain a comparison with recent experiments, we
investigate the effect of weak quenched bond disorderffer 2/5. A finite-size scaling analysis
of extensive Monte Carlo simulations strongly suggests that the critical exponents of the phase
transition for f = 1/3, and for f = 2/5 with disorder, are those of the pure 2D Ising model.
Studying the possible domain walls in the system provides some explanations for our results.
[S0031-9007(97)03625-9]

PACS numbers: 64.70.Rh, 64.60.Fr, 74.50.+r

The frustrated{Y model provides a convenient frame- two options with members of th&, group. A common
work for studying a variety of fascinating phenomenaspeculation for commensurate-incommensurate transitions
displayed by numerous physical systems. One experimemnd the frustrated’Y model is that the transition should be
tal realization of this model is in two-dimensional arraysin the universality class of the-state (or2¢-state) Pott's
of Josephson junctions and superconducting wire networksiodel. We find that this is not the case because domain
[L1-3]. A perpendicular magnetic field induces a finite walls between the different states vary considerably in both
density of circulating supercurrents, or vortices, within theenergetic and entropic factors.
array. The interplay of two length scales—the mean sepa- Table | lists the energy per unit length for straight
ration of vortices and the period of the underlying physicaldomain walls between the various ground states at zero
array—gives rise to a wide variety of interesting physicaltemperature. We also numerically calculated the energy of
phenomena. Many of these effects show up as variationdomain walls that are not straight. Closed domains, such
in the properties of the finite-temperature superconductings those seen in the simulations, of linear dimengifnom
phase transitions at different fields. Recent and ongoin@0 to 60 unit cells in a system of si2@0 X 120 have en-
experiments have measured the critical exponents in sergies that scale linearly ih to very high accuracy (Un-
perconducting arrays [3], opening the opportunity to dousual patterns of vortices could have energies which scale
careful comparison of theory and experiment. In this Let-with a higher power of., but these were not observed in
ter we examine the critical properties of the XIF model the Monte Carlo simulations.) Examining two domain
for two different values of the magnetic field in the denselywalls as a function of their distance apart shows only short
frustrated regimé f > 0) and in the presence of disorder. range forces between them, and the closed domains con-

The Hamiltonian of the frustrateklY model is structed from the lowest energy walls are neutral and have
no net dipole moment [5]. This strongly indicates that we

= = Jicod; — 6; — Ayj), (1) can treat the energy of these domains as being linear in
p L. Another type of excitation is vacancy-interstitial pairs.

where 6; is the phase on sitg of a squareL X L  gych pairs have logarithmic interactions and can undergo

lattice andAlj @m /o) [ A - dl is the integral of 3 Kosterlitz-Thouless (KT) transition [6]. We first focus
the vector potential from sité to site j with ¢¢ being o1 domain wall excitations.

the flux quantum. The directed sum of thg around an

elementary plaquettd. A;; = 27 f, where f, measured

in units of ¢y, is the magnetic flux penetrating each @

plaguette due to the uniformly applied field. We focus

here on the cases = p/q with p/q = 1/3 and2/5. =153
A unit cell of the ground state fluxoid pattern for these s

f is shown in Fig. 1(a) [4]. The pattern consists of
d|agonal stripes composed of a single line of vortlces E

for f = 3 and a double line of vortices fof =

vortex is a plaquette with unit fluxoid occupatlon ie.,
the phase gain@7 when going around the plaquette) FIG. 1. Fluxoid pattern for (a) unit cells gf = % andf = %
The stripes shown in Fig. 1(a) can sit gnsublattices, a9 domain walls forr =  for the (b) herringbone wall, (c)

which we associate with members of g group. They  ghift-by-one wall, and (d) %hift-by-one wall branching into two
can also go along either diagonal, and we associate thekerringbone walls (a vortex is shown as a dark square).
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TABLE I. Domain wall energies. m—s;)/(ms; + m_g;), j =1-3.0n average, thesd; are
Energy per unit length the same so we just take th_e averagdfasTto calculate the
: _ = my;, We examine the Fourier transform of the vortex den-
Domain wall type f=1/3 f=2/5 7 . . T
sity py+ at the reciprocal lattice vectoks. = 5 (1, = 1) of

Herringbone 0.056 737 434 0.086117 262 ; ; -
Shift-by-one 0.114.199 976 0.158 899 285 ':_he grfo:;hndFstatt_e V(;rtex 1I:attlces. dSta_rtlngtr:‘rom t?e d?flpl
Shift-by-two 0.166 666 665 0.166122315 "o Of 1€ MOUMNET [Tansiorm, and using e Voiex siates
Shift-by-three 0.147648594 given above, one findpy+/pg = mesy1 + mei e +
Shift-by-four 0198688780 m=13e 27/3 wherep, is the modulus in the ground state.

In practice,p;+ is reduced by small short-lived regions
which don’t quite match any of the six states. Since this
The fluxoid pattern for the two lowest energy walls ateffect is the same for all states, it cancels when calculating
f= % is shown in Fig. 1. The figure shows how a shift M. Using p;, in addition toY; m, ;, calculated from
wall can be viewed as two adjacent,mund herringbone the direct vortex lattice as in [9], we can find the, ;.
walls. Forf = % the energy of two herringbone walls is ~ The transition temperature is located using Binder’s cu-
less than that of a single shift wall, and, hence, the shiftulant [10],U = 1 — (M*)/(3(M?)?), shown in Fig. 2(a).
walls are unstable and break up into herringbone wallsFor system sizes large enough to obey finite-size scaling,
As a resu|t, we confine our discussion of ]}ﬁe: % case to this quantity is size independent at the critical pOint. From
the herringbone walls, as other walls should not be preseffitig. 2, we find7. = 0.2185(6)J. T, can also be deter-
at large length scales. The energy cost for dividing arnined from the scaling equation for the temperature at the
L X L lattice into two domains separated by a solid-on-P€ak of thermodynamic derivatives such as the suscepti-

solid (SOS) wall stretching from one side of the system tdlity, T.(L) =T, + aL~/*. We find these other methods
the other is give T, in agreement with that frory.
The exponents for the specific heat, the order

Hingielz} = boL + bo D |z — z—1l.  (2)  parameter, the susceptibilityy, and the correlation

_ _ k _ length v describe the usual power-law singularities in the
The height variables, take on integer values)(= 3 is  jnfinite system limit. Finite-size scaling [11] &t applied
the shortest length segment). The partition function cagy ginpr/9k [12] gives 1/v = 1.007(25), applied to
be evaluated to give the li]nterfacial free energy per CO|Um@,usceptibiIityX givesy/v = 1.743(20), and applied td/
[7] F = Tn[e®*/Ttank(37)]. The zero crossing off  gives B/» = 0.142(20) [these exponents are determined
gives an estimate of the critical temperature. Pluggingrom the slopes of the lines shown in Figs. 3(a) and
in the values for the = % herringbone wall give§. =  3(b)]. This is in excellent agreement with the Ising values
0.19J, inremarkable agreement with the valie= 0.22J v=11y= %, andg = é Figure 2 shows the collapse
found in the Monte Carlo simulations described below.of the raw data onto the scaling function (inset) far

Being similar to Ising walls, herringbone walls cannot Ty, previous examinations of thg = % case [13]
branch into other herringbone walls; thus the set of possiblg,ggested a continuous transition but did not measure
domain wall configurations is similar to those in an Isingcritical exponents. Lee and Lee [9] claim to find separate,
model. We label the fraction of the system in statec|osely spaced transitions for the breakingZefand Zs.
(s.j) asm; ;, wheres = *1 denotes the member &,  One explanation for their conflicting results comes from
and j = 1,2,3 denotes the member ;. Below the  the small systems( = 42) used in their analysis. Below
transition, one statés, i) spans the system. On this state T., if the dominant state i¢s, i), in small systems you

sit fluctuating domains, bounded by herringbone walls, obften do not see all three of the-s, j) states in the

each of the state6—s,1),(—s,2), and (—s,3) in equal  gystem at the same time. This can give the impression
numbers; therefore th&;, symmetry is broken for thé, )

states, but not for thé—s,j) states. As the transition 0.66

is approached from below, the domains occupied by the

(—s,j) states grow, with smaller domains of tlie j)

states within them. At the transition, tH& symmetry 0.64

between thets states is restored, and, as a result,Zhe U

symmetry for the(s, j) states is also restored. 0.62
The Monte Carlo simulations used a heat bath algo-

rithm with system sizes df0 = L = 96. We computed

between10’ and 3 X 10’ Monte Carlo steps (complete

lattice updates) with most of the data taken closd'to

Data from different temperatures was combined and angs|; o

400

200

0.214 0.218 0.222 0.2 0.24 0.28
T T

f = 1/3 (a) Binder's cumulanty vs T for L = 36

lyzed using histogram techniques [8]. o to L = 84 (smallerL shown as dotted lines), and (ly) vs T
If the largest fraction of the system is in statgi), for L = 36 to L = 84 and scaling collapse of this data (inset)
then we have three Ising order parametfs,= (m,; —  wherex = (T — T.)L'*,y = yL™"/”, v = 1, andy = ‘7—1
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10 ;(a)'//./ul/;—g 08 \ o] Haouble{A, 2} = g{@bcf +u)8,.0) + bolzk — zx-1l
5[0 ] L _
£ 00 1000 ] + 2bo +uy 8.,.0)Ar + V.({A, 2})}.
= | 4 04 04 4
5 o2 N 3
1 oo o N zx is the separation of the walls; = 0), and A; is the
: : number of vertical steps the two walls take in the same
SN ST direction in thekth column (—» < A, < ®). u; and
3p@ E u, are the binding energies parallel and perpendicular to
w2 g . : " the wall. At this stage we tak€, = 0. Summing over
1B, e Ay leaves the partition function in the form of a transfer
N T matrix: Z = >, [[; T?'. A ground state eigenvector

20 40 60 80 Y. (z) = e #*, wherel/u is the localization length, or
L a typical distance separating the lines, characterizes the
FIG. 3. Finite-size scaling plots fof = % (triangles) and bound state of the two linesw = 0 defines the unbinding
f =28 =0.1 (pentagons): (a) logarithmic derivative of  transition atl,. One findsT;, = 0.398J for the shift-by-
vs L, (b) x vs L. (c) Scaling collapse off where x =  one walls andl, = 0.442J for the shift-by-three walls.
(T — TOLV",y = YLF/*, v = 1,andB = é Inset: raw data The free energy for these walls crosses zero before they

(solid and dotted)% T (dashed), ana|T — T.|# (dot-dashed). unbind. Hence, at the transition, we expect a branching

(d) Free energy barrier vs system size jo= 2 ands =0  domain wall structure similar to the = 5 Pott’s models
(squares).05 (circles), and.10 (triangles). where a first order phase transition occurs.

In a previous study [14], hysteresis of the internal energy
N o ~ was used as an argument for a first order transition at
of separate transitions for small. This impression is ¢ — % The most direct indication of a first order transition
enhanced by the presence of a shoulder in the specific h&@lihe presence of a free energy barrier between the ordered
at intermediatel. [9]. For largerL we see this shoulder 5,4 disordered states which diverges as the system size
merge with the main peak, and for= 84 and96 itis N0 jncreases [15]. The free energy as a function of energy
longer clearly discernible. _ is obtained usingf; (E) = —InP(E) where P, (E) is the
The helicity modulusy is the quantity most closely prgpability distribution for the energy generated by Monte
related to experimental measurements [6]. Fot 0,the 5110 simulation of arl. X L system. Figure 3(c) shows
scaling of the/-V curves found in experiments is consistento growth in this barrier ad. increases, giving clear
with domain wall activation processes [3]. The theory ofgyidence for the first order nature of the transition. Also,
Nelson and Kosterlitz for th¢' = 0 case predicts thal  ccording to finite-size scaling, the maximum @fand
should come down in a characteristic square-root cusp an/g should scale with.? for first order phase transitions

then jump with a universal valu@kgTxr/7. However, [11]. We find this to be the case and also obt&jn=
we find an exceptionally good fit [Fig. 3(c)] of our dalta 10 0.2127(2)J [5].

Y = LB M(T = T)LV") with v = 1 and B = g, We now consider the effects of disorder on the= 2
the scaling form of/. We see two possible interpretations phase transition. Taking the couplings in the Hamiltonian
of our result. The firstis thdt only receives contributions (1) ag Ji; = J(1 + €;;), the ¢; are chosen randomly
from the ordered part of the lattice. So comparisons withrom a Gaussian distribution with a standard deviation
the f = 0 case should examing, = Y/M. Y, = 0.58 5 Because of variations of the phase differences across
at the transition implies a larger than universal jump.the honds, a specific realization of random bonds may
Alternatively, one can say that, althougtis brought down  t4y0r a certain sublattice for the ground state, creating an
by fluctuations inM, it should still jump when it crosses gffective random field. To quantify the effect, we placed
the universal valueksT /7. Extrapolating the observed the fluxoid configuration of the ground states down on
behavior ofY givesY;—... = alT — T|#. This crosses 1000 separate realizations of the disorder and allowed the
the value of the universal jump &kt — 7. = 10°°.  continuous degrees of freedom (the phases) to relax and
Although we do not see evidence for a jump, a differenceninimize the energy. We find that the changes in energy
in transition temperatures d~° would not lead to any  rom thes = 0 case fit a Gaussian distribution with mean
observable effects for the system sizes studied here. —0.582L2 and standard deviatiofL. The difference in
While, for f = 3, herringbone walls are the only stable energy between states which were degenerate in the clean
walls, this is not true forf = % For f = % it is  systemisthe measure of the random field. This difference
energetically favorable for two herringbone walls to bindcenters on zero and has a standard deviatiof. 6 L
and form a shift-by-one or shift-by-three wall. Binding for two states related by a shift aBd76 L for two states
does, however, have an entropic cost. To see if theseith vortex rows along opposite diagonals. The effect
walls are bound, we consider the following model for two of random fields on discrete degrees of freedom in 2D is
SOS walls: marginal [16]. ForD > 2 there is a critical randomness
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above which random fields cause the formation of domainglots givel/» =1.05(12) and v/» = 1.70(12). A simi-

in the ground state of size-&,s. Aizenman and Wehr lar analysis ofdoM /oK gives (1 — B)/v =0.94(10) [5].

have shown that this critical randomness is zero in 2DNithin errors, these exponents are what one would expect

[16]. Yet, their result does not preclude the possibilityfrom an Ising model. Experiments fit= % [3] also found

that &¢ is so large as to be unobservable in a finite-sizedh continuous transition and measured the critical exponents

sample. Indeed, experiments on superconducting arrays=0.9(5) and the dynamic critical exponent=2.0(5),

have found apparent phase transitions, including scalingonsistent with an Ising transition.

behavior [3], in sample sizes of ord€00 X 1000. In our In conclusion, we find that the nature and universality

simulations with disorder & = 0.1, all systems had alow class of the phase transitions are quite sensitive to the

temperature state with the order parameter approachingoximity of the binding transition for the lowest energy

unity. We will, therefore, ignore the effects of random domain walls. Forf = 1/3 the lowest energy walls are

fields for 6 = 0.1, assuming that,; is larger than the never bound and the transition is Ising-like. For 2/5

sample size. domain walls can lower their free energy by binding
At any coexistence point of the clean system, randomo each other, resulting in a first order phase transition.

bondsresult in different regions of the system experienc-Disorder weakens this binding and changes the transition

ing average couplings slightly above or below the criticalto be continuous and Ising-like. Our results are consistent

coupling. As a result, at any given temperature the systemyith the continuous phase transition and critical exponents

will predominantly prefer either the ordered or disorderedobserved experimentally fgf = 2/5 [3].

state wiping out the coexistence region and leaving only We thank M. Aizenman, P. Chandra, J. M. Kosterlitz,

a continuous transition [16]. Kardat al. [17] suggested X.S. Ling, and D. Huse for useful discussions.

a possible mechanism for this effect. Their renormaliza-
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