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Low-energy excitations and phase transitions in the frustrated two-dimensionaKyY model
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We study the critical properties of the two-dimensio(2D) XY model in a transverse magnetic field with
filling factors f=1/3 and 2/5. To obtain a comparison with recent experiments, we investigate the effect of
weak quenched bond disorder fbr 2/5. A finite-size scaling analysis of extensive Monte Carlo simulations
strongly suggests that the critical exponents of the phase transitidr=fbt3 and forf = 2/5 with disorder are
those of the pure 2D Ising model. The relevant low-energy excitations are domain walls, and we show that
their properties determine the nature of the phase transfi89163-18208)05634-3

I. INTRODUCTION 2Aj=2mf where f, measured in the units ab,, is the
magnetic flux penetrating each plaquette due to the uni-
In this paper we examine the frustraté®f model in two  formly applied field. We focus here on the ca$esp/q with

dimensions for two different values of the magnetic fieldp/q=1/3 and 2/5, whose ground state fluxoid pattern is
representative of “commensurate states.” Experimental reshown in Fig. 1a).>®
alizations of this model in the form of two-dimensional ar- A  common speculation for  commensurate-
rays of Josephson junctions and superconducting wircncommensurate transitions and the frustraxed model is
networks 3 can and have been constructed and one of théhat the transition should be in the universality class of the
objectives of this work is to understand the results of thesel-state(or 2g-statg Pott’'s model. We find that this is not the
experiments. A perpendicular magnetic field induces a finitecase because, as discussed below, domain walls between the
density of circulating supercurrents, or vortices, within thedifferent states vary considerably in both energetic and en-
array. The interplay of two length scales—the mean separaropic factors.
tion of vortices and the period of the underlying physical The effect of quenched impurities on phase transitions is
array—qgives rise to a wide variety of interesting physicalan important and fascinating problem. The *“Harris
phenomena. Many of these effects show up as variations iariterion”” indicates that the addition ¢dbond randomness
the properties of the finite-temperature superconductingo systems which exhibit second-order transitions in the
phase transitions at different fields. In recent experiments onlean case with a positive specific-heat exponemhanges
superconducting arrays the critical exponents of a number ahe numerical values of the critical exponefts.has also
these phase transitions have been measumkning the been shown using phenomenological renormalization-group
opportunity to do careful comparison of theory and experi-arguments that the addition of bond randomness to systems
ment. While we will discuss the model within the context of

superconducting networks, the model is also closely related @ f=25
to the physics of adsorbed films on substrates which impose ~ f~1/3

a periodic potential which differs from the preferred period

of the adsorbed film. In this work we examine the ground

state properties, low energy excitations, and critical proper-

ties of the 2DXY model in the densely frustrated regime
(f>0) for two particular values of the magnetic field. In
addition, we investigate the effect of disorder on the ground
state and critical properties. This paper elaborates and ex-
pands upon our previous results reported in Ref. 4.

The Hamiltonian of the frustratedY model is

H:_E JijCOigi_aj—Aij), (1)

I
) o - ) FIG. 1. (a) Fluxoid pattern for ground states 63 andf=2
where ¢ is the phase on sitp of a square. XL lattice and  (ynit cells are marked by solid linesDomain wall fluxoid pattern
Aij=(27l o) [IA-dl is the integral of the vector potential for f=1: (b) shift-by-one wall,(c) shift-by-two wall, (d) herring-
from sitei to site j with ¢, being the flux quantum. The bone wall, ande) herringbone wall with a shift-by-twea vortex is
directed sum of theA;; around an elementary plaquette shown as a dark square
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FIG. 2. Partition of the square lattice into staircases with the
current flowing up or down the staircases.

undergoing first-order transitions results in a random-field
mechanism at any coexistence region which can cause the
transition to become ContinuoasAizenman and WeHP FIG. 3. lllustration of several possible bends and kinks in the
have shown quite rigorously that in 2D a quenched randonfifferent types of domain wallsa) A 90 degree bend in &=1/3
field results, quite generally, in the elimination of disconti- Shift wall showing change from shift-by-one to shift-by-two wall.
nuities in the order parameter conjugate to the fluctuatingb) f=1/3 shift-by-one wall branching into two herringbone walls.
field. Most cases where bond disorder has been studied ang Kink in a f=1/3 shift-by-three wall accomplished by moving
observed to change the order of the transition arepfstate ¢ Vortex marked in plaid.
Potts Models, where foq=8 Chenet al!! found through
extensive Monte Carlo simulations, that the first-order traniurn to the examination of the properties of the different do-
sition of the pure model became second-order with the critimain walls between these states.
cal exponents being consistent with the universality class of
the two-dimensional Ising model. Unlilggstate Pott's mod-
els with highq, the frustratedXY system is more readily
compared to experiments such as recent experimental mea- Figures 1b)—1(e) shows the fluxoid pattern for some of
surements of critical exponents in superconducting arfays. the domain walls forf = 1/3. The domain walls can be clas-
sified into two typesShiftwalls involve a shift of the vortex
Il. STAIRCASE STATES pattern across the wdkuch as in Fig. (b) where the pattern
o ) on the right is shifted down by one lattice spacing with re-
The ground states of the Hamiltoniah) will be among  gpect to the pattern on the lefiut the lines of vortices are
the solutions to the supercurrent conservation equationg;| going along the same diagonalerringbonewalls are
dHI96;=0: walls between states with the vortex stripes going along op-
posite diagonals. Note that there ardifferent walls of each
> sin(6;— 6~ A1) =0, 2 type. o . .
i’ These walls also have differing topologies. A herringbone
wall is very similar to a domain wall in an Ising model in

wherej’ are the nearest neighborsitoOne set of solutions that it tes t bers of It th h
to these equations was found by Hafsey considering the atit separatés two members atagroup. It cannot branc
gto other herringbone walls and a 90 degree turn in the wall

restriction to a quasi-one-dimensional case where one hd b lished without chanaing th . i
adjoining staircases of curretgee Fig. 2 All gauge invari- \(/:V?t?] the ac\cjorrlpﬂI]Sten N :l;d Cr atﬂglrv]vg I te t:/or er):w e eolm,f
ant phase differencey,=0,— 6,— Ann, Within a given € caveat Inat one considers the wall 1o be composed o

staircase are equal and indexing the staircases g shown s_ections of I_e ngth equal to the dist_ance between the d_iagonal
in Fig. 2 one finds lines of vortl_ces(see Fig. 3 Thus, if one onl_y has herr_lng-
bone walls in the system, the set of possible domain wall
ym=mfm+ al2—  ninf fm+ a/(27)], 3) configurations is similar to those in an Ising model. Shift
walls, on the other hand can branch, both into other shift
where nint is the nearest integer function, ame 0 for f walls (with the constraint that the sum of the shifts on the
=pl/q with q odd anda= 7/q for q even® walls after the branch be equal to the original shaftd into
The staircase fluxoid pattern fér=1/3 and 2/5 is shown a pair of herringbone walls, as shown in Figh8 Shift walls
in Fig. 1(a).>® The pattern consists of diagonal stripes com-also have an associated directionality in the sense that an
posed of a single line of vortices fé=35 and a double line attempt to make a 90 degree turn in a shiftrbwall results
of vortices forf=2%. (A vortex is a plaquette with unit flux- in the wall changing to a shift-bygtn) wall [see Fig. %)
oid occupation, i.e., the phase gains #vhen going around for an illustration]. Since different shift walls can have quite
the plaquettg.The stripes shown in Fig. 1 can sit gnsub-  different energiegsee below one finds that bends such as
lattices, which we associate with members of fegroup.  the one shown in Fig.(d) are energetically highly unfavor-
They can also go along either diagonal, and we associa@ble as it can change a wall with low energy into a wall with
these two options with members of thg group. In all, there  a very high energy cost. A more energetically favorable kink
is a total of 21 degenerate states € p/q+1/2). We now in a shift wall can be formed by displacing a mismatched

IIl. DOMAIN WALLS
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TABLE I. Domain wall energies per unit lattice constant for stable domain wall structueeswalls
which produce a vortex pattern consistent with/ 56;=0 for every6;). Then in herringbonea denotes the
associated shift whene=0 is the standard herringbone.

Domain wall type Energy per unit length

f=1/3 f=2/5
Herringbone-0 0.05673742 J 0.08611726 J
Herringbone-1 0.19503538 J
Shift-by-1 0.11419998 J 0.15889929 J
Shift-by-2 0.16666667 J 0.16612232 J
Shift-by-3 0.14764859 J

vortex on the wall in a direction parallel to the w&This  froth are stable to the development of bubbles. For instance
displaces a section of the wall one unit cell in the directionif one starts with a linear interface at low temperature and
perpendicular to the walkee Fig. &)]. Typically, one finds then, somewhere in the middle, branches to form a bubble, if
only kinks like these of size one or two lattice constants.the interfaces never return to close the bubble, one is left
Larger kinks start to produce long range distortions in thewith two independent linear interfaces. If one has only linear
phase field and have higher energy. interfaces in the model, one would expect to find that these
In order to calculate the energies of different structuresinterfaces would lead to an Ising transition. If a branching
we solved the equation§2) numerically, using a quasi- domain wall structure is stable one might expect something
Newton method, on lattices with up to X30° sites with more like what happens in the Pott's model to happen and
constraints fixing the fluxoid occupation of each plaquettethe possibility of a first order phase transition is not ex-
(see Appendix A Table | lists the energy per unit length  cluded.
for straight domain walls between the various ground states One can see from Fig(B) that a shift wall can be viewed
at zero temperature fdr=1/3 and 2/5. One can see from the as two adjacent, dooundherringbone walls. Fof=1/3 the
table that there are typically one or two walls with consider-energy of two herringbone walls is less than that of a single
ably lower energy than any of the others. Some of the patshift wall and hence, the shift walls should be unstable to
terns of energies seen in the table can be understood Hyreaking up into herringbone walls. As a result, one expects
counting the number of extra vortices in next or next-next-that in thef =1/3 case if the temperature is high enough for
nearest neighbor plaquettes for the vortices along the waldomain walls to enter the system, the herringbone walls
For instance, the energy of &=1/3 shift-by-one wall is should be the only walls present at large length scales. This
about twice that of the standard herringbone wall. Looking ais consistent with our observations of configurations gener-
Figs. 1b)—1(e) one can see that if you count the number ofated by the Monte Carlo simulatiortdescribed beloyw We
next-next-nearest neighbor vortices for vortices along eachave examined many of these vortex configurations and
side of the wall, the shift-by-one wall has twice as many adound that forf = 1/3 all the large domain@nything involv-
the herringbone. Similarly, walls which place vortices oning more than a few vorticgsin the ordered state were
nearest neighbor sites tend to be of a higher energy, or mayounded by herringbone walls. While fdée=1/3, herring-
not even be stable. While this does give a rough guide to thbone walls are the only stable walls, this is not true for
pattern of energies, it does not allow a strong comparison of 2/5. Forf=2/5 it is energetically favorable for two her-
walls with differently spaced vortices. ringbone walls to bind and form a shift-by-one or shift-by-
The nature of these interfaces at a second order phaskree wall. This can lead to more complex domain wall struc-
transition gives a great deal of information about the corretures and has an important impact on the nature of the finite
sponding universality class to which it belongs. The interfa-temperature phase transition. These issues will be addressed
cial free energy vanishes at criticality with the Widbhex-  in more detail below.
ponent w, which is related to other exponents of the We also numerically calculated the energy of domain
transition through scaling relations such astv=2-«. walls that are not straight. Figure 4 shows the energy of a
Extended domain walls in Ising models have been studiedquare closed domains, formed from herringbone walls, of
extensively by making use of solid-on-soli@OS models linear dimensiorlL unit cells in a system of size 120120
which makes the analysis simpférinterfaces of a Pott's with periodic boundary conditions. We see that to a very
model are much more difficult to study as they are complexgood approximation, the energy scales linearlyLin One
branching objects which become fractal at criticality. Never-can, however, work out some corrections to this linear de-
theless, simplified models in the spirit of the SOS models fopendence due to the change in the vortex density at the cor-
Ising interfaces have been examirl@dit low temperatures, ner of the domains. For instance in FigbBthe vortices at
the interface between two distinct phases of an ordered opposite corners of the square domain have either an extra
state Pott’'s model, or between two of the 2legenerate next-nearest neighbor vortex or a missing next-nearest neigh-
ground states of our model, is a weakly fluctuating surfacebor. From a distance, this gives a quadrapole moment to the
much as in the Ising case. As one approaches the criticalomain. As the X 3 domain shown in Fig. ®) is the basic
point, bubbles of any of the other phases appear at the intebuilding block of larger domains constructed from herring-
faces which eventually leads to a froth of bubble$at This  bone walls, one can conclude that larger differently shaped
can only occur however, if the two interfaces bounding thisdomains will not have a lower momefite., they will be
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0.04 B, time (at finite T) and hence one can argue that the quadra-
20 0 iﬁ: o be pole interactions should not be relevant.

*.

-0.04 | . :
15 | —~0.08 A IV. SPIN WAVES AND THE VORTEX INTERACTION
w 10 20 30 40 5 i
At low enough temperature, domains should be small, and
10 one is tempted to expand the energy about the ground state

configuration. In this treatment, the periodic character of the
angles is neglected, but the existence of long range order in
the vortex lattice partly justifies this method. The model is
10 20 30 40 50 replaced by a so-called spin wave approximation which in-
L volves expanding the Hamiltonian to second ordeniin,
FIG. 4. Energy of a square domain of sikexL in a system where 6;; = 6’i(jo)"‘Aij and 9i(j0) is a ground state configura-

with periodic boundary conditions of size 12020 forf=2/5. The  tion:
line is the fit —0.0268(25) +0.344797(68) +0.3041)InL

0
—1.29(3)(L/120)*. The inset shows the residuals for a linear fit H%H(°)+2 IH\ @ )
(starg and the fit including the quadrapole correctigdeamonds. 7\ 06 g
1 PH O
neutral and have no dipole momegnthe interaction of two +§2 > Ak'(W) Ajj . (4)
7K k19 Uij

such quadrapole domains at a distarcéarge compared to

its sizeL goes like—6Jq¢(L/x)* [if one assumes an isotro- By definition, ((97.[/(90”)(0):0 and we just have a quadratic

piC (Wthh iS not rea”y tru¢ interaCtion Of two “‘corner” form_ The free energy per Site associated Wlth EO“S
charges likelg¢4In X]. In addition, the self-energy of a square

quadrapole goes like- 2Jo¢Ny2+2Jgen L.

Figure 5 shows the interaction of some square domains. F== Eln Zsw
One sees that the quadrapole correction is measurable and
fits the expected functional form quite well, but that the con- _ ll f IT da
stantsJqs do not match what one would expect from an B n i x
isotropic calculation. In fact, the system is not really equiva-
lent to an isotropic 2D Coulomb gas, in that the direction B #PH @
along the diagonal lines of vortices in the staircase state is Xex% - 52 Ax<(90 20 ) Ay ”
not equivalent to the direction perpendicular to the vortex xx’ o
lines. We have also calculated the energies of rectangular 1 3\
domains and some other less regular shapes and they have =— EIn(detﬁ) , (5)

qualitatively similar(same functional formbehavior.
The next question is whether or not the quadrapole interwhere J is the Jacobian matrix), = 3*H/ 96,36y, . The
action is likely to be relevant. One can use an argumengpin wave correlation function is
similar to that used to argue for a transition in the unfrus-
tratedX'Y model. If you consider the interaction free energy ~ Gsw(X1,X2) =(exHi(Ax —A,)])
contribution of the quadrapole interaction, it should contain

the energetic part A/r* and an entropic part BT In(7r?) :Zflj H A

from confining the quadrapoles to have a separation less than sw X

r (one could do a more accurate calculation of the entropy

but it will still have a Inr dependence At the distances at xexd — EE AJy oAy +i(Ay —Ay)
which the —A/r# form is valid, the Inr term wins all the 255 ' ! 2

1
= eXF{ - —X(Xl,Xz)TJ_lx(Xl,Xz)) ; (6)
2p

whereX(x4,X,) is a vector with+1 and—1 in positionsx;

andx,, respectively, and zeros everywhere else.

w For the unfrustrated ca¥eJ is just the discretization of
5.92 the Laplacian operator[i.e., J¢~V?¢®, where V3¢

= 5%l 9x?+ 9° pl dy? and the partial derivatives are replaced

5.9 with a finite-difference formula 6%/ x>~ (P(X;+1,Y;)

—2¢(x;,Yi) + ¢(Xi_1,yi))/a, anda is the lattice constaht

40 60 80 100 120 As a result,3X(x,x") T~ 1X(x,x") can be approximated by

x the Green’s function for the Poisson equation,

5.96 . »-

5.94

FIG. 5. Energy of a square domain of sizexIF5 in a system 1 r
with periodic boundary conditions of size< x for f=2/5. The line g(r)==——In—,
is the fit 5.961081(7)— 1.081)(15k)%. 27 T
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1.4 Within the Gaussian approximation, the helicity modulus
o 1.2 is related to th&k=0 component of the dielectric function,
= 1 Y=Ilim,_oJ/e(k). 1/e(k) is related to the vortex-vortex cor-
gj relation function by
> 08
= 06
o V k
S 04 Je(k)=Jo 1—Bbi—f()<n(k)n(—k)> , (10
* 02
ol where Jo=J(cos@ —6—A;)), n(k) is the Fourier trans-
0 20 40 60 80 100 120 140 form of the vorticity density n(r) and Vpa.e(k)

X =—4m2J,g(Kk) [this particular expression far(k) is taken

FIG. 6. L X(xx')TI"IX(x,X'), the lattice “Green’s” function, from Ref. 17. The presence of the logarithmic part in the
for f=1/3 along a slice in the direction in a finite size system with lattice Green’s function ensures that the overall flux balanc-
periodic boundary conditions along the direction of the slice. TheiNd (f=(n;) wheren; is the vortex occupation of plaquette
line indicates a fit toA(In x+In(L—X)). i) is maintained. Here, the vortex interaction energy also

contains an oscillating component coinciding with the under-
where r0=a/(2\/§e7), a is the lattice spacing andy lying vortex lattice. The effect of such a component is not

=0.57725 . .. isEuler’s constant. This yields entirely clear, especially as the amplitude of the oscillation
does not decay away at large distances. Conventional wis-
Gowl(X1,%X2) ~exd — 1127 B In(|X1— X,/ /T )] dom would suggest that as long as we still have the logarith-

mic interaction of vortices, they should still undergo a
Kosterlitz-Thouless type of unbinding transition and an as-
So the correlation function of the spin wave fluctuations de_souated jump n t.h(.e helicity moduld@.As we shall see in .

creases according to a power law behavior. This aIgebraiEhe next section, it is not en'u_rely cle_ar whether or not this
decay of the spin wave correlation function is broken by theactually'happens. It m!ght be Interesting to try to go throygh
unbinding of vortex-antivortex pairs at the Kosterlitz- and derive the Kosterlitz recursion relations with the oscilla-
Thouless transitiof tions as some sort of perturbation to see if it is relevant,

In the general frustrated caskjs not a discrete Laplac- although it seems unlikely to do anything but renormalize the

ian. The question is, do we get something similar? Thé 1/ core energies.

interaction of the domains studied in the previous sectior{he'é?;vjr\]/ggt:}[:oflslzza?gd _?2 ;ﬁaﬁlaﬁses'gr:;fg;;’g?g:'tgz to
suggests that we do. Figure 6 shopX(x,x’) I IX(x,x") . : Y
for f=1/3 along a slice in the-direction in a finite size interaction correctly, however, one should do some sort of

system with periodic boundary conditions along the directiorfVerage over Gaussian approximations to all relevant

of the slice. The envelope of this curve is well described b vacuum states. At finite temperature, this includes not just

v, ' ; T :
the sum of two logarithmic functions, btIn(L—x) (where the ground state but configurations where finite size domains

the second term comes from the periodic boundary condigf the other states are present, especially near the critical

tiong). In addition to this logarithmic part, there is a periodic point where domain fluctuations are extensive. In X\

oscillation, coinciding with the underlying vortex lattice. In ::na?glflella’\ttehde v:/]i?r?ihs'gggl?rrl F\:\g\t/g i[ciarg] aEnqd (l:‘[L?)s] acarzo%eoto-
addition to this obvious oscillation, the phase of the os;cilla-nousl decreasin funpction of terr)n erature. The sinaular bart
tion depends on the initiat [the correlation function is not . y g fun P : ng pa

) . , L is, however, due to dipole fluctuations. The question here is
just a function of k—x')]. The effect of this initialx depen- : . . .

) . whether these are dipoles tied to domains, like would be the
dent phase at long distances should not be important. HOV\E se for shift wall domains, or whether these are regular
ever, distortions centered on nearby sites, and between rovglér‘] le vortex-antivortex airs: That domain fluctuations%vill
of vortices can partially cancel due to this phase difference.edglljce the effectiveXy Eou iin I+ for vortex-antivortex
There is also an anisotropy between the directions perpeﬁ— bling Jo

dicular and parallel to the diagonal lines of vortices. Thisp?;\rlsé’stggzsrﬁgtlgggn (f;:z:pfu;“ ain\::vgr);eiltn::)laastolnsgg di-
anisotropy can, however, be removed in a continuum pictur ptually inc '
by rescaling the coordinates. ion, the presence of fluctuating domains can act as a ran-

This modified lattice “Green’s” function also has an im- domness in th&(Y couplingand in the fugacity, especially

pact on vortex interactions. The zero temperature FourieP €& the critical point. If[ seems fairly well established that
transform of the vortex-vorte¢wo + 1 vorticeg interaction quen.ched randor_nnes_s in thenfrustratedd XY model prob-
within the Gaussian approximation is ably induces vortices in the ground state at some large length

scale. In addition, recent watkseems to suggest that the
A2 fugacity expansion of the clean unfrustratedy model
Vi) 4mJg(k), ® breaks down in the presence of any finite disorder. The ran-
where g(k) is the Fourier transform of the lattice Green’s domness due to fluctuating domains is not quenched, but that
function, :X(x,x')TJ"X(x,x’). The dielectric function would only appear to make it more likely for domain fluc-
1/e(k) describes how/(k) is reduced from this zero tem- tuations to destroy quasi-long-range order near the critical
perature result, point. The situation in this respect does not seem to be all
that well understood. It is however an interesting point which
V(k)=—4m2Jg(k)/e(k). 9 should be examined in more detail in future studies.

= (ro/|x1—Xg|) Y272, (7)
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V. f=1/3 wherep, is the modulus in the ground state. In practigg,

is reduced by small short-lived regions which do not quite
match any of the six states. Since this effect is the same for
all states, it cancels when calculatiMy. Using the real and

. _1 ; imaginary parts ofp.. in addition to=;m.,;, calculated
hernn_gbone walls. Fof =3 thg energy of two herringbone from the direct vortex lattice as in Ref. 20, we can find the
walls is less than that of a single shift wall and hence, theT. ind d

ive independenin,, ; .

shift walls are unstable and break up into herringbone walls. In addition to the energy and order parameter, several

, ) . fi
As a result, we confine our discussion of the; case to the a(%ther guantities were calculated from the Monte Carlo data

herringbone walls as other walls should not be present at_. . . o S
large length scales. The energy cost for dividing LanL using the corresponding fluctuation-dissipation relations:

lattice into two domains separated by a solid-on-s@®9

The fluxoid pattern for the two lowest energy walls at
f=1 was shown in Fig. (b) and Xd). One can see from Fig.
3(b) that a shift wall can be viewed as two adjacenthound

\ ; , C K2
wall stretching from one side of the system to the other is — = ((E¥\—(E)?
=Tz (ED—(E)),
i = + —Z_1].
Hsmgle{z} bol bo—; |Zk Zy 1| (11 X=KL2(<M2>—<M>2),
The height variableg, take on integer valuesh& 3 is the JIn(M™  (MPE)

shortest length segmeént The partition function, Z
=E{Zk}exp(—H/T) can be evaluated either by the transfer

matrix method or recursivelsee Appendix B'* The inter-  \yherek = J/kgT. In addition to the discrete order parameter,
facial ~ free ~energy _ per column  is F  we also followed the helicity modulus defined by,
=T In[e""tanh(ba/(2T))]. The zero crossing of gives = 9> Fla$?| ,=0, whereF is the free energy density anfl
an estimate of the critical temperature. Plugging in the valueg 3 twist in the boundary condition along tieor y direc-
for the f=3 herringbone wall give§=0.19, in remark-  tjon. The helicity modulus also follows a fiuctuation-

able agreement with the valdg=0.22] found in the Monte  gjssipation relation which is used in calculating it from the
Carlo simulations described below. data:

Being similar to Ising walls, herringbone walls cannot
branch into other herringbone walls, thus the set of possible 1
YX L2< <

IK - <Mn> _<E>! (13

domain wall configurations is similar to those in an Ising
model. We label the fraction of the system in stadg ) as

E [(r—r’)~§(]2cos( O — ar’_Ar,r’)>

rr'’)

mg;, where s==*1 denotes the member df,, and j B2 2
=1,2,3 denotes the member0f. Below the transition, one - z [(r—r')-X]sin(6,— 6, — A, 1)
state 6,i) spans the system. On this state sit fluctuating do- L (r.r’y '
mains, bounded by herringbone walls, of each of the states 87 )
(=s1), (—=s,2), and (s,3) in equal numbers; so the, bl F—r")-X1sin 6. — 6. — A -,
symmetry is broken for thes(j) states, but not for the L? <§r’> A ) XISIn( 0= 60 = Acrr) )

(—s,]) states. As the transition is approached from below,
the domains occupied by the—@,j) states grow, with
smaller domains of thes(j) states within them. At the tran-
sition, theZ, symmetry between the-s states is restored
and, as a result, theé; symmetry for the §,j) states is also
restored.

The Monte Carlo simulations used a heat bath algorith
with system sizes of 20L.<96. We computed between 10
and 3x10" Monte Carlo stepgcomplete lattice updatgs
with most of the data taken close 1Q. Data from different
temperatures was combined and analyzed using histogram _ Sy T
technique¥’ (see Appendix € FILM)=AFLAT),

If the largest fraction of the system is in stagi{, then wheret=(T—T,)/T. andh is an applied field which couples
we have three Ising order parameterfi;=(Msi o the order parametdl (soh is not the true magnetic field
—M_g;)/(Ms;+m_s;), j=1...3. Onaverage, thesél;  herg. From this, one can derive the scaling form of the order
are the same so we just take the averaghlago calculate  parameter, specific heat, susceptibility, etc. using the stan-
them,;, we examine the Fourier transform of the vortex garg relationsM = — gF/dh, C=—TJ?F/at2, x=aomidh,
density p,. at the reciprocal lattice vectork.=m/3(1,  etc. If one takes the special cabe O\ =|t|~ s one can
+1) of the ground state vortex lattices. Starting from thereater s to the standard exponenisfor the specific heat3
definition of the Fourier transform, and using the vorteXior the order parameter, ang for the susceptibility as

(14)

where(r,r’) denotes nearest neighbor pairs.

To determine the critical exponents for the transition we
make use of finite size scalirf§.Following standard argu-
ments, one assumes that for a second-order transition, the

rT%ingular part of the free energlf(t,h), near the transition is
dominated by a term that changes under a change of scale
according to the ansatz

states given above, one finds =1/(a—2), r=(y+B)/(a—2) and a+2B+y=2. If one
takes the casa=0 andA=L(*"2"" wherev is the expo-
Prx _ Ma g+ Mo 6273 m. o7 127R, (12  hent for the divergence of the correlation length, one obtains

Py the relations for finite size scaling:
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Mn=L_B/"Mn(Xt), @ T T T T T T T

C=L"C(x,), g 4t .
Z08 [ s
x=L""X(x,), (15 S 06 | -

where x,=tLY" is the temperature scaling variable. Using
relations(15) one can also derivé??

(M)
N L@a-pi
aT L D(xy),
d In(M)
—1 v
7 LY Q(Xy). (16
For a finite lattice the peak in, for example the specific heat, ~ 2007 ]
scales with system size lik€,,,L%" and occurs at the 100 -
temperature where the scaling functi@fx;) is maximum so gg E 3
that T e BT T T R
08 |, @ .
C(%y)
I =0.

t xt=x:‘ 247 | _|
This defines the finite-lattice transition temperatlig€L) by
the conditionx,=x; so thatT(L) =T+ TxFL ™. In gen- | 1 Lo 0y
eral the finite-lattice transition temperature calculated from 30 4 50 60 70 80 90100
different quantities differs slightly but extrapolates to the L
sameT; in the limit of largeL. B FIG. 7. Finite size scaling plots fdr=%. (a) Logarithmic de-
~ Avery accurate way of locating the transition temperatureivative ofM at T, vsL, (b) specific heat maximurthollow) and at
is by using Binder's cumularit T, (solid) vsL, (c) y at T, vsL, and(d) M at T, vsL.

U=1—(M%)/(3(M?)?). however, the crossing point is & =0.2183(7) in agree-

For system sizes large enough to obey finite-size scaling, thi®ent with what we found above. As further evidence of two
quantity is size independent at the critical point. This givesransitions, Lee and Lee point out the presence of a shoulder
T.=0.2185(6) for the order parameter defined abdve, in the specific heat at intermediate system sizes. However, as
can also be determined from the scaling equation for th@ne can see from Fig. 9 this shoulder weakens for lakger
temperature at the peak of thermodynamic derivatives sucAnd for L=84 and 96 it is no longer clearly discernible.
as the susceptibility,TC(L)=TC+aL‘1’V. We find these While the two-transition scenario clearly appears to be a
other methods giv& in agreement with that fror. problem of smallL, it is a fairly unusual finite-size effect

Finite size scalingl at T, applied tod In M/dK gives and deserves some explanation as to its origin. We believe
1/v=1.011+0.029, and to the susceptibility gives y/»  the cause to be as follows. Below the transition, if the domi-

=1.758+0.013, and tM givesB/v=0.14+0.02. These ex- Nant state isg,i), in small systems you often do not see all
ponents are determined from the slopes of the lines shown ifiiree of the (-s,j) states in the system at the same time.
Fig. 7 which plots the values of these quantities at the critical

point as function ofL. These exponents are in excellent 085 =T

agreement with the Ising values=1, y=%, andg=3. The NN

scaling collapse collapse for these quantities is also quite 05 =N

good away fromT, [see, for instance, Fig.(@ of Ref. 4 NS

which shows shows the collapse of the raw data onto the D 045 T~ C\\ -~

scaling function fory]. RN
Two previous examinations of thée=3% casé??* sug- 04 ™

gested a continuous transition but did not measure critical

exponents. Lee and L&eclaim to find separate, closely 0.35

spaced transitions, for the breaking @ at T/J=0.215 0214 0216 0218 0.22 0222

+0.001 andZ; at T/J=0.219+0.002. One explanation for ka T

their conflicting results comes from the small system sizes

<42 din thei vsis. Fi 8 sh Binder’ FIG. 8. f=1/3 Binder's cumulant for th&, order parameter as
(L=42) used in their analysis. Figure 8 shows Binder's CUdefined by Lee and Led) vs T for L=24, 36, 48, 60, 72, and 84

mulant U for the Z, order parameteM’=m;+m,+M3  (smallerL shown as dotted lingsNote that, for all but the smallest
—m,—ms—mg, used by Lee and Lee. One sees a consistent, the crossing point is af,=0.2183+0.0007 in agreement with
crossing point only fot. =48, indicating that substantial cor- what was found using our order paramefteompare to Fig. 2 of
rections to scaling are present for smiall For the largeiL Denniston and Tan¢l997].
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. FIG. 10. (8 min(|py~|.|pk—|) versuskgT/J for L=24, 36, 48,
FIG. 9. (a) Specific heat fol.=24, 36, 48, 60, 72, 84, and 96. 60, 72, and 84. Note that data from larger are smaller:
The dashed line indicat@s . Note that the shoulder which appears min(|py.|,|px_|) vanishes as —« as indicated by the finite-size
for intermediate lattice sizes goes away for the two largesthis  scaling plot (b) which shows a reasonable collapse for
makes the scaling of not as good as for the other variablés) min(|px+ || pk—]) ~L¥¥ with a/v=—0.20+0.02. (c) Derivative of
Scaling collapse of data shown (a). (c) Power law scaling found  min(|py..|,|pk—|) ~L¥" with respect to temperature.
by Lee and Lee for smaller system sizes, applied to the data shown
in (a). The logarithmic scaling shown ifb) gives a better collapse \yhich is the scaling form ofM. Clearly, Y is affected
of the data. In parti_cular the Ipwer curve(e), corresponding to the strongly by fluctuations ifM and attempting to fit scaling
scaledL =96 data is separating from the pack. relations for thef =0 cas&® without taking this into account
Figure 10 illustrates this effect. The minimum of S€emMS question_ablt_a. We see two possible i_nter_pretations of
(Iprs | lpe]) (call it py) is a measure of th&; symmetry ~ Our result. The first is that only receives contributions from

breaking for the €s,j) states andhis goes to zeras L the ordered part of th_e lattice. So comparisons with ﬁhe
—o. To see how this can result in something like the=0 case should examiné,=Y/M. Y,~0.58 at the transi-
“shoulder” in the specific heat consider that the free energy
of a finite size system can be written as an analytic function 08 ' ' ! r
of the order parameter. Since for finite p,, is small but
finite it contributes something to the free energy of a finite
system. Since the specific heat involves derivatives of the 0.6
free energy with respect to temperature, it will receive some
contributions fromp,,, which to lowest order will involve B 7
dpm!dT, a quantity shown in Fig. X0). Adding this to the
side of a diverging function like the specific heat will yield
exactly the shoulderlike appearance seen.pAsdecreases
with system size, whereas the specific heat diverges, this
effect gradually goes away for larger

The helicity modulusY is the quantity most closely re-
lated to experimental measuremetft$or f #0, the scaling
of the |-V curves found in experiments is consistent with
domain wall activation processédhe theory of Nelson and -1 0 1 2
Kosterlitz for thef=0 case predicts that should come
down in a characteristic square-root cusp and then jump with  FIG. 11. Scaling collapse off where x=(T—T)LY", y
a universal value, BTy r/m7. However, we find an excep- =YL#”, p=1, and B=%. Inset: raw data(solid and dottey
tionally good fit (Fig. 11 of our data to Y—Y, (2/7)T (dashedl anda|T—T,|? (dot-dashe} In both cases data is
=L " M((T-T,LY) with »=1, B=3%, and Y,=0, fromL=36, 48, 60, 72, 84, and 96.
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tion implying a larger than universal jump. Alternatively, 4

one can say that althoughis brought down by fluctuations 2 L_L;BO

in M, it should still jump when it crosses the universal value, 0 L=50.

2kgT/ . Extrapolating the observed behavior ¥f gives w

Y, _.=a|T—T¢". This crosses the value of the universal L/

jump atTxr—T.~10"8. Although we do not see evidence
for a jump, a difference in transition temperatures of 40

would not lead to any observable effects for the system sizes 11112 114 116 118
studied here. g
FIG. 12. Free energy as function of the negative of the energy
VI. f=2/5 per site forf =2/5 (6=0). A constant has been added to the curves

in order to separate them.

On the face of it, thé =2/5 case would appear very simi-
lar to the f=1/3 situation we have just examined. The ga first order transition at=2. The most direct indication of
ground states are similar and, as can be seen from Table | thefirst order transition is the presence of a free energy barrier
energy cost of a herringbone wall, whose presence implies Between the ordered and disordered states which diverges as
Z, symmetry, is much lower than that of the available shiftthe system size increas®sThe free energy as a function of
walls. However, thef=2/5 case undergoes a first order energy is obtained using, (E) = —InP (E) whereP| (E) is
phase transitiorisee below; quite different from the Ising the probability distribution for the energy generated by
transition found for thef =1/3 case above. One difference Monte Carlo simulation of & X L system. Figure 12 shows
between the two cases is the valuebof{lb=5 here is the the growth in this barrier as the system size increases from
shortest line segment in E¢11)] and hence the net line L =20 to 80 giving clear evidence for the first order nature of
energy is greater here. In addition, fore=3, herringbone the transition.
walls are the only stable walls, while this is not true for Since there is no diverging characteristic length to which
=2%. Forf=£ it is energetically favorable for two herring- the linear dimensior. could be compared at a first order
bone walls to bind and form a shift-by-one or shift-by-threetransition, one finds that it is simply the volumé' that
wall. Binding does, however, have an entropic cost. To see ifontrols the size effectd.One thus finds
these walls are bound we consider the following model for
two SOS walls: Cm.:—;\xv)(ocl-d

for a first-order transition. Figure 13 shows the specific heat
Hy{A,Z} =, {(2bo+ Uy 80 + bo|z— 2z 4| as a fu'nction ot.2 for the f =2/5 clean system. The Iingar fit
k (solid line) clearly shows the expected first-order scaling be-
havior. Similar behavior can be seen in the susceptibility as
shown in the figure. From the positions of the peaks as a
function of L we obtainT.=0.2127(2).

+(2bo+uy 65 o)Akt V.({A,zH)}. (17

z, is the separation of the walls(=0, the walls do not

cross, A, is the number of vertical steps the two walls take
in the same direction in thekth column (—o<A, VIl. DISORDER AND THE f=2/5 PHASE TRANSITION

<%). ujandu, are the binding energies parallel and per-  |n any experimental realization of the frustratety
pendicular to the wall. At this stage we takg=0. The  model, such as superconducting arrays disorder is always

solution to such a model is discussed in Appendix B. Apresent. In the Josephson Junction array this disorder will be
ground state eigenvectar,(z) =€ **, where 14 is the lo-

calization length, or typical distance separating the lines, T B e e S A
characterizes the bound state of the two lines:0 defines - (@ ]
the unbinding transition af,,. For the cases of interest, one o0 [ ]
finds T,=0.947 for the shift-by-one wallsT,=0.864) for £ ]
the shift-by-two walls andr,=1.08] for the shift-by-three S r i
walls. In addition, the free energy for these walls crosses 10 B
zero (at T{3)=0.437 for the shift-by-one walls[{2)=0.452
for the shift-by-two walls, and 2.=0.411 for the shift-by- 0F :
three wall$ before they unbind. Hence, when these walls F ]
enter the system, they are bound. This means that one can 3000 - E
have a complex branching domain wall structure similar to < 2000 F .
the q=5 Pott’'s models where a first order phase transition C :
occurs. Technically, this is a mean field argument for the 1000 F 3
interfaces but, since the interfaces are extended objects it r ]
should give a reasonable picture of the ordefTgffor the oc e e
interfaces and’2.. 0 2000 4000 6000

In their Monte Carlo simulations, Li and Teitébbserved L

hysteresis of the internal energy when the temperature was FIG. 13. (a) Specific heat vd.? and (b) susceptibility vsL?.
cycled around the transition and used this as an argument f@trors are comparable to the symbol sizes.
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primarily in the form of randomness in the bond couplings, 10 F | T I
rather than a random site field. In Ref. 4 we considered the x s @
effects of disorder on thé= 2 phase transition and here we > 6
s . = 3
present some additional results from the Monte Carlo simu- g 4l
]

lations. The disorder is introduced by taking the couplings in

ur

the Hamiltonian(1) as J;;=J(1+¢;;), the ¢; are chosen I
randomly from a Gaussian distribution with a standard de- 45 F ) { E
viation 6. This also has the effect of creating a small random o 4 % %
field in the sense that one of the previously-fld degen- 5385 F { E
erate ground states may be preferentially selected. The effect 3E ¢ E
of random fields on discrete degrees of freedom in 2D is = ! ! | R
marginal®® Aizenman and Wehr have shown quite rigor- 1888 = E
ously that this critical randomness is zero in*Mi.e., no 600 I E

finite temperature transition is possipl&heir work relies on =
the assumption that the difference in energy between states
which were degenerate in the clean syst@ghe strength of
the random fieldl scales linearly with the size of the region
considered. In Ref. 4 we showed that this energy difference
does indeed scale with for the present system. This does
not preclude the possibility that the length scale associated
with random fieldst; is so large as to be unobservable in the .
finite sized samples~+1000x 1000) studied experimentafly 30 40 50 60 70 80 90
and accessible to simulation. L

At any coexistence point of the clean system, random S ) ) ]
bondsresult in different regions of the system experiencing /G- 14. Finite size scaling plots fdr=5 ,6=0.1: (a) logarith-
average couplings slightly above or below the critical cou-Ti¢ derivative ofM vs L, (b) C/kg vs L, (c) x vs L, and(d)
pling. As a result, at any given temperature the system wilf™/?K andaY/dK vsL.
predominantly prefer either the ordered or disordered state
W|p|ng out the Coex|3tence reg|0n and |eav|ng on|y a Con_g|Ven realization of the disorder and then do a Conﬁgura'
tinuous transitiorf>*°It has been conjecturétithat critical ~ tional average over 10 to 15 realizations f6r=0.1 and
random Potts models are equivalent to Ising models. Karda¥even realizations fo6=0.05. Figure 3d of Ref. 4 showed
et al 5 suggested a possible mechanism for this effect. Theithe free energy barrier fdr=£ as a function of system size
position space renormalization group approximation suggesi§ the for 6=0.05 and 0.1. Fors=0.05, the barrier first
that the probability of loop formation in the fractal interface grows with system size and then levels off. A+0.1 the
of the clean system vanishes marginally at a transition domifree energy barriers are essentially zero, indicating a continu-
nated by random bonds. The interface may have some finiteus transition and that the system sizes are large enough to
width due to a froth of bubbles of different phases, but unde@pply finite size scaling. Here, we follow the finite-size scal-
renormalization a linear critical interface is obtained and,ing methods used in Ref. 11.
hence, an Ising transition appears. Looking at the Monte Figures 14a) and 14c) show the peak values of
Carlo configurations we have also noticed some qualitativeé In M/dK and as a function ot.. The slopes of these plots
relationship between the size of the free energy barrier begive 1»=1.05(12) andy/»=1.70(12). A similar analysis
tween the ordered and disordered state for a given realizatioof IM/JK gives (1— 8)/v=0.94(10)[Fig. 14d)]. In addi-
of disorder, and the effective width of the disordered regiongion, the log-linear plot of the specific heat shown in Fig.
seen close to the transition. In cases where the free enerdyi(b) is consistent with a logarithmic divergence£0). As
barrier is almost nonexistent, one typically sees domain# the f=1/3 case, the helicity modulus appears to track the
bounded by herringbone walls very similar to those seen foprder parameteM, as can be seen from the nearly identical
f=1/3. Where there is a visible free energy barrier, one seeslopes ofdM/JK and 9Y/dK shown in Fig. 14d). Within
configurations which contain “bands” of the disordered errors, these exponents are what one would expect from an
state(although calling these effective linear interfaces wouldlsing model. Experiments dt= 2 (Ref. 3 also found a con-
be a bit of a stretch as their width is a reasonable fraction ofinuous transition and measured the critical exponents
L so there effective length is fairly shrt =0.9(5) and the dynamic critical exponext 2.0(5), con-

We have done a Monte Carlo analysis with bond disordesistent with an Ising transition.
values of §=0.05 and 0.1. Since we are dealing with
guenched disorder, we are interested in averaged quantities;
for instance the free energy is

MY} /8K

VIIl. CONCLUSIONS

. In conclusion, we find that the nature and universality
F=—keTlIn Z]4, (18 class of the phase transitions are quite sensitive to the prox-
where the square brackets indicate an average over differemnity of the binding transition for the lowest energy domain
realizations of disorder. Since most quantities of interest inwalls. For f=1/3 the lowest energy walls are never bound
volve derivatives of the free energy, to calculate the averagand the transition is Ising-like. Fdr=2/5 domain walls can
value of a thermodynamic quantity, we first calculate it for alower their free energy by binding to each other, resulting in
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a first order phase transition. Disorder weakens this binding
and changes the transition to be continuous and Ising-like.
These results are consistent with the continuous phase tran-
sition 3r?md critical exponents observed experimentally for
f=2/5.

=

Il
s

sinayj—1.=0,

M =

siny, ;—1,=0, (A4)

i=1
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The above equations can now be organized into the form
APPENDIX A: CONSTRAINED OPTIMIZATION F({7ij @ ;})=0 as
FOR VORTEX LATTICES N

Minima of the Hamiltonian(1) satisfy Eqs(2). However, Fl:izl sinyi —lr,

these equations are written in terms of thevariables and
the locations of the vortices does not enter explicitly. This is
quite inconvenient as one finds that the zero temperature
energies of the system are almost entirely dictated by the
vortex structure. By this we mean that given the position of
all the vortices, the phases appear to be uniquely determined
(up to an overall constanby the minimization conditions. F _2 . )
This can be made more explicit by working with the gauge ZMNT &) Sthan,j—le-
invariant phase differences

Fomi-1)+2j-1=%i,j~ Yi-1j T @ij—aij-1—2m(f=n; ),
Fom(i—1)+2;=SiNy; ;= Siny; j 11+ SiNa; 4 1} —Sing; j,

M
(A5)

If we definex to have element,y-1)+2j-1= 7, and

24 ((.)) XoM(i—1)+2] = &j,j (|:1 ...N andj =1.. M) then the so-
’Yi,j:ai,j_ei,j—l_?f“ A.dl, lution to Eq. (A5) can be found using Newton's method
07 (I-1) which involves iteratively solving
zwf(il'j) J-ox=—-F (A6)
@ =0 _,—6 —— A-dl, (A1)
MR g ) and updating,
where 6, ; is the phase on the site at rawcolumnj of the Xnew™ Xold T 0X, (AT)

lattice. This introduces an extra variable per gitestead of
just 6;; now we havey; ; and «; ;) and a compensating
constraint that

where the Jacobiad; ;= dF;/dx; .

The set of equation§A6) can be very largéwe solved
systems with up to 2:810° sites which means EqA6)
represents about half a million simultaneous equatioims
addition, we need to solve these systems very fast, especially
when disorder is added and averages over tens of thousands

That is to say, the sum of the gauge invariant phase differpf solutions are needed. This is made possible by the special
ences around any plaquette must equal the magnetic flugrm of the Jacobian matrix:

through the plaquette 2f, plus an integer multiple; ; of
2qr. If the gauge invariant phase differences are restricted to - . . . . -
arange of 2r such ag — 7, 7) thenn; ; measures the vortex T ) )
occupancy of the plaquette and is typically OZot with the
sign depending on the sign of

One then rewrites Eg$2) in terms of the gauge invariant
phase differences to get

Yij~ Yi-ijtaij—aijo1—27(f—n;j)=0. (A2

sin'y”-—Sinyi’jﬂ-i-sinaHl,j—Sinai,jZO. (A3) J =

If disorder is added, the random couplings should be in-
cluded here. These, in addition to E&2) give 2MN equa-
tions (for a lattice of M XN unit celly for the 2N un-
known gauge invariant phase differences. The vortex pattern
{n;;} is now an input and stays fixed. When periodic bound-
ary conditions are imposed one finds that two of these equa-
tions are not independent. Two more convenient conditions
to impose closure are (A8)
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where the dots represent the non-zero elements. We see thaken to ensure that the gauge invariant phase differences do
J is very nearly band diagonal. In fadtcan be written as  not wander out of — 7r,7r). There are a number of options
one can use if a phase difference wanders out of range. One
J=A+U-VT, (A9) s to just pin the solution at . This is not a great solution

whereA is the band diagonal part df(the same three matrix @S this is not really a minima of the unconstrained Hamil-
diagonal blocks ag) andU andV areNx2M matrices(as  tonian. Another solution is to just add or subtraet 2nd
opposed to BINx2MN). | should point out here that the Continue iterating Newton's method. This can cause a jump
method described below has a speed that is proportional t the errors on one of the equations which may result in a
NM?2 so that the axes of the lattice should always be choself9€ change ix at the next step which may or may not be

so thatM <N for efficient operationU andV have the form beneficial. Another solution is to replace the phase difference
with the value on the other branch of the arcsin function on

- . . [ =, 7). This causes no change in the error on the current
U = o, . conservation equations and produces a smaller change in the
o, R corresponding Eq(A2). Many of these problems can often
- 0 . . . - be avoided by taking a step in the Newton direction but with
1 : smaller length, especially in the initial stages, using a dy-
vT = 0 . . i i i ; ;
1 . namic step length algorithm similar to those described in
5 1 - Ref. 29.
(A10) This may appear very complicated but is, in fact, very
The first two blocks ofJ andVT have the nonzero elements €asy to implement, especially if one makes use of “canned”
indicated and and the remaining blocks Wfare from the routines to do the linear algebra. One might wonder, how-
first block column ofJ and the remaining blocks of are  €ever, what advantage this technique has over any others. One
from the first block row ofJ. big advantage is that one has quadratic convergence of the
The solution of a band diagonal systelx=b is con-  solution, which is inherent in Newton'’s methgchniques
siderably simpler than solving a general linear system ofuch as relaxation tend to show linear converggrioecases
2MN equations. Not only that, but thel factorization ofA ~ such as the averages of the energy of the staircase state vor-
has the same storage requirement&ashich can be stored t€x configurations taken over 4eealizations of disorder and
in a packed storage scheme holding only the central nonzef@" systems sizes from 2010 to 60< 60 (in Sec. VI, this is
band. In order to solve our slightly more general problem we2 considerable time saving. Other minimization techniques,

make use of th&Voodbury formul&® such as conjugate gradient techniq€ss), can also have
quadratic convergence but in CG methods it takes a few
Ji=(A+uU.vH ! iterations to build up information and get this quadratic con-

A L-[A-LU-(14+VT. AL U)LYV AL vergence. Here, since we can come up with a reasonable
' initial guess, one usually obtains quadratic convergence from
(A11) the start. Aside from the convergence criteria, we find it very
useful to work directly with the gauge invariant phase differ-
ences. This allows one to easily ensure that a vortex has not
“wandered” off to some neighboring plaquette during the
convergence to the minima. In addition, the implementation
of imposing a net current and minimizing the energy with

Since storage oA~ ! is not practical(the inverse does not
preserve the band structure of the matriee must make use
of Eqg. (A11) in the following way, as described in Ref. 29.
To solve the linear equation

(A+U-VT). 6x=—F (Al2)  respectto this global current is very straightforward. That is
_ B not to say that such things cannot be done using a minimi-
first solve the M + 1 auxiliary problems zation procedure which adjusts the phase at each site, just

that it is easier in a procedure which uses the gauge invariant

A-Z=U, (A13)  phase differences.
and
A.y=—F. (A14) APPENDIX B: SOLID ON SOLID MODELS
This can be done biU factorizing A onceand then using A good review of interface models is given in Ref. 14,

the factorization to solve all the systems simultaneouslyHere we briefly discuss the cases relevant to our situation.
Routines from LAPACKC can make this very fast and effi- The SOS model of an interface ignores overhangs and

cient. Next, do the B1 X2M matrix inversion bubbles and configurations can be described in terms of
integer-valued height variables whose values are measured
H=(1+VvT.Z)"% (A15)  from the T=0 position of the interfacésee Fig. 15 The
In terms of these quantities, the solution is given by energy cost for dividing ah. XL lattice into two domains
separated by a solid-on-soli8OS wall stretching from one
Sx=y—Z-[H-(VT-y)]. (A16) side of the system to the other is

In order to start Newton’s method, one needs a good ini-
tial guess. _Th|s is prqwdeq by patching tog_gther the staircase Haingid 2} =bjoL+b, 02 12— 24 (B1)
state solutions described in Sec. Il. In addition, care must be K
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FIG. 15. Solid on solid interface. Overhangs and bubbles are FIG. 16. Two solid on solid interfaces. The interfaces have a
ignored in the SOS model and interface configurations can be del€gative binding energy causing them to want to stick but they

scribed in terms of integer-valued height variables measured frorg@NNOt cross. This “no crossing” condition results in an entropic
the straightT=0 configuration of the interface. repulsion which pushes the interfaces apart at high enough tempera-

ture. z, is the separation of the interfaces at #th step and\, is
The height variableg, take on integer valuesr is the line the number of steps the interfaces take in the same direction at the
energy per unit lattice constant, from Tableblis the short-  Kth step.
est length segmeriin lattice constans b is 3 for f=1/3
and 5 forf = 2/5; andb, =b; for herringbone walls, whereas 20 = (22— 22 )+ (2P —2M ) +|ze— 24|
b, =1 for shift walls[see Fig. &)]. The partition function,
Z=3(,,exp(-H/T) can be easily evaluated by change ofif (z?)~z?);) and @~ zY,) are both negative, and
variables A;=z—z_, so that =0if (£ -2?,) and V- z,) are of opposite sighy
. andu, are the binding energies parallel and perpendicular to
3 ~ gy — b, oA the wall[they are determined so that fgg=0 the model is
Z= kll e 7 Az_r e Lok, exactly equivalent to Eq(B1) for the single wall in ques-

K tion]. For example, taking the energies per unit length from
where[—r,r] is the allowed values ofy. In the unre- Table | for the f=2/5 shift-by-one wall,u;=5(0.159-2
stricted case =, the interfacial free energy per column is X0.0861)=—0.0640 and u, =0.159-5X2x0.0861
F=T In[e®°tanhb, ¢/(2T))]. The zero crossing ofF  =—0.7] (only the second term is multiplied by 5 in the ex-
gives an estimate of the critical temperature. In the case gfression foru, sinceb, =1 for shift walls. This distinction
the two-dimensional Ising model this zero crossing gives thavas not made in our original pagdnence we get different
exact critical temperature. This is somewhat fortuitous, buhumerical values of the binding temperatufigshere, how-
nevertheless useful. ever the conclusions regarding the orderTgfand T, are

In the continuum limit, the problem of two interfaces can unaffected. Here b is always 3 forf=1/3 and 5 forf
usually be broken down into a center of mass part and as-2/5 since we consider the splitting into herringbone walls
independent part involving the separation of the two inter{the lowest energy wallsOf course, in practice, the situation
faces. We would prefer, however, to work with a discreteis much more complicated, as the conditionsugnis really
model with parameters input from the energy calculations o complicated function of botl, and z,_,, however, this
the appropriate bent domain walls. We were unable to finadnodel does give the right result in both the tightly bound
the solution to such a model in the literature, so we presengsingle interfacgand unboundtwo separate interfacem-
one here. Questions that we are interested in are whether fis and should contain the essential ingredients of what lies
not the two interfaces are bound and whether or not unbindsetween.
ing occurs before or after the free energy of the walls be- The partition function is
comes negative. To answer these questions we consider the
following model for two SOS walls shown in Fig. 16: L

ZZE H e*ﬁba’|zkfzk_1|efﬁ(2ba'+u“ﬁzk’o)
{z k=1

r

Haoubid A, 2} = Ek) {(2bo+uyd, o)+ bo|z— 2z

X 1+|z.—z, + e—ﬁ(2b1r+ul62 ,O)IAk‘ ]
+(2bo+u, 8, )AL, (B2) (It+]z2=2-aD A%O ‘

wherez, is the separation of the wallg(=0), andA, is the (B3)
number of vertical steps the two walls take in the same di- h ; he f hat fol,—
rection in thekth column (—oo<A,<x). [For example, if The (1+]2—2-4|) comes from the fact that fod, =0

the height of the two walls is labeled individually as there a[)e|tzk‘zk—ta| + t%N ways to h‘?"Videt the fh?ngézk
(2D 2?) thenz =2~ AV and 1| between the two lines. This entropic factor means

that there is not a simple relation betwe#&p and the indi-
ZAk:(Z(k2>_zf<231)+(z(k1)_zf(1)l)_ 12— 2] V|dua_1l helght_s of the two mterf_ac_es_,, as a spt_aoh‘kcc_an be
consistent with (¥ |z,—z,_4|) individual configurations of

if (Z2—Z?,) and @”—2z",) are both positive, the wall, all of which have the same energy. Howewky,
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andz, are separable allowing one to sum ovgrleaves the 1
partition function in the form of a transfer matrix: (A({6}))= Z’f di{ 6 tA{ 6 ) exd —H{ 6;})/T],
(Cy
L . . .
z= e Bvolz-z iy (lz.—7 where states are weighted with the normalized Boltzmann
{% kljl {8,221l distribution
+cotH B(ba+u, /2)])e” AZbotu) (o) 1 (o)
p({6;i})=zexd —H{6; IT]. (C2
+(1- 8,,0(1zc— 21|+ cothBba)e 2>} vz !
L While this gives a formally exact description of the prob-
=211 7oz (B4)  ability distribution, we are not really interested in such de-

{zt k=1 tailed information, nor is it possible to carry out the integra-
tions in the high-dimensional space required in the

Unfortunately, we were unable to solve the general case an@ghermodynamic limit. The dimension of the space can be
lytically. However, restrictingz,—z,_, to 0 or =1, we can  reduced somewhat by making use of finite size scaling to
derive the eigenvalues and eigenvectors of the matrex-  extrapolate from small system& €100) to the thermody-
plicitly. A ground state eigenvectoy,(z)=e™#*, where namic limit. Even for these smallér, it is still not possible
1/u is the localization length, or typical distance separatingto numerically integrate the system based on any sort of dis-
the lines, characterizes the bound state of the two linesretization scheme. One instead uses Monte Carlo integra-
¥,(2) is found by first finding the eigenvalue, [from the  tion which is simply to pickN sets of{6;;} randomly dis-
defining equationfwﬂ)f)\#z//ﬂ(z)] for z>0. u is then tributed according to EqC2) and then
obtained from the eigenvalue equation for 0. This gives

N
n ' i i 1
e* as the solution to the quadratic equation, (A1)~ Nzl A6}, (C3)
2

(1+coth gbo)e™ If the {6, }, are independent andi({¢;;}) is distributed in a

+ @B coth Bba — e~ AUI(1+ 26~ A2bo+uL)) gr Gaussian distribution with varianee? then the error in(A)

calculated in this manner /N2,
+[1+coth Bbo—2e PUl(1+e F2brtu)y]=0. (B5) In practice, the knowledge of how to pick independent

random numbers distributed according to EG2) is quite
w=0 defines the unbinding transition & . The more gen- close to knowing how to solve the problem exactly. In gen-
eral case|z,—z_4/<N with N a large numbeftypically ~ eral, we must give up on the idea of independent random
about 1000, can be easily solved numerically and is not thathumbers and instead construct a Markov process where each
different from the restricted case discussed above. The va$tate{ 6;;}, . is constructed from a previous stdt#; }, via a
ues quoted in the text are from such a numerical calculatiorsuitable transition probabilityV({6;;};—1{6;;}i1). A suffi-

cient condition for the distribution functioP({6;;}) of

states generated to converge to EG2) in the limit N

APPENDIX C: MONTE CARLO SIMULATION —oo, is for the transition probability to satisfy detailed bal-

OF CONTINUOUS SPIN SYSTEMS

ance:

A reasonable introduction to Monte Carlo techniques is
given in Ref. 31. However, some of the implementation tech- W({ 6 —{6ih) Cex - oH ca
nigues suggested in this book are out of date and should be W({ 6 h—1{6ih) T/

taken with a grain of salt. Most simulations of frustrated spin
systems described in the literature appear to have usedvehere SH="H({6;;}/)—H({6;;})). Note that Eq(C4) must
rather poor updating scheme leading to very long autocorrele satisfied forall possible move$— |’ in order to be er-
lation times. We use a heat bath scheme described belogodic.
which seems to be a couple of order of magnitude faster than This still leaves many choices for the move. Ideally, one
these standard schemes near the critical point. This is not wwould like to change many degrees of freedom simulta-
say that other heat bath schemes have not been used, it is justously, unfortunately in the absence of any cluster routines
that such works almost never describe any details of how thifor frustrated systems, one is left with single site updating
is done, a problem we shall try to rectify here. To makemoves.(Alternatively one can simulate a Langevin equation
efficient use of the data generated in a Monte Carlo simulato change all degrees of freedom simultaneously, but by a
tion one should make use of the histogram techniques ofmall amount. Even Langevin dynamics are not unigue, and
Refs. 19,26. the dynamics which are supposed to be appropriate for su-
perconducting array$was found to have longer autocorre-
lation times than the Monte Carlo method we ended up us-
ing.) One particularly poor, but popular, method of updating
Formally, the task of statistical mechanics is to computecontinuous degrees of freedom involves picking a n&w
from the model Hamiltoniart{ the desired average proper- completely at random, or in an interval about its previous
ties, value, and then accepting or rejecting the move based on

1. Sampling
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whether another random number is above or below 1
exp(—J8H/T). This can give extremely long autocorrelation F@)= fl p6)de
times, and leads to a high number of rejected moves in the 08 °
low temperature state. One would have to apply this same 0.6
step numerous times to the same spin just to equilibrate it < p(o)
with its nearest neighbors. unitodd
An ideal single site updating step would piék accord- deviate in
ing to the conditional Boltzmann probability(6;;) for 6; 0.2
given the knowledge of the neighboring spins !
{16i,j=1,6i=1;}. For our frustrated'Y model this is -3 -2 - trahstormad
9 deviate out
p(6;)= éexp[(cos( O j+1— bij +A}]-'J+1) FIG. 17. Transformation method for converting a uniform devi-
atex into a random deviat@ distributed according to the function
+Co$0i,j—l_ ﬁij‘f'A:jJ_l) p(6).
+cog 6;;— 9i+1,j+A=J+1,j) look-up tables and interpolation. On systems where integer

operations are much faster than floating point operations,
things can be speeded up considerably by discretizingjthe
1 h (for instance one can take the integers O to 524288 to corre-
= —hex;< $C05{ 0ij— 5)) ' (C5  spondto 0 to Z) and then storing all possible values of the
— sinusoidal functions that can occlall 524288 values This
T requires some storage capacifgbout 64 Mbyte for our
implementation but this should not be onerous for any ma-
chine that one would consider doing such simulations on.
——> One should note that some machines can compute trigono-
h= X"ty metric functions in only a few clock cycles and therefore it
may be faster than a look-up call to memory. The resulting
code took about twice as long per Monte Carlo SRICS)
to run as the simple “pick at random and then reject”
method, but this loss is more than compensated for by the
- - orders of magnitude improvement in correlation times. There
+SiN(0; 41— Al 1)) +sin(0 -1 — AL ), is still considerable freedom in the order in which subsequent
B 1 -1 lattice sites are selected. Naively, one would think that, as
y=cod 6 j+1t A7) +Co%b; 1A long as all sites are visited on some pseudo regular basis, that
+cog b4 1, —A§j+1,j)+005( aiflvj_Aijfl,j)v (C6) the order _is un_important. While this is true ir_l the sense that
the order is unimportant for eventually reaching equilibrium,
and|q(x) is the zeroth order modified Bessel function. the order can have a huge impact on how fast you get there.
An excellent reference for the next step can be found inThe slowes{in the sense of long correlation timesethod
Ref. 32. In order to generate a distribution @fwith p(¢) s to select sites at random. One can significantly redoge
given by Eq.(C5), one first generates a uniform deviate a factor of up to about depending on temperatygreorrela-
(independent uniformly distributed random number betweertion times by going through the lattice in typewriter fashion
0 and 1 and makes use of the fundamental transformatioror a mixture of random and typewriter ordering. However,
law of probabilities, which simply tells us one must go through in different directiofalternate left-
right-up-down with up-down-left-right, etcin order for the
[p(6)d6]=[dx]. €7 correlation times to be isotropi¢.e., have the same correla-
So we need to solve tion time for sayY measured in both the andy direction.
To ensure the accuracy of the implementation, the code was
tested against published results for the0 and f=1/2
cases.

+cog 6= 6,1+ AL ))T]

lo

where

S=arctarix/y),

X:Sir( gi’j+l+A:jj+l)+Sin(0i'jil+Agj,jfl)

dx_
a5 =P (c

The solution of this ix=F(6), whereF () is the indefinite
integral of p(6). The desired transformation which takes a

. ) . o . 2. Error analysis
uniform deviate into one distributed @£ 6) is therefore

- Suppose we makeN successive observationd,, ,u
00)=F"7(0), (€9 =1,... N, of a quantityA in our simulation. If the distri-
whereF "1 is the inverse function té. This process is il- bution of the fluctuations if is Gaussiarthis isnottrue for
lustrated in Fig. 17. all the parameters measujgethen the expectation value of

Unfortunately,F (and F~1) can only be computed nu- the square of the statistical error, which in this case is the
merically. In order to implement the method we usedvariance, is
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is not even Gaussian, making the use/of5A)) as a mea-
sure of the statistical error somewhat questionable.

In calculating errors we make use of, among other things,
((A#—(A>)2> the bootstrap resampling technique described in Ref. 34 and
pw=1 more compactly in Ref. 29. From the set of d@gproduced
N N by our Monte Carlo simulation we calculate a ggtof pa-

E 2 (A, A, ) —(A)?) rameters such as the energy, order parameter, etc. Due to the
= P I random samplingD, is not a unigue realization of the true
parameters¢,,.. With different initial conditions or other
_ i((AZ)—<A)2) slight variations we could have measured any of an infinite
number of other realization®,, D,, ... . Although the
N setxg is not the true one;,,., we assume that the shape of
Jav23 [1- i dhor) (A)?
(A2)—(A)?

2 distribution of most quantitiever realizations of disordgr
(AL—=(A))

the probability distributionx;—x,, is the same, or very
nearly the same, as the shape of the probability distribution
Xi— Xirue - This is not an assumption thag andx;, . are the

(C10 same, it is just assuming that the way in which random errors
The autocorrelation function fok is defined as enter the simulation does not vary rapidly as a function of
Xrue» SO thatxy can serve as a reasonable surrogate.
(AoAu>_<A>2 (c11) Suppose we have in some way obtained a set of equiva-

Paltu)= (A% —(A)? lent realizations of our data. For each realizatidnwe cal-

culate the parametess in the same way as we obtainagl
from Dy. Each simulated measured parameter set yields a
point x;—X,. If we simulate enough data sets we can map
out the desired probability distribution for the parameter
space. As mentioned above, this distribution of parameters is
A= 2 Pa(t,,). (C12 not necessarily Gaussian so we require some means of de-
u=1 fining what we mean by the statistical error. We take the
For an exponential relaxatiom, is the relaxation time, so statist'ical ergor to be the yvidth of the c_:onfidence.reg!on that
that for timest,,> 7, ¢a(t,) is very small. IFN>7, we ]E:_ontalns 68/9 of the data.e., the cqnfldence region |s_de—
can, therefore neglect the term involvipgN in Eq. (C10) ~ fined by the intervaky* o where, given the set of realiza-
and one obtains tions of the para_meter, _68% of_ th(_axj _Ile t_)etweenx_o—
andxy+ o). In this way, if our distribution is Gaussian, our
1 definition of the error is just the standard deviation, as one
((6A)?)= N(<A2>—<A>2)(1+ 27p). (C13  would want for compatibility with the standard case.
It only remains to explain how we obtain “a set of
Thus, ourN correlated measurements are equivalent taequivalent realizations of our data.” The bootstrap method
N/(1+27,) independent measurements, something thatised the actual data sBt, with its n=N/(1+27,) “inde-
must be taken into account when calculating errors. pendent” data points, to generate any number of synthetic
The concept of self-averagin@r lack of is extremely data set®?, with n data points. The procedure is simply to
|mp0rtant in CorreCtly eStlmatlng errors from Monte Carlo draw n data_ p0|nts at a timavith rep|acemenfrom the set
simulations with disorder. Suppose we meashi@nd calcu- ;. For the bond disordered systems this includes bootstrap
late its statistical error using((5A)) from Eq.(C13. If  resampling of the set of realizations of bond disorder, as well
V((6A)?) reduces to zero it —= [andN/(1+27,) fixed]  as bootstrap resampling of the data from an individual real-
we say A exhibits self-averaging. If, on the other hand, ization of disorder. The basic idea behind the bootstrap is
\/((5A)2> reaches al.-independent nonzero limit, we sédy  that the actual data set, viewed as a probability distribution,
exhibits a lack of self-averaging. Random systems exhibit as the best available estimator of the underlying probability
lack of self averaging near the critical poititin fact, the  distribution.

where we associate the timg, with step u. Note that
dA(0)=1 and ¢,(t) decays to zero as—. The autocor-
relation timer, is defined as
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