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Low-energy excitations and phase transitions in the frustrated two-dimensionalXY model
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We study the critical properties of the two-dimensional~2D! XY model in a transverse magnetic field with
filling factors f 51/3 and 2/5. To obtain a comparison with recent experiments, we investigate the effect of
weak quenched bond disorder forf 52/5. A finite-size scaling analysis of extensive Monte Carlo simulations
strongly suggests that the critical exponents of the phase transition forf 51/3 and forf 52/5 with disorder are
those of the pure 2D Ising model. The relevant low-energy excitations are domain walls, and we show that
their properties determine the nature of the phase transition.@S0163-1829~98!05634-3#
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I. INTRODUCTION

In this paper we examine the frustratedXY model in two
dimensions for two different values of the magnetic fie
representative of ‘‘commensurate states.’’ Experimental
alizations of this model in the form of two-dimensional a
rays of Josephson junctions and superconducting w
networks1–3 can and have been constructed and one of
objectives of this work is to understand the results of th
experiments. A perpendicular magnetic field induces a fin
density of circulating supercurrents, or vortices, within t
array. The interplay of two length scales—the mean sep
tion of vortices and the period of the underlying physic
array—gives rise to a wide variety of interesting physic
phenomena. Many of these effects show up as variation
the properties of the finite-temperature superconduc
phase transitions at different fields. In recent experiments
superconducting arrays the critical exponents of a numbe
these phase transitions have been measured,3 opening the
opportunity to do careful comparison of theory and expe
ment. While we will discuss the model within the context
superconducting networks, the model is also closely rela
to the physics of adsorbed films on substrates which imp
a periodic potential which differs from the preferred peri
of the adsorbed film. In this work we examine the grou
state properties, low energy excitations, and critical prop
ties of the 2DXY model in the densely frustrated regim
( f @0) for two particular values of the magnetic field.
addition, we investigate the effect of disorder on the grou
state and critical properties. This paper elaborates and
pands upon our previous results reported in Ref. 4.

The Hamiltonian of the frustratedXY model is

H52(̂
i j &

Ji j cos~u i2u j2Ai j !, ~1!

whereu j is the phase on sitej of a squareL3L lattice and
Ai j 5(2p/f0)* i

jA•dl is the integral of the vector potentia
from site i to site j with f0 being the flux quantum. The
directed sum of theAi j around an elementary plaquet
PRB 580163-1829/98/58~10!/6591~17!/$15.00
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(Ai j 52p f where f , measured in the units off0 , is the
magnetic flux penetrating each plaquette due to the u
formly applied field. We focus here on the casesf 5p/q with
p/q51/3 and 2/5, whose ground state fluxoid pattern
shown in Fig. 1~a!.5,6

A common speculation for commensurat
incommensurate transitions and the frustratedXY model is
that the transition should be in the universality class of
q-state~or 2q-state! Pott’s model. We find that this is not th
case because, as discussed below, domain walls betwee
different states vary considerably in both energetic and
tropic factors.

The effect of quenched impurities on phase transition
an important and fascinating problem. The ‘‘Harr
criterion’’7 indicates that the addition of~bond! randomness
to systems which exhibit second-order transitions in
clean case with a positive specific-heat exponenta changes
the numerical values of the critical exponents.8 It has also
been shown using phenomenological renormalization-gr
arguments that the addition of bond randomness to syst

FIG. 1. ~a! Fluxoid pattern for ground states off 5
1
3 and f 5

2
5

~unit cells are marked by solid lines!. Domain wall fluxoid pattern
for f 5

1
3 : ~b! shift-by-one wall,~c! shift-by-two wall, ~d! herring-

bone wall, and~e! herringbone wall with a shift-by-two~a vortex is
shown as a dark square!.
6591 © 1998 The American Physical Society
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6592 PRB 58COLIN DENNISTON AND CHAO TANG
undergoing first-order transitions results in a random-fi
mechanism at any coexistence region which can cause
transition to become continuous.9 Aizenman and Wehr10

have shown quite rigorously that in 2D a quenched rand
field results, quite generally, in the elimination of discon
nuities in the order parameter conjugate to the fluctua
field. Most cases where bond disorder has been studied
observed to change the order of the transition are forq-state
Potts Models, where forq58 Chenet al.11 found through
extensive Monte Carlo simulations, that the first-order tr
sition of the pure model became second-order with the c
cal exponents being consistent with the universality clas
the two-dimensional Ising model. Unlikeq-state Pott’s mod-
els with high q, the frustratedXY system is more readily
compared to experiments such as recent experimental m
surements of critical exponents in superconducting array3

II. STAIRCASE STATES

The ground states of the Hamiltonian~1! will be among
the solutions to the supercurrent conservation equat
]H/]u i50:

(
j 8

sin~u j 82u i2Ai j 8!50, ~2!

where j 8 are the nearest neighbors toi . One set of solutions
to these equations was found by Halsey6 by considering the
restriction to a quasi-one-dimensional case where one
adjoining staircases of current~see Fig. 2!. All gauge invari-
ant phase differencesgm5un2um2Amn , within a given
staircase are equal and indexing the staircases bym as shown
in Fig. 2 one finds

gm5p f m1a/22p nint@ f m1a/~2p!#, ~3!

where nint is the nearest integer function, anda50 for f
5p/q with q odd anda5p/q for q even.6

The staircase fluxoid pattern forf 51/3 and 2/5 is shown
in Fig. 1~a!.5,6 The pattern consists of diagonal stripes co
posed of a single line of vortices forf 5 1

3 and a double line
of vortices for f 5 2

5 . ~A vortex is a plaquette with unit flux-
oid occupation, i.e., the phase gains 2p when going around
the plaquette.! The stripes shown in Fig. 1 can sit onq sub-
lattices, which we associate with members of theZq group.
They can also go along either diagonal, and we assoc
these two options with members of theZ2 group. In all, there
is a total of 2q degenerate states (f 5p/qÞ1/2). We now

FIG. 2. Partition of the square lattice into staircases with
current flowing up or down the staircases.
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turn to the examination of the properties of the different d
main walls between these states.

III. DOMAIN WALLS

Figures 1~b!–1~e! shows the fluxoid pattern for some o
the domain walls forf 51/3. The domain walls can be clas
sified into two types.Shiftwalls involve a shift of the vortex
pattern across the wall@such as in Fig. 1~b! where the pattern
on the right is shifted down by one lattice spacing with r
spect to the pattern on the left# but the lines of vortices are
still going along the same diagonal.Herringbonewalls are
walls between states with the vortex stripes going along
posite diagonals. Note that there areq different walls of each
type.

These walls also have differing topologies. A herringbo
wall is very similar to a domain wall in an Ising model i
that it separates two members of aZ2 group. It cannot branch
into other herringbone walls and a 90 degree turn in the w
can be accomplished without changing the vortex patte
with the caveat that one considers the wall to be compose
sections of length equal to the distance between the diag
lines of vortices~see Fig. 3!. Thus, if one only has herring
bone walls in the system, the set of possible domain w
configurations is similar to those in an Ising model. Sh
walls, on the other hand can branch, both into other s
walls ~with the constraint that the sum of the shifts on t
walls after the branch be equal to the original shift! and into
a pair of herringbone walls, as shown in Fig. 3~b!. Shift walls
also have an associated directionality in the sense tha
attempt to make a 90 degree turn in a shift-by-n wall results
in the wall changing to a shift-by-(q-n) wall @see Fig. 3~a!
for an illustration#. Since different shift walls can have quit
different energies~see below! one finds that bends such a
the one shown in Fig. 3~a! are energetically highly unfavor
able as it can change a wall with low energy into a wall w
a very high energy cost. A more energetically favorable k
in a shift wall can be formed by displacing a mismatch

e

FIG. 3. Illustration of several possible bends and kinks in
different types of domain walls.~a! A 90 degree bend in af 51/3
shift wall showing change from shift-by-one to shift-by-two wa
~b! f 51/3 shift-by-one wall branching into two herringbone wall
~c! Kink in a f 51/3 shift-by-three wall accomplished by movin
the vortex marked in plaid.
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TABLE I. Domain wall energies per unit lattice constant for stable domain wall structures~i.e., walls
which produce a vortex pattern consistent withdH/du j50 for everyu j ). Then in herringbone-n denotes the
associated shift wheren50 is the standard herringbone.

Domain wall type Energy per unit length
f 51/3 f 52/5

Herringbone-0 0.05673742 J 0.08611726 J
Herringbone-1 0.19503538 J
Shift-by-1 0.11419998 J 0.15889929 J
Shift-by-2 0.16666667 J 0.16612232 J
Shift-by-3 0.14764859 J
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vortex on the wall in a direction parallel to the wall.12 This
displaces a section of the wall one unit cell in the direct
perpendicular to the wall@see Fig. 3~c!#. Typically, one finds
only kinks like these of size one or two lattice constan
Larger kinks start to produce long range distortions in
phase field and have higher energy.

In order to calculate the energies of different structur
we solved the equations~2! numerically, using a quasi
Newton method, on lattices with up to 2.33105 sites with
constraints fixing the fluxoid occupation of each plaque
~see Appendix A!. Table I lists the energy per unit lengths
for straight domain walls between the various ground sta
at zero temperature forf 51/3 and 2/5. One can see from th
table that there are typically one or two walls with consid
ably lower energy than any of the others. Some of the p
terns of energies seen in the table can be understood
counting the number of extra vortices in next or next-ne
nearest neighbor plaquettes for the vortices along the w
For instance, the energy of af 51/3 shift-by-one wall is
about twice that of the standard herringbone wall. Looking
Figs. 1~b!–1~e! one can see that if you count the number
next-next-nearest neighbor vortices for vortices along e
side of the wall, the shift-by-one wall has twice as many
the herringbone. Similarly, walls which place vortices
nearest neighbor sites tend to be of a higher energy, or
not even be stable. While this does give a rough guide to
pattern of energies, it does not allow a strong compariso
walls with differently spaced vortices.

The nature of these interfaces at a second order p
transition gives a great deal of information about the cor
sponding universality class to which it belongs. The inter
cial free energy vanishes at criticality with the Widom13 ex-
ponent m, which is related to other exponents of th
transition through scaling relations such asm1n522a.
Extended domain walls in Ising models have been stud
extensively by making use of solid-on-solid~SOS! models
which makes the analysis simpler.14 Interfaces of a Pott’s
model are much more difficult to study as they are comp
branching objects which become fractal at criticality. Nev
theless, simplified models in the spirit of the SOS models
Ising interfaces have been examined.15 At low temperatures,
the interface between two distinct phases of an orderedq-
state Pott’s model, or between two of the 2q degenerate
ground states of our model, is a weakly fluctuating surfa
much as in the Ising case. As one approaches the cri
point, bubbles of any of the other phases appear at the in
faces which eventually leads to a froth of bubbles atTc . This
can only occur however, if the two interfaces bounding t
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froth are stable to the development of bubbles. For insta
if one starts with a linear interface at low temperature a
then, somewhere in the middle, branches to form a bubbl
the interfaces never return to close the bubble, one is
with two independent linear interfaces. If one has only line
interfaces in the model, one would expect to find that th
interfaces would lead to an Ising transition. If a branchi
domain wall structure is stable one might expect someth
more like what happens in the Pott’s model to happen
the possibility of a first order phase transition is not e
cluded.

One can see from Fig. 3~b! that a shift wall can be viewed
as two adjacent, orboundherringbone walls. Forf 51/3 the
energy of two herringbone walls is less than that of a sin
shift wall and hence, the shift walls should be unstable
breaking up into herringbone walls. As a result, one expe
that in thef 51/3 case if the temperature is high enough
domain walls to enter the system, the herringbone w
should be the only walls present at large length scales. T
is consistent with our observations of configurations gen
ated by the Monte Carlo simulations~described below!. We
have examined many of these vortex configurations
found that forf 51/3 all the large domains~anything involv-
ing more than a few vortices! in the ordered state wer
bounded by herringbone walls. While forf 51/3, herring-
bone walls are the only stable walls, this is not true forf
52/5. For f 52/5 it is energetically favorable for two her
ringbone walls to bind and form a shift-by-one or shift-b
three wall. This can lead to more complex domain wall stru
tures and has an important impact on the nature of the fi
temperature phase transition. These issues will be addre
in more detail below.

We also numerically calculated the energy of doma
walls that are not straight. Figure 4 shows the energy o
square closed domains, formed from herringbone walls
linear dimensionL unit cells in a system of size 1203120
with periodic boundary conditions. We see that to a ve
good approximation, the energy scales linearly inL. One
can, however, work out some corrections to this linear
pendence due to the change in the vortex density at the
ner of the domains. For instance in Fig. 3~b! the vortices at
opposite corners of the square domain have either an e
next-nearest neighbor vortex or a missing next-nearest ne
bor. From a distance, this gives a quadrapole moment to
domain. As the 333 domain shown in Fig. 3~b! is the basic
building block of larger domains constructed from herrin
bone walls, one can conclude that larger differently sha
domains will not have a lower moment~i.e., they will be
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6594 PRB 58COLIN DENNISTON AND CHAO TANG
neutral and have no dipole moment!. The interaction of two
such quadrapole domains at a distancex, large compared to
its sizeL goes like26Je f f(L/x)4 @if one assumes an isotro
pic ~which is not really true! interaction of two ‘‘corner’’
charges likeJe f fln x]. In addition, the self-energy of a squa
quadrapole goes like22Je f flnA212Je f fln L.

Figure 5 shows the interaction of some square doma
One sees that the quadrapole correction is measurable
fits the expected functional form quite well, but that the co
stantsJe f f do not match what one would expect from a
isotropic calculation. In fact, the system is not really equiv
lent to an isotropic 2D Coulomb gas, in that the directi
along the diagonal lines of vortices in the staircase stat
not equivalent to the direction perpendicular to the vor
lines. We have also calculated the energies of rectang
domains and some other less regular shapes and they
qualitatively similar~same functional form! behavior.

The next question is whether or not the quadrapole in
action is likely to be relevant. One can use an argum
similar to that used to argue for a transition in the unfru
tratedXY model. If you consider the interaction free ener
contribution of the quadrapole interaction, it should cont
the energetic part2A/r 4 and an entropic part2BT ln(pr2)
from confining the quadrapoles to have a separation less
r ~one could do a more accurate calculation of the entr
but it will still have a lnr dependence!. At the distances a
which the 2A/r 4 form is valid, the lnr term wins all the

FIG. 4. Energy of a square domain of sizeL3L in a system
with periodic boundary conditions of size 1203120 for f 52/5. The
line is the fit 20.0268(25) 10.344797(68)L 10.301(1)ln L
21.28(3)(L/120)4. The inset shows the residuals for a linear
~stars! and the fit including the quadrapole corrections~diamonds!.

FIG. 5. Energy of a square domain of size 15315 in a system
with periodic boundary conditions of sizex3x for f 52/5. The line
is the fit 5.961081(7)21.086(1)(15/x)4.
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time ~at finite T) and hence one can argue that the quad
pole interactions should not be relevant.

IV. SPIN WAVES AND THE VORTEX INTERACTION

At low enough temperature, domains should be small,
one is tempted to expand the energy about the ground s
configuration. In this treatment, the periodic character of
angles is neglected, but the existence of long range orde
the vortex lattice partly justifies this method. The model
replaced by a so-called spin wave approximation which
volves expanding the Hamiltonian to second order inD i j ,
where u i j 5u i j

(0)1D i j and u i j
(0) is a ground state configura

tion:

H'H ~0!1(
i j

S ]H
]u i j

D ~0!

D i j

1
1

2(i j (
kl

DklS ]2H
]ukl]u i j

D ~0!

D i j . ~4!

By definition, (]H/]u i j )
(0)50 and we just have a quadrat

form. The free energy per site associated with Eq.~4! is

F52
1

b
ln Zsw

52
1

b
lnF E )

i
dDx

3expS 2
b

2(
x,x8

DxS ]2H
]ux]ux8

D ~0!

Dx8D G
52

1

b
lnS det

J

2p D 21/2

, ~5!

where J is the Jacobian matrix,Jx,x85]2H/]ux]ux8 . The
spin wave correlation function is

Gsw~x1,x2!5^exp@ i ~Dx1
2Dx2

!#&

5Z sw
21E ) Dx

3expF2
b

2(
x,x8

DxJx,x8Dx81 i ~Dx1
2Dx2

!G
5expS 2

1

2b
X~x1,x2!

TJ21X~x1,x2! D , ~6!

whereX(x1,x2) is a vector with11 and21 in positionsx1
andx2, respectively, and zeros everywhere else.

For the unfrustrated case16 J is just the discretization of
the Laplacian operator@i.e., Jf'¹2f, where ¹2f
5]2f/]x21]2f/]y2 and the partial derivatives are replace
with a finite-difference formula ]2f/]x2'„f(xi 11 ,yi)
22f(xi ,yi)1f(xi 21 ,yi)…/a

2, anda is the lattice constant#.
As a result, 1

2 X(x,x8)TJ21X(x,x8) can be approximated by
the Green’s function for the Poisson equation,

g~r !5
1

2p
ln

r

r 0
,
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PRB 58 6595LOW-ENERGY EXCITATIONS AND PHASE . . .
where r 05a/(2A2eg), a is the lattice spacing andg
50.577216 . . . isEuler’s constant. This yields

Gsw~x1,x2!;exp@21/2pb ln~ ux12x2u/r 0!#

5~r 0 /ux12x2u!1/2pb. ~7!

So the correlation function of the spin wave fluctuations
creases according to a power law behavior. This algeb
decay of the spin wave correlation function is broken by
unbinding of vortex-antivortex pairs at the Kosterlit
Thouless transition.16

In the general frustrated case,J is not a discrete Laplac
ian. The question is, do we get something similar? The 1r 4

interaction of the domains studied in the previous sect
suggests that we do. Figure 6 shows1

2 X(x,x8)TJ21X(x,x8)
for f 51/3 along a slice in thex-direction in a finite size
system with periodic boundary conditions along the direct
of the slice. The envelope of this curve is well described
the sum of two logarithmic functions, lnx1ln(L2x) ~where
the second term comes from the periodic boundary co
tions!. In addition to this logarithmic part, there is a period
oscillation, coinciding with the underlying vortex lattice. I
addition to this obvious oscillation, the phase of the osci
tion depends on the initialx @the correlation function is no
just a function of (x2x8)]. The effect of this initialx depen-
dent phase at long distances should not be important. H
ever, distortions centered on nearby sites, and between
of vortices can partially cancel due to this phase differen
There is also an anisotropy between the directions perp
dicular and parallel to the diagonal lines of vortices. Th
anisotropy can, however, be removed in a continuum pic
by rescaling the coordinates.

This modified lattice ‘‘Green’s’’ function also has an im
pact on vortex interactions. The zero temperature Fou
transform of the vortex-vortex~two 11 vortices! interaction
within the Gaussian approximation is

V~k!524p2Jg~k!, ~8!

where g(k) is the Fourier transform of the lattice Green
function, 1

2 X(x,x8)TJ21X(x,x8). The dielectric function
1/e(k) describes howV(k) is reduced from this zero tem
perature result,

V~k!524p2Jg~k!/e~k!. ~9!

FIG. 6. 1
2 X(x,x8)TJ21X(x,x8), the lattice ‘‘Green’s’’ function,

for f 51/3 along a slice in thex direction in a finite size system with
periodic boundary conditions along the direction of the slice. T
line indicates a fit toA„ln x1ln(L2x)….
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Within the Gaussian approximation, the helicity modulusY
is related to thek50 component of the dielectric function
Y5 limk→0J/e(k). 1/e(k) is related to the vortex-vortex cor
relation function by

J/e~k!5J0S 12
bVbare~k!

L2
^n~k!n~2k!& D , ~10!

where J05J^cos(uj82ui2Aij8)&, n(k) is the Fourier trans-
form of the vorticity density n(r ) and Vbare(k)
524p2J0g(k) @this particular expression fore(k) is taken
from Ref. 17#. The presence of the logarithmic part in th
lattice Green’s function ensures that the overall flux bala
ing ( f 5^ni& whereni is the vortex occupation of plaquett
i ) is maintained. Here, the vortex interaction energy a
contains an oscillating component coinciding with the und
lying vortex lattice. The effect of such a component is n
entirely clear, especially as the amplitude of the oscillat
does not decay away at large distances. Conventional
dom would suggest that as long as we still have the logar
mic interaction of vortices, they should still undergo
Kosterlitz-Thouless type of unbinding transition and an
sociated jump in the helicity modulus.16 As we shall see in
the next section, it is not entirely clear whether or not th
actually happens. It might be interesting to try to go throu
and derive the Kosterlitz recursion relations with the oscil
tions as some sort of perturbation to see if it is releva
although it seems unlikely to do anything but renormalize
core energies.

However, this is based on the Gaussian approximation
the ground stateof Eq. ~4!. To obtain the long range vorte
interaction correctly, however, one should do some sort
average over Gaussian approximations to all relev
vacuum states. At finite temperature, this includes not
the ground state but configurations where finite size doma
of the other states are present, especially near the cri
point where domain fluctuations are extensive. In theXY
model, the non-singular part ofY @J0 in Eq. ~10!# can be
calculated within a spin wave picture and it is a mono
nously decreasing function of temperature. The singular p
is, however, due to dipole fluctuations. The question her
whether these are dipoles tied to domains, like would be
case for shift wall domains, or whether these are regu
single vortex-antivortex pairs. That domain fluctuations w
reduce the effectiveXY coupling J0 for vortex-antivortex
pairs, thus reducingY ~perhaps in a way similar to spin
waves! does not seem conceptually incorrect to us. In ad
tion, the presence of fluctuating domains can act as a
domness in theXY couplingand in the fugacity, especially
near the critical point. It seems fairly well established th
quenched randomness in the~unfrustrated! XY model prob-
ably induces vortices in the ground state at some large len
scale. In addition, recent work18 seems to suggest that th
fugacity expansion of the clean unfrustratedXY model
breaks down in the presence of any finite disorder. The r
domness due to fluctuating domains is not quenched, but
would only appear to make it more likely for domain flu
tuations to destroy quasi-long-range order near the crit
point. The situation in this respect does not seem to be
that well understood. It is however an interesting point wh
should be examined in more detail in future studies.
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6596 PRB 58COLIN DENNISTON AND CHAO TANG
V. f 51/3

The fluxoid pattern for the two lowest energy walls
f 51

3 was shown in Fig. 1~b! and 1~d!. One can see from Fig
3~b! that a shift wall can be viewed as two adjacent, orbound
herringbone walls. Forf 5 1

3 the energy of two herringbon
walls is less than that of a single shift wall and hence,
shift walls are unstable and break up into herringbone wa
As a result, we confine our discussion of thef 5 1

3 case to the
herringbone walls as other walls should not be presen
large length scales. The energy cost for dividing anL3L
lattice into two domains separated by a solid-on-solid~SOS!
wall stretching from one side of the system to the other

Hsingle$z%5bsL1bs(
k

uzk2zk21u. ~11!

The height variableszk take on integer values (b53 is the
shortest length segment!. The partition function, Z
5($zk%exp(2H/T) can be evaluated either by the trans
matrix method or recursively~see Appendix B!.14 The inter-
facial free energy per column is F
5T ln@ebs/Ttanh„bs/(2T)…#. The zero crossing ofF gives
an estimate of the critical temperature. Plugging in the val
for the f 5 1

3 herringbone wall givesTc50.19J, in remark-
able agreement with the valueTc50.22J found in the Monte
Carlo simulations described below.

Being similar to Ising walls, herringbone walls cann
branch into other herringbone walls, thus the set of poss
domain wall configurations is similar to those in an Isi
model. We label the fraction of the system in state (s, j ) as
ms, j , where s561 denotes the member ofZ2 , and j
51,2,3 denotes the member ofZ3 . Below the transition, one
state (s,i ) spans the system. On this state sit fluctuating
mains, bounded by herringbone walls, of each of the st
(2s,1), (2s,2), and (2s,3) in equal numbers; so theZ3
symmetry is broken for the (s, j ) states, but not for the
(2s, j ) states. As the transition is approached from belo
the domains occupied by the (2s, j ) states grow, with
smaller domains of the (s, j ) states within them. At the tran
sition, theZ2 symmetry between the6s states is restored
and, as a result, theZ3 symmetry for the (s, j ) states is also
restored.

The Monte Carlo simulations used a heat bath algorit
with system sizes of 20<L<96. We computed between 107

and 33107 Monte Carlo steps~complete lattice updates!
with most of the data taken close toTc . Data from different
temperatures was combined and analyzed using histog
techniques19 ~see Appendix C!.

If the largest fraction of the system is in state (s,i ), then
we have three Ising order parameters,M j5(ms,i
2m2s, j )/(ms,i1m2s, j ), j 51 . . . 3. Onaverage, theseM j
are the same so we just take the average asM . To calculate
the ms,i , we examine the Fourier transform of the vort
density rk6 at the reciprocal lattice vectorsk65p/3(1,
61) of the ground state vortex lattices. Starting from t
definition of the Fourier transform, and using the vort
states given above, one finds

rk6

rg
5m61,11m61,2e

i2p/31m61,3e
2 i2p/3, ~12!
e
s.

at

r

s

le

-
es

,

m

whererg is the modulus in the ground state. In practice,rk6

is reduced by small short-lived regions which do not qu
match any of the six states. Since this effect is the same
all states, it cancels when calculatingM . Using the real and
imaginary parts ofrk6 in addition to ( jm61,j , calculated
from the direct vortex lattice as in Ref. 20, we can find t
five independentms, j .

In addition to the energy and order parameter, seve
other quantities were calculated from the Monte Carlo d
using the corresponding fluctuation-dissipation relations:

C

kB
5

K2

L2 ~^E2&2^E&2!,

x5KL2~^M2&2^M &2!,

] ln^Mn&
]K

5
^MnE&

^Mn&
2^E&, ~13!

whereK5J/kBT. In addition to the discrete order paramete
we also followed the helicity modulus defined byYx,y
5]2F/]f2uf50, whereF is the free energy density andf
is a twist in the boundary condition along thex or y direc-
tion. The helicity modulus also follows a fluctuation
dissipation relation which is used in calculating it from th
data:

Yx5
1

L2K (
^r ,r8&

@~r2r 8!• x̂#2cos~u r2u r82Ar ,r8!L
2

bJ2

L2 K F (
^r ,r8&

@~r2r 8!• x̂#sin~u r2u r82Ar ,r8!G2L
1

bJ2

L2 K (
^r ,r8&

@~r2r 8!• x̂#sin~u r2u r82Ar ,r8!L 2

,

~14!

where^r ,r 8& denotes nearest neighbor pairs.
To determine the critical exponents for the transition

make use of finite size scaling.21 Following standard argu-
ments, one assumes that for a second-order transition
singular part of the free energy,F(t,h), near the transition is
dominated by a term that changes under a change of s
according to the ansatz

F~ t,h!5lF~lst,l rh!,

wheret5(T2Tc)/Tc andh is an applied field which couple
to the order parameterM ~soh is not the true magnetic field
here!. From this, one can derive the scaling form of the ord
parameter, specific heat, susceptibility, etc. using the s
dard relations,M52]F/]h, C52T]2F/]t2, x5]m/]h,
etc. If one takes the special caseh50,l5utu21/s one can
relater ,s to the standard exponentsa for the specific heat,b
for the order parameter, andg for the susceptibility ass
51/(a22), r 5(g1b)/(a22) and a12b1g52. If one
takes the caseh50 andl5L (a22)/n, wheren is the expo-
nent for the divergence of the correlation length, one obta
the relations for finite size scaling:
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Mn5L2b/nMn~xt!,

C5La/nC~xt!,

x5Lg/nX~xt!, ~15!

where xt5tL1/n is the temperature scaling variable. Usin
relations~15! one can also derive11,22

]^M &
]T

5L ~12b!/nD~xt!,

] ln^M &
]T

5L1/nQ~xt!. ~16!

For a finite lattice the peak in, for example the specific he
scales with system size likeCmax}La/n and occurs at the
temperature where the scaling functionC(xt) is maximum so
that

C~xt!

dxt
U

xt5x
t*
50.

This defines the finite-lattice transition temperatureTc(L) by
the conditionxt5xt* so thatTc(L)5Tc1Tcxt* L21/n. In gen-
eral the finite-lattice transition temperature calculated fr
different quantities differs slightly but extrapolates to t
sameTc in the limit of largeL.

A very accurate way of locating the transition temperat
is by using Binder’s cumulant,23

U512^M4&/~3^M2&2!.

For system sizes large enough to obey finite-size scaling,
quantity is size independent at the critical point. This giv
Tc50.2185(6)J for the order parameter defined above.4 Tc
can also be determined from the scaling equation for
temperature at the peak of thermodynamic derivatives s
as the susceptibility,Tc(L)5Tc1aL21/n. We find these
other methods giveTc in agreement with that fromU.

Finite size scaling21 at Tc applied to ] ln M/]K gives
1/n51.01160.029, and to the susceptibilityx gives g/n
51.75860.013, and toM givesb/n50.1460.02. These ex-
ponents are determined from the slopes of the lines show
Fig. 7 which plots the values of these quantities at the crit
point as function ofL. These exponents are in excelle
agreement with the Ising valuesn51, g5 7

4 , andb5 1
8 . The

scaling collapse collapse for these quantities is also q
good away fromTc @see, for instance, Fig. 2~a! of Ref. 4
which shows shows the collapse of the raw data onto
scaling function forx].

Two previous examinations of thef 5 1
3 case12,24 sug-

gested a continuous transition but did not measure crit
exponents. Lee and Lee20 claim to find separate, closel
spaced transitions, for the breaking ofZ2 at T/J50.215
60.001 andZ3 at T/J50.21960.002. One explanation fo
their conflicting results comes from the small system si
(L<42) used in their analysis. Figure 8 shows Binder’s c
mulant Û for the Z2 order parameterM 85m11m21m3
2m42m52m6 , used by Lee and Lee. One sees a consis
crossing point only forL>48, indicating that substantial cor
rections to scaling are present for smallL. For the largerL
t,
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however, the crossing point is atTc50.2183(7)J in agree-
ment with what we found above. As further evidence of tw
transitions, Lee and Lee point out the presence of a shou
in the specific heat at intermediate system sizes. Howeve
one can see from Fig. 9 this shoulder weakens for largeL
and for L584 and 96 it is no longer clearly discernible
While the two-transition scenario clearly appears to be
problem of smallL, it is a fairly unusual finite-size effec
and deserves some explanation as to its origin. We bel
the cause to be as follows. Below the transition, if the dom
nant state is (s,i ), in small systems you often do not see a
three of the (2s, j ) states in the system at the same tim

FIG. 7. Finite size scaling plots forf 5
1
3 . ~a! Logarithmic de-

rivative of M at Tc vs L, ~b! specific heat maximum~hollow! and at
Tc ~solid! vs L, ~c! x at Tc vs L, and~d! M at Tc vs L.

FIG. 8. f 51/3 Binder’s cumulant for theZ2 order parameter as

defined by Lee and Lee,Û vs T for L524, 36, 48, 60, 72, and 84
~smallerL shown as dotted lines!. Note that, for all but the smalles
L, the crossing point is atTc50.218360.0007 in agreement with
what was found using our order parameter@compare to Fig. 2 of
Denniston and Tang~1997!#.
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Figure 10 illustrates this effect. The minimum o
(urk1u,urk2u) ~call it rm) is a measure of theZ3 symmetry
breaking for the (2s, j ) states andthis goes to zeroas L
→`. To see how this can result in something like t
‘‘shoulder’’ in the specific heat consider that the free ene
of a finite size system can be written as an analytic funct
of the order parameter. Since for finiteL, rm is small but
finite it contributes something to the free energy of a fin
system. Since the specific heat involves derivatives of
free energy with respect to temperature, it will receive so
contributions fromrm which to lowest order will involve
]rm /]T, a quantity shown in Fig. 10~c!. Adding this to the
side of a diverging function like the specific heat will yie
exactly the shoulderlike appearance seen. Asrm decreases
with system size, whereas the specific heat diverges,
effect gradually goes away for largerL.

The helicity modulusY is the quantity most closely re
lated to experimental measurements.16 For f Þ0, the scaling
of the I -V curves found in experiments is consistent w
domain wall activation processes.3 The theory of Nelson and
Kosterlitz for the f 50 case predicts thatY should come
down in a characteristic square-root cusp and then jump w
a universal value, 2kBTKT /p. However, we find an excep
tionally good fit ~Fig. 11! of our data to Y2Y0
5L2b/n M„(T2Tc)L

1/n
… with n51, b5 1

8 , and Y050,

FIG. 9. ~a! Specific heat forL524, 36, 48, 60, 72, 84, and 96
The dashed line indicatesTc . Note that the shoulder which appea
for intermediate lattice sizes goes away for the two largestL. This
makes the scaling ofC not as good as for the other variables.~b!
Scaling collapse of data shown in~a!. ~c! Power law scaling found
by Lee and Lee for smaller system sizes, applied to the data sh
in ~a!. The logarithmic scaling shown in~b! gives a better collapse
of the data. In particular the lower curve in~c!, corresponding to the
scaledL596 data is separating from the pack.
y
n

e
e

is

th

which is the scaling form ofM . Clearly, Y is affected
strongly by fluctuations inM and attempting to fit scaling
relations for thef 50 case20 without taking this into accoun
seems questionable. We see two possible interpretation
our result. The first is thatY only receives contributions from
the ordered part of the lattice. So comparisons with thf
50 case should examineYm5Y/M . Ym'0.58 at the transi-

wn

FIG. 10. ~a! min(urk1u,urk2u) versuskBT/J for L524, 36, 48,
60, 72, and 84. Note that data from largerL are smaller:
min(urk1u,urk2u) vanishes asL→` as indicated by the finite-size
scaling plot ~b! which shows a reasonable collapse f
min(urk1u,urk2u);La/n with a/n520.2060.02. ~c! Derivative of
min(urk1u,urk2u);La/n with respect to temperature.

FIG. 11. Scaling collapse ofY where x5(T2Tc)L
1/n, y

5YLb/n, n51, and b5
1
8 . Inset: raw data~solid and dotted!,

(2/p)T ~dashed!, andauT2Tcub ~dot-dashed!. In both cases data is
from L536, 48, 60, 72, 84, and 96.
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tion implying a larger than universal jump. Alternativel
one can say that althoughY is brought down by fluctuations
in M , it should still jump when it crosses the universal valu
2kBT/p. Extrapolating the observed behavior ofY gives
YL→`5auT2Tcub. This crosses the value of the univers
jump at TKT2Tc'1026. Although we do not see evidenc
for a jump, a difference in transition temperatures of 1026

would not lead to any observable effects for the system s
studied here.

VI. f 52/5

On the face of it, thef 52/5 case would appear very sim
lar to the f 51/3 situation we have just examined. Th
ground states are similar and, as can be seen from Table
energy cost of a herringbone wall, whose presence impli
Z2 symmetry, is much lower than that of the available sh
walls. However, thef 52/5 case undergoes a first ord
phase transition~see below!, quite different from the Ising
transition found for thef 51/3 case above. One differenc
between the two cases is the value ofb @b55 here is the
shortest line segment in Eq.~11!# and hence the net line
energy is greater here. In addition, forf 5 1

3 , herringbone
walls are the only stable walls, while this is not true forf
5 2

5 . For f 5 2
5 it is energetically favorable for two herring

bone walls to bind and form a shift-by-one or shift-by-thr
wall. Binding does, however, have an entropic cost. To se
these walls are bound we consider the following model
two SOS walls:

Hd$D,z%5(
k

$~2bs1uidzk,0!1bsuzk2zk21u

1~2bs1u'dzk,0!Dk1Vr~$D,z%!%. ~17!

zk is the separation of the walls (zk>0, the walls do not
cross!, Dk is the number of vertical steps the two walls ta
in the same direction in thekth column (2`,Dk
,`). ui andu' are the binding energies parallel and pe
pendicular to the wall. At this stage we takeVr50. The
solution to such a model is discussed in Appendix B.
ground state eigenvectorcm(z)5e2mz, where 1/m is the lo-
calization length, or typical distance separating the lin
characterizes the bound state of the two lines.m50 defines
the unbinding transition atTb . For the cases of interest, on
finds Tb50.947J for the shift-by-one walls,Tb50.864J for
the shift-by-two walls andTb51.08J for the shift-by-three
walls. In addition, the free energy for these walls cros
zero ~at Tsos

(2)50.437 for the shift-by-one walls,Tsos
(2)50.452

for the shift-by-two walls, andTsos
(2)50.411 for the shift-by-

three walls! before they unbind. Hence, when these wa
enter the system, they are bound. This means that one
have a complex branching domain wall structure similar
the q>5 Pott’s models where a first order phase transit
occurs. Technically, this is a mean field argument for
interfaces but, since the interfaces are extended objec
should give a reasonable picture of the order ofTb for the
interfaces andTsos

(2) .
In their Monte Carlo simulations, Li and Teitel25 observed

hysteresis of the internal energy when the temperature
cycled around the transition and used this as an argumen
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a first order transition atf 5 2
5 . The most direct indication of

a first order transition is the presence of a free energy ba
between the ordered and disordered states which diverge
the system size increases.26 The free energy as a function o
energy is obtained usingFL(E)52 lnPL(E) wherePL(E) is
the probability distribution for the energy generated
Monte Carlo simulation of aL3L system. Figure 12 show
the growth in this barrier as the system size increases f
L520 to 80 giving clear evidence for the first order nature
the transition.

Since there is no diverging characteristic length to wh
the linear dimensionL could be compared at a first orde
transition, one finds that it is simply the volumeLd that
controls the size effects.27 One thus finds

Cmax,x}Ld

for a first-order transition. Figure 13 shows the specific h
as a function ofL2 for the f 52/5 clean system. The linear fi
~solid line! clearly shows the expected first-order scaling b
havior. Similar behavior can be seen in the susceptibility
shown in the figure. From the positions of the peaks a
function of L we obtainTc50.2127(2)J.

VII. DISORDER AND THE f 52/5 PHASE TRANSITION

In any experimental realization of the frustratedXY
model, such as superconducting arrays disorder is alw
present. In the Josephson Junction array this disorder wil

FIG. 12. Free energy as function of the negative of the ene
per site forf 52/5 (d50). A constant has been added to the curv
in order to separate them.

FIG. 13. ~a! Specific heat vsL2 and ~b! susceptibility vsL2.
Errors are comparable to the symbol sizes.
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primarily in the form of randomness in the bond coupling
rather than a random site field. In Ref. 4 we considered
effects of disorder on thef 5 2

5 phase transition and here w
present some additional results from the Monte Carlo sim
lations. The disorder is introduced by taking the couplings
the Hamiltonian~1! as Ji j 5J(11e i j ), the e i j are chosen
randomly from a Gaussian distribution with a standard
viation d. This also has the effect of creating a small rand
field in the sense that one of the previously 2q-fold degen-
erate ground states may be preferentially selected. The e
of random fields on discrete degrees of freedom in 2D
marginal.28 Aizenman and Wehr have shown quite rigo
ously that this critical randomness is zero in 2D10 ~i.e., no
finite temperature transition is possible!. Their work relies on
the assumption that the difference in energy between st
which were degenerate in the clean system~the strength of
the random field! scales linearly with the size of the regio
considered. In Ref. 4 we showed that this energy differe
does indeed scale withL for the present system. This doe
not preclude the possibility that the length scale associa
with random fieldsj rf is so large as to be unobservable in t
finite sized samples (;100031000) studied experimentally3

and accessible to simulation.
At any coexistence point of the clean system, rand

bondsresult in different regions of the system experienci
average couplings slightly above or below the critical co
pling. As a result, at any given temperature the system
predominantly prefer either the ordered or disordered s
wiping out the coexistence region and leaving only a c
tinuous transition.28,9,10It has been conjectured11 that critical
random Potts models are equivalent to Ising models. Ka
et al.15 suggested a possible mechanism for this effect. Th
position space renormalization group approximation sugg
that the probability of loop formation in the fractal interfac
of the clean system vanishes marginally at a transition do
nated by random bonds. The interface may have some fi
width due to a froth of bubbles of different phases, but un
renormalization a linear critical interface is obtained an
hence, an Ising transition appears. Looking at the Mo
Carlo configurations we have also noticed some qualita
relationship between the size of the free energy barrier
tween the ordered and disordered state for a given realiza
of disorder, and the effective width of the disordered regio
seen close to the transition. In cases where the free en
barrier is almost nonexistent, one typically sees doma
bounded by herringbone walls very similar to those seen
f 51/3. Where there is a visible free energy barrier, one s
configurations which contain ‘‘bands’’ of the disordere
state~although calling these effective linear interfaces wou
be a bit of a stretch as their width is a reasonable fraction
L so there effective length is fairly short!.

We have done a Monte Carlo analysis with bond disor
values of d50.05 and 0.1. Since we are dealing wi
quenched disorder, we are interested in averaged quant
for instance the free energy is

F52kBT@ ln Z#av , ~18!

where the square brackets indicate an average over diffe
realizations of disorder. Since most quantities of interest
volve derivatives of the free energy, to calculate the aver
value of a thermodynamic quantity, we first calculate it fo
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given realization of the disorder and then do a configu
tional average over 10 to 15 realizations ford50.1 and
seven realizations ford50.05. Figure 3d of Ref. 4 showe
the free energy barrier forf 5 2

5 as a function of system siz
in the for d50.05 and 0.1. Ford50.05, the barrier first
grows with system size and then levels off. Atd50.1 the
free energy barriers are essentially zero, indicating a cont
ous transition and that the system sizes are large enoug
apply finite size scaling. Here, we follow the finite-size sc
ing methods used in Ref. 11.

Figures 14~a! and 14~c! show the peak values o
] ln M/]K andx as a function ofL. The slopes of these plot
give 1/n51.05(12) andg/n51.70(12). A similar analysis
of ]M /]K gives (12b)/n50.94(10) @Fig. 14~d!#. In addi-
tion, the log-linear plot of the specific heat shown in F
14~b! is consistent with a logarithmic divergence (a50). As
in the f 51/3 case, the helicity modulus appears to track
order parameterM , as can be seen from the nearly identic
slopes of]M /]K and ]Y/]K shown in Fig. 14~d!. Within
errors, these exponents are what one would expect from
Ising model. Experiments atf 5 2

5 ~Ref. 3! also found a con-
tinuous transition and measured the critical exponentsn
50.9(5) and the dynamic critical exponentz52.0(5), con-
sistent with an Ising transition.

VIII. CONCLUSIONS

In conclusion, we find that the nature and universal
class of the phase transitions are quite sensitive to the p
imity of the binding transition for the lowest energy doma
walls. For f 51/3 the lowest energy walls are never bou
and the transition is Ising-like. Forf 52/5 domain walls can
lower their free energy by binding to each other, resulting

FIG. 14. Finite size scaling plots forf 5
2
5 ,d50.1: ~a! logarith-

mic derivative ofM vs L, ~b! C/kB vs L, ~c! x vs L, and ~d!
]M /]K and]Y/]K vs L.
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a first order phase transition. Disorder weakens this bind
and changes the transition to be continuous and Ising-l
These results are consistent with the continuous phase
sition and critical exponents observed experimentally
f 52/5.3
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APPENDIX A: CONSTRAINED OPTIMIZATION
FOR VORTEX LATTICES

Minima of the Hamiltonian~1! satisfy Eqs.~2!. However,
these equations are written in terms of theu j variables and
the locations of the vortices does not enter explicitly. This
quite inconvenient as one finds that the zero tempera
energies of the system are almost entirely dictated by
vortex structure. By this we mean that given the position
all the vortices, the phases appear to be uniquely determ
~up to an overall constant! by the minimization conditions
This can be made more explicit by working with the gau
invariant phase differences

g i , j5u i , j2u i , j 212
2p

f0
E

~ i , j 21!

~ i , j !
A•dl,

a i , j5u i 21,j2u i , j2
2p

f0
E

~ i , j !

~ i 21,j !
A•dl, ~A1!

whereu i , j is the phase on the site at rowi column j of the
lattice. This introduces an extra variable per site~instead of
just u i , j now we haveg i , j and a i , j ) and a compensating
constraint that

g i , j2g i 21,j1a i , j2a i , j 2122p~ f 2ni , j !50. ~A2!

That is to say, the sum of the gauge invariant phase dif
ences around any plaquette must equal the magnetic
through the plaquette 2p f , plus an integer multipleni , j of
2p. If the gauge invariant phase differences are restricte
a range of 2p such as@2p,p) thenni , j measures the vorte
occupancy of the plaquette and is typically 0 or61 with the
sign depending on the sign off .

One then rewrites Eqs.~2! in terms of the gauge invarian
phase differences to get

sing i , j2sing i , j 111sina i 11,j2sina i , j50. ~A3!

If disorder is added, the random couplings should be
cluded here. These, in addition to Eq.~A2! give 2MN equa-
tions ~for a lattice of M3N unit cells! for the 2MN un-
known gauge invariant phase differences. The vortex pat
$ni , j% is now an input and stays fixed. When periodic boun
ary conditions are imposed one finds that two of these eq
tions are not independent. Two more convenient conditi
to impose closure are
g
e.
n-
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(
j 51

M

sinaN, j2I c50,

(
i 51

N

sing i ,12I r50, ~A4!

whereI c is the net current flowing down the columns of th
lattice andI r is the net current flowing along the rows. In a
cases found, the lowest energy state corresponded toI r ,c
50.

The above equations can now be organized into the fo
F($g i , j ,a i , j%)50 as

F15(
i 51

N

sing i ,12I r ,

F2M ~ i 21!12 j 215g i , j2g i 21,j1a i , j2a i , j 2122p~ f 2ni , j !,

F2M ~ i 21!12 j5sing i , j2sing i , j 111sina i 11,j2sina i , j ,

F2MN5(
j 51

M

sinaN, j2I c . ~A5!

If we define x to have elementsx2M ( i 21)12 j 215g i , j and
x2M ( i 21)12 j5a i , j ( i 51 . . .N and j 51 . . .M ) then the so-
lution to Eq. ~A5! can be found using Newton’s metho
which involves iteratively solving

J•dx52F ~A6!

and updatingx,

xnew5xold1dx, ~A7!

where the JacobianJi , j5]Fi /]xj .
The set of equations~A6! can be very large@we solved

systems with up to 2.33105 sites which means Eq.~A6!
represents about half a million simultaneous equations#. In
addition, we need to solve these systems very fast, espec
when disorder is added and averages over tens of thous
of solutions are needed. This is made possible by the spe
form of the Jacobian matrix:

~A8!
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where the dots represent the non-zero elements. We see
J is very nearly band diagonal. In factJ can be written as

J5A1U•VT, ~A9!

whereA is the band diagonal part ofJ ~the same three matrix
diagonal blocks asJ) andU andV areN32M matrices~as
opposed to 2MN32MN). I should point out here that th
method described below has a speed that is proportiona
NM2 so that the axes of the lattice should always be cho
so thatM<N for efficient operation.U andV have the form

~A10!
The first two blocks ofU andVT have the nonzero elemen
indicated and and the remaining blocks ofU are from the
first block column ofJ and the remaining blocks ofV are
from the first block row ofJ.

The solution of a band diagonal systemA•x5b is con-
siderably simpler than solving a general linear system
2MN equations. Not only that, but theLU factorization ofA
has the same storage requirements asA which can be stored
in a packed storage scheme holding only the central non
band. In order to solve our slightly more general problem
make use of theWoodbury formula:29

J215~A1U•VT!21

5A212@A21
•U•~11VT

•A21
•U!21

•VT
•A21#.

~A11!

Since storage ofA21 is not practical~the inverse does no
preserve the band structure of the matrix!, we must make use
of Eq. ~A11! in the following way, as described in Ref. 29
To solve the linear equation

~A1U•VT!•dx52F ~A12!

first solve the 2M11 auxiliary problems

A•Z5U, ~A13!

and

A•y52F. ~A14!

This can be done byLU factorizingA onceand then using
the factorization to solve all the systems simultaneou
Routines from LAPACK30 can make this very fast and effi
cient. Next, do the 2M32M matrix inversion

H[~11VT
•Z!21. ~A15!

In terms of these quantities, the solution is given by

dx5y2Z•@H•~VT
•y!#. ~A16!

In order to start Newton’s method, one needs a good
tial guess. This is provided by patching together the stairc
state solutions described in Sec. II. In addition, care mus
hat

to
n

f

ro
e

.

i-
se
e

taken to ensure that the gauge invariant phase difference
not wander out of@2p,p). There are a number of option
one can use if a phase difference wanders out of range.
is to just pin the solution at6p. This is not a great solution
as this is not really a minima of the unconstrained Ham
tonian. Another solution is to just add or subtract 2p and
continue iterating Newton’s method. This can cause a ju
in the errors on one of the equations which may result i
large change inx at the next step which may or may not b
beneficial. Another solution is to replace the phase differe
with the value on the other branch of the arcsin function
@2p,p). This causes no change in the error on the curr
conservation equations and produces a smaller change in
corresponding Eq.~A2!. Many of these problems can ofte
be avoided by taking a step in the Newton direction but w
smaller length, especially in the initial stages, using a
namic step length algorithm similar to those described
Ref. 29.

This may appear very complicated but is, in fact, ve
easy to implement, especially if one makes use of ‘‘canne
routines to do the linear algebra. One might wonder, ho
ever, what advantage this technique has over any others.
big advantage is that one has quadratic convergence o
solution, which is inherent in Newton’s method~techniques
such as relaxation tend to show linear convergence!. In cases
such as the averages of the energy of the staircase state
tex configurations taken over 104 realizations of disorder and
for systems sizes from 10310 to 60360 ~in Sec. VII!, this is
a considerable time saving. Other minimization techniqu
such as conjugate gradient techniques~CG!, can also have
quadratic convergence but in CG methods it takes a
iterations to build up information and get this quadratic co
vergence. Here, since we can come up with a reason
initial guess, one usually obtains quadratic convergence f
the start. Aside from the convergence criteria, we find it ve
useful to work directly with the gauge invariant phase diffe
ences. This allows one to easily ensure that a vortex has
‘‘wandered’’ off to some neighboring plaquette during th
convergence to the minima. In addition, the implementat
of imposing a net current and minimizing the energy w
respect to this global current is very straightforward. Tha
not to say that such things cannot be done using a min
zation procedure which adjusts the phase at each site,
that it is easier in a procedure which uses the gauge invar
phase differences.

APPENDIX B: SOLID ON SOLID MODELS

A good review of interface models is given in Ref. 1
Here we briefly discuss the cases relevant to our situat
The SOS model of an interface ignores overhangs
bubbles and configurations can be described in terms
integer-valued height variables whose values are meas
from the T50 position of the interface~see Fig. 15!. The
energy cost for dividing anL3L lattice into two domains
separated by a solid-on-solid~SOS! wall stretching from one
side of the system to the other is

Hsingle$z%5bisL1b's(
k

uzk2zk21u. ~B1!
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The height variableszk take on integer values.s is the line
energy per unit lattice constant, from Table I.b is the short-
est length segment~in lattice constants!: bi is 3 for f 51/3
and 5 forf 52/5; andb'5bi for herringbone walls, wherea
b'51 for shift walls @see Fig. 3~c!#. The partition function,
Z5($zk%exp(2H/T) can be easily evaluated by change

variables,D i5zi2zi 21 so that

Z5)
k51

L

e2bbis (
Dk52r

r

e2bb'sDk,

where @2r ,r # is the allowed values ofDk . In the unre-
stricted caser 5`, the interfacial free energy per column
F5T ln@ebbistanh„b's/(2T)…#. The zero crossing ofF
gives an estimate of the critical temperature. In the cas
the two-dimensional Ising model this zero crossing gives
exact critical temperature. This is somewhat fortuitous,
nevertheless useful.

In the continuum limit, the problem of two interfaces ca
usually be broken down into a center of mass part and
independent part involving the separation of the two int
faces. We would prefer, however, to work with a discre
model with parameters input from the energy calculations
the appropriate bent domain walls. We were unable to fi
the solution to such a model in the literature, so we pres
one here. Questions that we are interested in are wheth
not the two interfaces are bound and whether or not unb
ing occurs before or after the free energy of the walls
comes negative. To answer these questions we conside
following model for two SOS walls shown in Fig. 16:

Hdouble$D,z%5(
k

$~2bs1uidzk,0!1bsuzk2zk21u

1~2bs1u'dzk,0!Dk%, ~B2!

wherezk is the separation of the walls (zk>0), andDk is the
number of vertical steps the two walls take in the same
rection in thekth column (2`,Dk,`). @For example, if
the height of the two walls is labeled individually a
(zk

(1) ,zk
(2)) thenzk5zk

(2)2zk
(1) and

2Dk5~zk
~2!2zk21

~2! !1~zk
~1!2zk21

~1! !2uzk2zk21u

if ( zk
(2)2zk21

(2) ) and (zk
(1)2zk21

(1) ) are both positive,

FIG. 15. Solid on solid interface. Overhangs and bubbles
ignored in the SOS model and interface configurations can be
scribed in terms of integer-valued height variables measured f
the straight,T50 configuration of the interface.
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2Dk5~zk
~2!2zk21

~2! !1~zk
~1!2zk21

~1! !1uzk2zk21u

if ( zk
(2)2zk21

(2) ) and (zk
(1)2zk21

(1) ) are both negative, andDk

50 if (zk
(2)2zk21

(2) ) and (zk
(1)2zk21

(1) ) are of opposite sign.# ui
andu' are the binding energies parallel and perpendicula
the wall @they are determined so that forzk[0 the model is
exactly equivalent to Eq.~B1! for the single wall in ques-
tion#. For example, taking the energies per unit length fro
Table I for the f 52/5 shift-by-one wall,ui55(0.15922
30.0861)J520.067J and u'50.159J253230.0861J
520.7J ~only the second term is multiplied by 5 in the e
pression foru' sinceb'51 for shift walls. This distinction
was not made in our original paper4 hence we get differen
numerical values of the binding temperaturesTb here, how-
ever the conclusions regarding the order ofTb and Tc are
unaffected!. Here b is always 3 for f 51/3 and 5 for f
52/5 since we consider the splitting into herringbone wa
~the lowest energy walls!. Of course, in practice, the situatio
is much more complicated, as the conditions onu' is really
a complicated function of bothzk and zk21 , however, this
model does give the right result in both the tightly bou
~single interface! and unbound~two separate interfaces! lim-
its and should contain the essential ingredients of what
between.

The partition function is

Z5(
$zk%

)
k51

L

e2bbsuzk2zk21ue2b~2bs1uidzk,0!

3H ~11uzk2zk21u!1 (
DkÞ0

e2b~2bs1u'dzk,0!uDkuJ .

~B3!

The (11uzk2zk21u) comes from the fact that forDk50
there are uzk2zk21u11 ways to divide the changeuzk
2zk21u between the two lines. This entropic factor mea
that there is not a simple relation betweenDk and the indi-
vidual heights of the two interfaces, as a specificDk can be
consistent with (11uzk2zk21u) individual configurations of
the wall, all of which have the same energy. However,Dk

e
e-
m

FIG. 16. Two solid on solid interfaces. The interfaces have
negative binding energy causing them to want to stick but th
cannot cross. This ‘‘no crossing’’ condition results in an entrop
repulsion which pushes the interfaces apart at high enough temp
ture.zk is the separation of the interfaces at thekth step andDk is
the number of steps the interfaces take in the same direction a
kth step.
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andzk are separable allowing one to sum overDk leaves the
partition function in the form of a transfer matrix:

Z5(
$zk%

)
k51

L

e2bbsuzk2zk21u$dzk,0~ uzk2zk21u

1coth@b~bs1u'/2!# !e2b~2bs1ui !

1~12dzk,0!~ uzk2zk21u1cothbbs!e22bs%

5(
$zk%

)
k51

L

Tzk ,zk21
. ~B4!

Unfortunately, we were unable to solve the general case
lytically. However, restrictingzk2zk21 to 0 or 61, we can
derive the eigenvalues and eigenvectors of the matrixT̂ ex-
plicitly. A ground state eigenvectorcm(z)5e2mz, where
1/m is the localization length, or typical distance separat
the lines, characterizes the bound state of the two lin
cm(z) is found by first finding the eigenvaluelm @from the
defining equation (T̂cm)z5lmcm(z)] for z.0. m is then
obtained from the eigenvalue equation forz50. This gives
em as the solution to the quadratic equation,

~11coth bbs!e2m

1ebbs@coth bbs2e2bui~112e2b~2bs1u'!!#em

1@11coth bbs22e2bui~11e2b~2bs1u'!!#50. ~B5!

m50 defines the unbinding transition atTb . The more gen-
eral case,uzk2zk21u,N with N a large number~typically
about 1000!, can be easily solved numerically and is not th
different from the restricted case discussed above. The
ues quoted in the text are from such a numerical calculat

APPENDIX C: MONTE CARLO SIMULATION
OF CONTINUOUS SPIN SYSTEMS

A reasonable introduction to Monte Carlo techniques
given in Ref. 31. However, some of the implementation te
niques suggested in this book are out of date and shoul
taken with a grain of salt. Most simulations of frustrated sp
systems described in the literature appear to have us
rather poor updating scheme leading to very long autoco
lation times. We use a heat bath scheme described be
which seems to be a couple of order of magnitude faster t
these standard schemes near the critical point. This is no
say that other heat bath schemes have not been used, it i
that such works almost never describe any details of how
is done, a problem we shall try to rectify here. To ma
efficient use of the data generated in a Monte Carlo sim
tion one should make use of the histogram techniques
Refs. 19,26.

1. Sampling

Formally, the task of statistical mechanics is to comp
from the model HamiltonianH the desired average prope
ties,
a-

g
s.

t
l-

n.

s
-
be

a
e-
w
n
to
just
is

-
of

e

^A~$u i j %!&5
1

ZE d$u i j %A~$u i j %!exp@2H~$u i j %!/T#,

~C1!

where states are weighted with the normalized Boltzma
distribution

p~$u i j %!5
1

Zexp@2H~$u i j %!/T#. ~C2!

While this gives a formally exact description of the pro
ability distribution, we are not really interested in such d
tailed information, nor is it possible to carry out the integr
tions in the high-dimensional space required in t
thermodynamic limit. The dimension of the space can
reduced somewhat by making use of finite size scaling
extrapolate from small systems (L,100) to the thermody-
namic limit. Even for these smallerL, it is still not possible
to numerically integrate the system based on any sort of
cretization scheme. One instead uses Monte Carlo inte
tion which is simply to pickN sets of$u i j % randomly dis-
tributed according to Eq.~C2! and then

^A~$u i j %!&'
1

N(
l 51

N

A~$u i j % l !. ~C3!

If the $u i j % l are independent andA($u i j %) is distributed in a
Gaussian distribution with variances2 then the error in̂ A&
calculated in this manner iss/N1/2.

In practice, the knowledge of how to pick independe
random numbers distributed according to Eq.~C2! is quite
close to knowing how to solve the problem exactly. In ge
eral, we must give up on the idea of independent rand
numbers and instead construct a Markov process where
state$u i j % l 11 is constructed from a previous state$u i j % l via a
suitable transition probabilityW($u i j % l→$u i j % l 11). A suffi-
cient condition for the distribution functionP($u i j %) of
states generated to converge to Eq.~C2! in the limit N
→`, is for the transition probability to satisfy detailed ba
ance:

W~$u i j % l→$u i j % l 8!

W~$u i j % l 8→$u i j % l !
5expS 2

dH
T D , ~C4!

wheredH5H($u i j % l 8)2H($u i j % l). Note that Eq.~C4! must
be satisfied forall possible movesl→ l 8 in order to be er-
godic.

This still leaves many choices for the move. Ideally, o
would like to change many degrees of freedom simu
neously, unfortunately in the absence of any cluster routi
for frustrated systems, one is left with single site updat
moves.~Alternatively one can simulate a Langevin equati
to change all degrees of freedom simultaneously, but b
small amount. Even Langevin dynamics are not unique,
the dynamics which are supposed to be appropriate for
perconducting arrays12 was found to have longer autocorre
lation times than the Monte Carlo method we ended up
ing.! One particularly poor, but popular, method of updati
continuous degrees of freedom involves picking a newu i j
completely at random, or in an interval about its previo
value, and then accepting or rejecting the move based
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whether another random number is above or be
exp(2dH/T). This can give extremely long autocorrelatio
times, and leads to a high number of rejected moves in
low temperature state. One would have to apply this sa
step numerous times to the same spin just to equilibrat
with its nearest neighbors.

An ideal single site updating step would picku i j accord-
ing to the conditional Boltzmann probabilityp(u i j ) for u i j
given the knowledge of the neighboring spi
$u i , j 61 ,u i 61,j%. For our frustratedXY model this is

p~u i j !5
1

C
exp@„cos~u i , j 112u i j 1Ai j

i , j 11!

1cos~u i , j 212u i j 1Ai j
i , j 21!

1cos~u i j 2u i 11,j1Ai 11,j
i j !

1cos~u i j 2u i 21,j1Ai 21,j
i j !…/T#

5
1

I 0S h

TD expS h

T
cos~u i j 2d! D , ~C5!

where

h5Ax21y2,

d5arctan~x/y!,

x5sin~u i , j 111Ai j
i , j 11!1sin~u i , j 211Ai j

i , j 21!

1sin~u i 11,j2Ai 11,j
i j !1sin~u i 21,j2Ai 21,j

i j !,

y5cos~u i , j 111Ai j
i , j 11!1cos~u i , j 211Ai j

i , j 21!

1cos~u i 11,j2Ai 11,j
i j !1cos~u i 21,j2Ai 21,j

i j !, ~C6!

and I 0(x) is the zeroth order modified Bessel function.
An excellent reference for the next step can be found

Ref. 32. In order to generate a distribution ofu with p(u)
given by Eq.~C5!, one first generates a uniform deviatex
~independent uniformly distributed random number betwe
0 and 1! and makes use of the fundamental transformat
law of probabilities, which simply tells us

up~u!duu5udxu. ~C7!

So we need to solve

dx

du
5p~u!. ~C8!

The solution of this isx5F(u), whereF(u) is the indefinite
integral of p(u). The desired transformation which takes
uniform deviate into one distributed asp(u) is therefore

u~x!5F21~x!, ~C9!

whereF21 is the inverse function toF. This process is il-
lustrated in Fig. 17.

Unfortunately,F ~and F21) can only be computed nu
merically. In order to implement the method we us
e
e
it

n

n
n

look-up tables and interpolation. On systems where inte
operations are much faster than floating point operatio
things can be speeded up considerably by discretizing theu i j

~for instance one can take the integers 0 to 524288 to co
spond to 0 to 2p) and then storing all possible values of th
sinusoidal functions that can occur~all 524288 values!. This
requires some storage capacity~about 64 Mbyte for our
implementation! but this should not be onerous for any m
chine that one would consider doing such simulations
One should note that some machines can compute trigo
metric functions in only a few clock cycles and therefore
may be faster than a look-up call to memory. The result
code took about twice as long per Monte Carlo step~MCS!
to run as the simple ‘‘pick at random and then rejec
method, but this loss is more than compensated for by
orders of magnitude improvement in correlation times. Th
is still considerable freedom in the order in which subsequ
lattice sites are selected. Naively, one would think that,
long as all sites are visited on some pseudo regular basis,
the order is unimportant. While this is true in the sense t
the order is unimportant for eventually reaching equilibriu
the order can have a huge impact on how fast you get th
The slowest~in the sense of long correlation times! method
is to select sites at random. One can significantly reduce~by
a factor of up to aboutL depending on temperature! correla-
tion times by going through the lattice in typewriter fashio
or a mixture of random and typewriter ordering. Howev
one must go through in different directions~alternate left-
right-up-down with up-down-left-right, etc.! in order for the
correlation times to be isotropic~i.e., have the same correla
tion time for sayY measured in both thex andy direction!.
To ensure the accuracy of the implementation, the code
tested against published results for thef 50 and f 51/2
cases.

2. Error analysis

Suppose we makeN successive observationsAm ,m
51, . . . ,N, of a quantityA in our simulation. If the distri-
bution of the fluctuations inA is Gaussian~this isnot true for
all the parameters measured!, then the expectation value o
the square of the statistical error, which in this case is
variance, is

FIG. 17. Transformation method for converting a uniform de
atex into a random deviateu distributed according to the function
p(u).
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^~dA!2&5K F 1

N (
m51

N

~Am2^A&!G2L
5

1

N2 (
m51

N

^~Am2^A&!2&

1
2

N2 (
m151

N

(
m25m111

N

~^Am1
Am2

&2^A&2!

5
1

N
~^A2&2^A&2!

3F112 (
m51

N S 12
m

ND ^A0Am&2^A&2

^A2&2^A&2 G .

~C10!

The autocorrelation function forA is defined as

fA~ tm!5
^A0Am&2^A&2

^A2&2^A&2 , ~C11!

where we associate the timetm with step m. Note that
fA(0)51 andfA(t) decays to zero ast→`. The autocor-
relation timetA is defined as

tA5 (
m51

`

fA~ tm!. ~C12!

For an exponential relaxation,tA is the relaxation time, so
that for timestm@tA , fA(tm) is very small. If N@tA we
can, therefore neglect the term involvingm/N in Eq. ~C10!
and one obtains

^~dA!2&5
1

N
~^A2&2^A&2!~112tA!. ~C13!

Thus, our N correlated measurements are equivalent
N/(112tA) independent measurements, something t
must be taken into account when calculating errors.

The concept of self-averaging~or lack of! is extremely
important in correctly estimating errors from Monte Car
simulations with disorder. Suppose we measureA and calcu-
late its statistical error usingA^(dA)2& from Eq. ~C13!. If
A^(dA)2& reduces to zero ifL→` @andN/(112tA) fixed#
we say A exhibits self-averaging. If, on the other han
A^(dA)2& reaches anL-independent nonzero limit, we sayA
exhibits a lack of self-averaging. Random systems exhib
lack of self averaging near the critical point.33 In fact, the
rs

u
n

o
at

a

distribution of most quantities~over realizations of disorder!
is not even Gaussian, making the use ofA^(dA)2& as a mea-
sure of the statistical error somewhat questionable.

In calculating errors we make use of, among other thin
the bootstrap resampling technique described in Ref. 34
more compactly in Ref. 29. From the set of dataD0 produced
by our Monte Carlo simulation we calculate a setx0 of pa-
rameters such as the energy, order parameter, etc. Due t
random sampling,D0 is not a unique realization of the tru
parametersxtrue . With different initial conditions or other
slight variations we could have measured any of an infin
number of other realizationsD1 , D2 , . . . . Although the
setx0 is not the true onextrue , we assume that the shape
the probability distributionxi2x0 , is the same, or very
nearly the same, as the shape of the probability distribu
xi2xtrue . This is not an assumption thatx0 andxtrue are the
same, it is just assuming that the way in which random er
enter the simulation does not vary rapidly as a function
xtrue , so thatx0 can serve as a reasonable surrogate.

Suppose we have in some way obtained a set of equ
lent realizations of our data. For each realizationDj we cal-
culate the parametersxj in the same way as we obtainedx0
from D0 . Each simulated measured parameter set yield
point xj2x0 . If we simulate enough data sets we can m
out the desired probability distribution for the parame
space. As mentioned above, this distribution of paramete
not necessarily Gaussian so we require some means o
fining what we mean by the statistical error. We take
statistical error to be the width of the confidence region t
contains 68% of the data~i.e., the confidence region is de
fined by the intervalx06s where, given the set of realiza
tions of the parameterx, 68% of thexj lie betweenx02s
andx01s). In this way, if our distribution is Gaussian, ou
definition of the error is just the standard deviation, as o
would want for compatibility with the standard case.

It only remains to explain how we obtain ‘‘a set o
equivalent realizations of our data.’’ The bootstrap metho34

used the actual data setD0 , with its n5N/(112tA) ‘‘inde-
pendent’’ data points, to generate any number of synth
data setsD j

S , with n data points. The procedure is simply
draw n data points at a timewith replacementfrom the set
D0 . For the bond disordered systems this includes boots
resampling of the set of realizations of bond disorder, as w
as bootstrap resampling of the data from an individual re
ization of disorder. The basic idea behind the bootstrap
that the actual data set, viewed as a probability distribut
is the best available estimator of the underlying probabi
distribution.
.
r

r
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