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A tight-binding model in one dimension with an incommensurate potential V„k,cos(2nctn) is

investigated. It is found that at the critical point of the localization transition A. 2, there is a fi-

nite range of scaling indices u;, a a „each of which is associated with a fractal dimension

g(a). In the extended region 0&A, (2, scaling is "trivial" with a single index a I almost every-

~here in the spectrum, while in the localized region X & 2, there is no scaling.

One-dimensional Schrodinger equations with quasi-
periodic potentials have attracted the attention of physi-
cists and mathematicians for many years. ' ' Besides
their intrinsic interests, these equations also provide simple
cases in which we can understand the crossover between
periodic and random potentials. The nonlinear coupling of
the two incommensurate competing periods in the equa-
tion usually leads to a very rich behavior and structure of
the system, e.g. , metal-insulator transition. ' This prob-
lem is also closely related to some other problems, such as
two-dimensional (2D) periodic crystals in magnetic
fields, '3'4 superconducting lattices in magnetic fields, 's in-
commensurate superlattices, '6 and ID quasicrystals. '7

In this paper, we study the 1D discrete Schrodinger
equation

I/f„+ ~+ I/f„- ~+A, cos(2trOtt +8)I/f„E p„.
The two competing periods are 1, the lattice spacing, and
cr, the period of the potential. Equation (1) is called
Harper's equation, ' or the "almost Mathieu" equation2
because of the analogy to the continuous Mathieu equa-
tion. Here we list some of the known properties of Eq. (1).
(a) (Aubry duality) If we substitute'

eikn~ g eim(2xcrn+e)

in (1), we obtain the dual equation

Let E and E+~ both be in the spectrum. If the integrat-
ed density of states, D (E ), behaves as

D(E+AF) —D(E)-(M)', (~ 0),
we say that the spectrum has scaling at E with a scaling
index a. Kohmotos and Ostlund and Pandit" studied local
scaling at E 0 for Eq. (1) with cr crG The. y found that
a 1 for 0&k&2 and a 0.547. . . for A. 2. Now the
questions are the following. (a) Are there different scal-
ings at different parts of the spectrum? (b) If so, what is
the distribution of a's in the spectrum? The remainder of
this paper is an answer to these questions.

In order to obtain knowledge of the spectrum for an ir-
rational cr crG, we study a series of spectra Si for ct

crt, where ot is a rational approximant of crG with
limi tri tsG The .natural way of choosing a/ is succes-
sive truncations of the continued-fraction expansion of erg.
This gives crt Fi ~/F/, where Fi is the 1th Fibonacci
number defined by a recursion relation Ft+t Fi+Fi
with Fo F~ 1.

For a rational o crt Ft ~/Ft, (1) is periodic with a
period Fi and can be solved with the help of the Bloch
theorem. The spectrum Si consists of Fi bands and Fi —1

gaps. In Fig. 1, Si for 1 3, 4, 5, and 6 are shown. By us-

ing the Bloch condition t/t„~F, e' 'y„, where k is the
Block index, (I) can be written in a matrix eigenvalue
problem form

f +~+f ~+ —oc(2scrtmr+k)f f2E H(%' E4, (4)

Note that )I, & 2 and X & 2 are dual and A, 2 is the self-
dual point. (b) If o is an irrational number, (1) has a
Cantor spectrum. (c) It is believed' "that, if cr is an
irrational number, ' for 0&A, &2, the spectrum is abso-
lutely continuous and all the eigenstates are extended,
while for X )2, the spectrum is pointlike and all the states
are localized. At the transition point A, 2, the spectrum is
singular continuous and the states are "critical" (neither
extended nor localized in the usual sense).

The goal of this paper is to understand the scaling
behavior of the spectrum in the three different regions.
Specifically, ~e take a to be the inverse of the golden
mean, o [(5)'t2 —I]/2=oG and set the phase 8 to be
zero. This paper is an extension of an earlier Letter by
Kohmoto. 8

Local scaling of a spectrum can be defined as follows.

with

1 V21 0

-ikF '
e

ikF(e 1 VF,

and the vector 4' is the transpose of (y~, y2, . . . , yF, ). For
a fixed value of k, the matrix H~ has FI eigenvalues. These
eigenvalues form Fi energy bands as k is varied in the first
Brillouin zone [—tt/Ft, tt/Ft], and k 0 and ~ n/Ft corre
spond to the band edges. If the total number of states in SI
is normalized to 1, the number of states in each band is
1/Ft, since each band has the same number of states. The

34 2041 1986 The American Physical Society



CHAO TANG AND MAHITO KOHMOTO

of each band is 1/FI. Define the partition function

where ~; is the width of the ith band and FI ' the measure
of it. The condition

(9)

FIG. 1. The series of spectra SI for I 3, 4, 5, and 6. Double
+ denotes that there are actually two bands there.

spectrum SI is a better and better partition of S =S, the
spectrum for a oo, as!becomes larger and larger.

We can study local scaling numerically from the series
of spectra SI. Let us choose an E such that it is in the
spectra of SL+ ~, m 1,2,3, . . . , where L and p are in-
tegers. Denote the width of the band to which E belongs
by WI+ ~. We know that the number of states in each
band of SI is ADI I/FI-(rrG)'. So if WL+ ~ behaves like

WLy~p-A, (m ~ eo),

with some constant A, then the spectrum S has a scaling
property at E with an index

gives a function r(q). Then the scaling indices a and
g(a), the fractal dimension of the subset of S consisting of
all the points with the scaling index a, are given by a
Legendre transformation

a(q)- &r(q)
dq

(10)
/(q) -qa(q) —r(q) .

Much information about the global properties of the spec-
trum is contained in the function/(a). The Hausdorff di-
mension DH of the spectrum S is just the maximum value
of/(a). In order to speed up the convergence, we ask, o

instead of Eq. (9), that I I/I I 1. The/a curve obtained
from the condition I ~z/I ~s 1 is shown in Fig. 2. As one
can see, it is a continuous curve and exists for a range of a
values [a~;„,a~,„]. Note that the two end points of the
curve converge to previously obtained a~ and aq, respec-
tively. The most probable scaling index (i.e., the one with
the maximum/) is ao 0.5+ 0.003, with the maximum
being /(ao) DH 0.498+ 0.004. We now discuss the
consequence of singular a for the low-temperature specific
heat. If each lattice site contributes one electron, the Fer-
mi energy lies at the center of the spectrum, namely, at
E 0. At temperature T, the number of states available in

thermal excitation scales as (kqT)", where kn is the

0.5

p lnO'G

lnA
(7)

It is hard, of course, to find all the indices a and their
distributions in this way. But this approach can give some
information about what kind of scaling behaviors the spec-
trum would have. If there are interesting scaling proper-
ties in the spectrum, one can then use a newly developed
powerful technique to understand the global scaling
properties.

Let us first consider the case A, 2. We find, via (6) and
(7), that there are many different values of a in the spec-
trum S. Particularly, we find that a~ 0.54688+ 0.00002
with p 3 at E -0 and aq 0.42123+ 0.00003 with p -1
at E -+ En (~Eo being the upper and lower bounds of
the spectrum). Since E 0 and E + Eo are the most
ramified and the most dense regions in the spectrum,
respectively (see Fig. I), a~ and aq set the upper and lower
bounds for the scaling indices in the spectrum.

%e now use the algorithm developed in Ref. 20 to calcu-
late the global properties of the spectrum. Consider the FI
bands of S~ as the partition of 5 and take the number of
states (normalized to I) as the measure. So the measure

0.0

0.2

0. 1

0.0
Q. %1 0.50 0.53

FIG. 2. The/a curve of the spectrum for A. =2 and rr re It.
is calculated from I ~JI ~q I. e's indicate the values of a~ and
Qp.
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Boltzmann constant. Each excitation gains an amount of
energy of the order kgT. So the total thermal energy
scales as (kgT)" . Hence the temperature dependence
of the low-temperature specific heat will be T".

Next, Iet us consider the subcritical region 0(A, &2.
We find, via (6) and (7), that a 1 with p 1 for almost
all the points in the spectrum except at large gap edges
where we have a 0.5. These singularities are remnants of
the van Hove singularities in the periodic case. For 1, 0,
(1) has only one period and the van Hove singularities at
the band edges have a index u 0.5. For small but
nonzero A, , Si has Fi bands, 2Fi van Hove singularities.
The function r(q) calculated by the method described
above is

q
—1 forq~2,

+ for q &2 .
2

This gives a two-point ga "curve": a l,g 1 and
a 0.5,/ 0. The fractal dimensiongts zero for the set of
van Hove-type singularities a 0.5. This is because the
number of "edges" where singularities of this type exist is
infinite, but only countable. The scaling of the spectrum is
dominated by the "trivial" index a 1 with/ 1 and there
is no set of singularities with a other than 0.5. The spec-
trum is uniformly scaled. Moreover, this result is indepen-
dent of X as long as 0(A, &2. Ostlund and Pandit"
showed that in this region 1, 0 is the trivial fixed point
and the energy E is the only relevant parameter. Our
result is consistent with their renormalization-group
analysis.

For X & 2, we find that WL+ ~ (defined previously)
goes to zero faster than the exponential of m for all the
points in the spectrum. This we attribute to a pure point
spectrum for an irrational o. There is no scaling property
of the type (3) in the spectrum. The Hausdorff dimension
of the spectrum is, by duality, the same as that of A, (2,
namely, 1.

We performed the same analysis for a v2 —1—=as,
the "silver mean, " and cr (x-3)J3. All the results are
qualitatively the same. Only the/(a) curve (particularly

the two bounds of the scaling indices a& and a2) at A, =2
appears to be a dependent. However, the most probable
scaling index ao is 0.5 in all the cases. Furthermore, the
maximum of/the Hausdorff dimension of the spectrum,
seems to be independent of a within the numerical accura-
cy.

In conclusion, we have studied Harper's equation (1).
The scaling properties of the spectrum are drastically dif-
ferent in subcritical, critical, and supercritical regions.
We believe that these are rather general results in the lo-
calization problems. In fact, recently we, together with
Sutherland, ' studied a model of a 1D quasicrystal'7 using
the present technique of analyzing spectra. The work con-
firmed an earlier conjecture s'~2 that models of this
class have a purely singular continuous spectrum.

Based on the analysis for the particular model presented
here, we make a conjecture about the following unique re-
lation between a spectral type and scaling properties of the
spectrum for a general Schrodinger operator: (a) An ab-
solutely continuous spectrum (extended states) —it is
dominated by points with "trivial" scaling index a 1 and
a fractal dimension/ 1. It can contain a finite or a
countably infinite number of singularities with a&1,
perhaps van Hove singularities. (b) Singular continuous
spectrum (critical states) —each point has a scaling index
a which can take a value in a range [a;„,a,„]. A fractal
dimension/(a) of a set of points with a is a smooth func-
tion of a. (c) Point spectrum (localized states) —has
stronger singularities than the type of (3).

The technique developed in the present paper to analyze
energy spectra for the localization problem would have
many applications to the problems which are less under-
stood, e.g. , quasicrystals in two and three dimensions.
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