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We study the space of all compact structures on a two-dimensional square lattice of sizeN56
36. Each structure is mapped onto a vector inN-dimensions according to a hydrophobic model.
Previous work has shown that the designabilities of structures are closely related to the distribution
of the structure vectors in theN-dimensional space, with highly designable structures predominantly
found in low density regions. We use principal component analysis to probe and characterize the
distribution of structure vectors, and find a nonuniform density with a single peak. Interestingly, the
principal axes of this peak are almost aligned with Fourier eigenvectors, and the corresponding
Fourier eigenvalues go to zero continuously at the wave-number for alternating patterns (q5p).
These observations provide a stepping stone for an analytic description of the distribution of
structural points, and open the possibility of estimating designabilities of realistic structures by
simply Fourier transforming the hydrophobicities of the corresponding sequences. ©2003
American Institute of Physics.@DOI: 10.1063/1.1541611#

I. INTRODUCTION

Proteins fold into specific structures to perform their bio-
logical function. Despite the huge diversity in their func-
tions, evolutional paths, structural details, and sequences, the
vast majority of proteins adopt only a small number
(;1000) of folds~‘‘topology’’ !.1–6 This observation has in-
trigued a number of authors and lead to the concept of
designability.1,7–10The designability of a structure is defined
to be the number of sequences that have that structure as
their unique lowest-energy state.10 It has been shown in vari-
ous model studies that structures differ drastically in their
designability; a small number of highly designable structures
emerge with their associated number of sequences much
larger than the average.10–16Highly designable structures are
also found to possess other protein-like properties, such as
thermodynamic stability,10 fast folding kinetics,9,17 and ter-
tiary symmetry.8,10,18These results suggest that there may be
a designability principle behind nature’s selection of protein
folds; these small number of folds were selected because
they are readily designed, stable against mutations, and ther-
modynamically stable.

Why are some structures more designable than others?
How do we identify highly designable structures? Finkelstein
and co-workers argued that certain motifs are easier to stabi-
lize and thus more common because they either have lower
~e.g., bending! energies or have unusual energy spectra over
random sequences.1,19,20 Govindarajan and Goldstein sug-
gested that the topology of a protein structure should be such
that it is kinetically ‘‘foldable.’’9,11,21 More recently, it was
noted that an important clue resides in the distribution of
structures in a suitably defined structure space, with highly

designable structures located in regions of low density.12,13In
particular, within a hydrophobic model, Liet al. showed that
the distribution of structures is very nonuniform, and that the
highly designable structures are those that are far away from
other structures.12 However, identifying highly designable
structures still remains a tedious task, requiring either full
enumeration or sufficiently large sampling of both the struc-
ture and the sequence spaces, making studies of large sys-
tems prohibitive.

In this article, we investigate the properties of the struc-
ture space of the hydrophobic model of Liet al., starting
from a principal component analysis~PCA!. We show that
while the distribution of the structures is not uniform, it can
be approximated as a cloud of points centered on a single
peak. The principal directions of this cloud are almost coin-
cident with those obtained by rotation into Fourier space; the
coincidence is in fact exact for the subset of cyclic structures.
An interesting feature is that the eigenvalues of PCA, de-
scribing the extent of the density cloud along the principal
axis, vary continuously with the Fourier labelq, with a mini-
mum atq5p corresponding to alternating patterns. The con-
tinuity of the eigenvalues suggests an expansion aroundq
5p, which leads to an analytical conjecture for the density
of structures in theN-dimensional binary space. Assuming
the validity of this conjecture in more general models, it
provides a means of estimating density, and hence indirectly
designability, of structures by simply analyzing their se-
quences, without the need for extensive enumerations of
other possible structures.

The rest of the article is organized as follows. In Sec. II
we review the hydrophobic model and the designabilities of
structures. In Sec. III we discuss the methods and the results
of PCA applied to the structure space, and relate the density
and designability of a structure to its projections onto the
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principal axes. In Sec. IV we demonstrate that Fourier trans-
formation provides a very good approximation to PCA, and
show that in fact the two procedures are equivalent for the
subset of cyclic structures. In place of a comparison with real
structures, in Sec. V we introduce and study an ensemble of
pseudo-structures constructed by a Markovian process. Fi-
nally, in Sec. VI we synthesize the numerical results of PCA
analysis, and develop a conjecture for the density of points in
structure space.

II. THE HYDROPHOBIC MODEL

We start with a brief review of the hydrophobic model of
Li et al.12 and the designabilities of structures. Model se-
quences are composed of two types of amino acids, H and P.
Each sequence$hi% ~for i 51,2,...,N) is represented by a
binary string or vector, withhi50 for a P-mer andhi51 for
an H-mer. We take the polymer lengthN536, for which
there are 236 sequences. Each of these sequences can fold
into any one of the many compact structures on a 636
square lattice~Fig. 1!. There are 57 337 such compact struc-
tures unrelated by rotation and mirror symmetries. In the
hydrophobic model, the only contribution to the energy for a
sequence folded into a structure is the burial of the H-mers in
the sequence into the core of the structure. So if one repre-
sents a structure by a binary string or vector,$si%, for i
51,2,...,36, withsi50 for the surface sites andsi51 for the
core sites~Fig. 1!, the energy is

E52(
i 51

N

hisi , ~1!

wherehi is the sequence vector.
The designability of a structure is defined as the number

of sequences that have the structure as their unique lowest-
energy state. To obtain an estimate for designabilities of
structures, we randomly sampled 50 000 000 sequences and

for each one of them found its unique lowest-energy struc-
ture, if any, by evaluating its energy on all structures using
Eq. ~1!. In Fig. 2, we plot the histogram of designabilities,
i.e., number of structures with a given designability. Note
that we have normalized designability so that its maximum
value of 2981 is scaled to one. In this article, we define
highly designable structures to be the top 1% of designable
structures ~structures with nonzero designability!, which
means 307 structures with a designability larger than 0.47.

In the hydrophobic model, both sequences and structures
can be regarded as points in a 36-dimensional binary space,
or corners of a hypercube in a Euclidean space of similar
dimension. In this representation, the lowest-energy state of a
sequence is simply its nearest structure point.12 Designabili-
ties can then be obtained by constructing Voronoi polyhedra
around all points corresponding to structures in this space;
the designability of each structure is then the number of se-
quence points that fall within the corresponding Voronoi
polytope ~Fig. 3!. Structures in the lower density regions
have larger Voronoi polytopes and higher designability. Un-
derstanding how the structure points are distributed in this
36-dimensional space can thus help us address questions
concerning designability. In the next section we examine the
distribution of the structure points via the method of PCA.

III. PRINCIPAL COMPONENT ANALYSIS

First, let us note that while sequences are uniformly dis-
tributed in the 36-dimensional hypercube, structures are dis-
tributed on a 34-dimensional hyperplane because of the fol-
lowing two geometrical constraints. The first constraint on
structure vectors comes from the fact that all compact struc-
tures have the same number of core sites, and thus

(
i 51

36

si516. ~2!

FIG. 1. A possible compact structure on the 636 square lattice. The 16 sites
in the core region, enclosed by the dashed lines, are indicated by 1’s; the 20
sites on the surface are labeled by 0’s. Hence this structure is represented by
the string 001100110000110000110011000011111100. Note thateach ‘‘un-
directed’’ open geometrical structure can be represented by two ‘‘directed’’
strings, starting from its two possible ends~except for structures with
reverse-labeling symmetry where the two strings are identical!. It is also
possible for the same string to represent different structures which are folded
differently in the core region. For the 636 lattice of this study, there are
26 929 such ‘‘degenerate’’ structures, which are by definition nondesignable.

FIG. 2. Number of structures with a given designability vs relative design-
ability for the 636 hydrophobic model. The data is generated by uniformly
sampling 53107 strings from the sequence space. The designability of each
structure is normalized by the maximum possible designability.
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The second constraint is that since the square lattice is bipar-
tite, and any compact structure traverses an equal number of
‘‘black’’ and ‘‘white’’ points, 22

(
i 51

36

~21! isi50. ~3!

Next, let us define the covariance matrix of the structure
space as

Ci , j5^sisj&2^si&^sj&, ~4!

wherei , j 51,2,...,36, and the average is over all the 57 337
possible (s1 ,s2 ,...,s36) for compact structures. The 36336
covariance matrix is symmetricCi , j5Cj ,i , and also satisfies
the condition Ci , j5C372 i ,372 j . The latter is due to the
reverse-labeling degeneracy of the structure ensemble, since
if the string (s1 ,s2 ,...,s36) is in this ensemble, then its re-
verse (s36,s35,...,s1) is also included. This symmetry im-
plies that if (v1 ,v2 ,...,v36) is an eigenvector of the matrix
Ci , j , then (v36,v35,...,v1) is also an eigenvector with the
same eigenvalue. Therefore, for every eigenvector ofCi , j we
have eitherv j5v372 j or v j52v372 j .

As depicted in Fig. 4, the matrixCi j is peaked along the
diagonal and decays off-diagonally with short range correla-
tions. This feature reflects a general property of compact
self-avoiding walks; if a monomer is in the core~on the
surface!, the neighboring monomers along the chain have
enhanced probability to be in the core~on the surface!. An-
other characteristic ofCi j is that it is almost a function of
u i 2 j u only, i.e.,Ci j 'F(u i 2 j u), barring some small end and
parity effects. We expect this feature of approximate transla-
tional invariance to be generic beyond the 636 lattice model
studied here. We also looked at the covariance matrix for the
subset of highly designable structures. While qualitatively
similar, it tends to decay faster off-diagonally than that of all

structures. This is attributed to the fact that highly designable
structures tend to have more frequent transitions between
core and surface sites.12,15,23

For PCA of structure space, the matrixCi j is diagonal-
ized to obtain its eigenvectors$vW (k)%, and the corresponding
eigenvalues$lk% for k51,2,...,36, which are shown in Fig.
5. The two zero eigenvalues (l15l250) result from the
constraints in Eqs.~2! and~3!, with the corresponding eigen-
vectors ofv i

(1)51, andv i
(2)5(21)i for i 51,2,...,36, respec-

tively. The remaining 34 nonzero eigenvalues range
smoothly from zero to one, making any further dimensional
reduction not obvious. For comparison, the 36 eigenvalues of
the uniformly distributed points of sequence space are all the
same (l5 1

4). ~It is easy to show that the covariance matrix
for the sequence space isCi j 5d i j /4.) On the other hand, a
uniform distribution on the 34-dimensional hyperplane
where the structure points reside would result in 34 identical
eigenvalues of 360/1377'0.26.24

Identification of the principal axes and eigenvalues does
not necessarily provide information about the distribution of

FIG. 3. Schematic representation of the 36-dimensional space in which
sequences and structures are vectors or points. Sequences, represented by
dots, are uniformly distributed in this space. Structures, represented by
circles, occupy only a sparse subset of the binary points and are distributed
nonuniformly. The sequences lying closer to a particular structure than to
any other, have that structure as their unique ground state. The designability
of a structure is therefore the number of sequences lying entirely within the
Voronoi polytope about that structure.

FIG. 4. Covariance matrixCi j of all compact structures of the 636 square.

FIG. 5. Eigenvalues of the covariance matrix for the structure vectors
~circles!, and for all points in sequence space~crosses!.

4279J. Chem. Phys., Vol. 118, No. 9, 1 March 2003 Structure space of model proteins



points in space. To examine the latter, we first project each
structure vector onto its components along the eigenvectors.
Using the rotation matrixRki that diagonalizes the covari-
ance matrix, the componentyk of the structure vector along
principal axisk is obtained as

yk5(
i 51

36

~si2^si&!Rki . ~5!

Interestingly, we find that along each of the principal direc-
tions, the distribution of components is a bell-shaped func-
tion with a single peak close to zero. Such distributions can
then be well approximated by Gaussians whose variances are
the corresponding eigenvalueslk , i.e.,

rk~yk!'
1

A2plk

e2 yk
2/2lk. ~6!

In Fig. 6 we show the distribution of projectionsyk on two
principal axesk516 andk536, along with the correspond-
ing Gaussian distributions.

Equation~6! provides a good characterization of the den-
sity of structures in theN dimensional space. Highly design-
able structures are expected to lie in regions of this space
where the density of structures is small, while the number of
available sequences is large. Let us consider a structure char-
acterized by a vectoryW . If the density of structural points in
the vicinity of this point isrstr(yW ), the number of available
structures in a volumeV around this point isVrstr(yW ). Ne-
glecting various artifacts of discreteness, the volume of the
Voronoi polyhedron~see Fig. 3! around this point is given by
V(yW )'1/rstr(yW ). The designability is the number of struc-
tures within this volume, and estimated asrseq(yW )/rstr(yW ),
whererseq(yW ) is the density of sequences. The sequence den-

sity is in fact uniform in theN-dimensional space. The struc-
ture density can be approximated as the product of Gaussians
along the principal projections, and thus

Designability'
rseq~yW !

rstr~yW !
})

k53

36
1

rk~yk!
}expF (

k53

36 yk
2

2lk
G

[M~yW !. ~7!

We have neglected various proportionality constants in the
above equation, leading to the quantityM(yW ) which is our
estimator for designability. In Fig. 7, the estimateM is plot-
ted against the actual designability for all designable struc-

FIG. 6. Distributions of projectionsyk

onto principal axesk516 ~a!, and k
536 ~b!, for all 57 337 structures
~dots!. Also plotted are Gaussian
forms with variancesl16 andl36 , re-
spectively~dashed lines!.

FIG. 7. The estimateM @Eq. ~7!# vs scaled designability for all designable
structures on the 636 square.
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tures. There is a reasonably good, but by no means perfect,
correlation between the designability and the estimatorM.
The structures with the top 1% value ofM include 39% of
the highly designable structures.

IV. FOURIER DECOMPOSITION AND CYCLIC
STRUCTURES

In discussing Fig. 4, we already noted that the covari-
ance matrixCi j is approximately a function ofu i 2 j u, with
corrections due to end effects. If this were an exact symme-
try, the matrix would be diagonal in the Fourier basis. Even
in the presence of the end effects, Fourier decomposition
provides a very good approximation to the eigenvectors and
eigenvalues of PCA, as demonstrated below. For each struc-
ture vector$sj%, the Fourier components are obtained from

Sq5
1

AN
(
j 51

N

eiq j~sj2^sj&!, ~8!

whereq52pa/N, with a50,1,...,N21. The average value
of ^sj& is subtracted for convenience. With this subtraction,
the two constraints in Eqs.~2! and~3! correspond to two zero
modes in Fourier space, asS050 andSp50, and since$sj%
are realSq* 5S2q .

The covariance matrix in the Fourier space is

^SqSq8
* &5

1

N (
j , j 851

N

ei (q j2q8 j 8)Cj j 8 , ~9!

and is both real and symmetric~sinceCj j 85Cj 8 j ). If Cj j 8 is
translationally invariant, i.e.,Cj j 85F(u j 2 j 8umodN), Eq.~9!
becomes

^SqSq8
* &5dq,q8lq , ~10!

where

lq5 (
k50

N21

eiqkF~k!5^uSqu2& ~11!

are the diagonal elements of the diagonalized matrix in Eq.
~10!, and hence the eigenvalues ofCj j 8 . Note that because
the matrix is real-symmetric, its eigenvalues appear in pairs,
i.e.,

lq5l2q . ~12!

Since our covariance matrix is not fully translationally
invariant,^SqSq8

* & is not diagonal. However, as shown in Fig.
8~a!, its off diagonal elements are very small. As required by
symmetry, the diagonal elements form pairs of identical val-
ues. These diagonal elements, plotted versus the indexa in
Fig. 8~b!, should provide a good approximation to the eigen-
values obtained by PCA. This is corroborated in Fig. 9~a!,
where we comparêuSqu2& with the true eigenvalues of the
covariance matrixCj j 8 .

Finally, we note that the end effects that mar the trans-
lational invariance of the covariance matrix are absent in the
subset ofcyclic structures. Any structure whose two ends are
neighboring points on the lattice can be made cyclic by add-
ing the missing bond. Any one of theN536 bonds on the
resulting closed loop can be broken to generate an element of
the original set of structures, and the corresponding structure
strings are cyclic permutations of each other. Thus, the co-
variance matrixCcyclic( j , j 8) of the set of all cyclic structures
is translationally invariant. In our model of 636 compact
polymers, there are a total of 363276 cyclic structures. The
Fourier transform of their covariance matrix is diagonal as
expected, with diagonal elements depicted in Fig. 9~b!. The
corresponding Fourier eigenvalues are quite close to the ei-
genvalues of the full matrix obtained in the PCA@Fig. 9~b!#.
Thus the end effects do not significantly modify the correla-
tions, and this is especially true for the smallest eigenvalues
which make the largest contributions to the density in Eq.
~7!.

V. A MARKOVIAN ENSEMBLE
OF PSEUDO-STRUCTURES

The geometry of the lattice and the requirement of com-
pactness constrain the allowed structure strings of zeros and

FIG. 8. ~a! The Fourier transformed covariance matrix^SqSq8
* & @Eq. ~9!# and ~b! its diagonal elementŝuSqu2&.
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ones in a nontrivial fashion. In our estimation of designabili-
ties so far, we have focused on the covariance matrix which
carries information only about two point correlations along
these strings. In principle, higher point correlations may also
be important, and we may ask to what extent the covariance
matrix contains the information about the structures’ design-
abilities? As a preliminary test, we performed a comparative
study with an artificial set of strings, not corresponding to
real structures, but constructed to have a covariance matrix
similar to true structures on the 636 lattice.

Specifically, we generated a set of random strings$ tW%, of
zeros and ones of length 36, using a third order Markov
process as follows. For each string, the first elementt1 is
generated with probabilityP(t151)5^s1&, where^s1& is the
fraction of the true structure strings withs151. The second
elementt2 is generated according to a transition probability
P(t1→t2) which is taken to be the ‘‘conditional probability’’
P(s2us1) extracted from the true structure strings. The third
point t3 is generated according to a transition probability
P(t1t2→t3) which is the ‘‘conditional probability’’
P(s3us1s2) extracted from the true structure strings. All the
remaining pointst j , j 54,5,...,36, are generated according
to the transition probabilitiesP(t j 23t j 22t j 21→t j ) equal to
the true ‘‘conditional probabilities’’P(sj usj 23sj 22sj 21) of
actual structures. Sequences that do not satisfy the global
constrains of Eqs.~2! and~3! are thrown out. For every Mar-
kov string generated, we also put its reverse in the pool,
unless the string is its own reverse.

The above Markovian ensemble has a covariance matrix,
and corresponding eigenvalues, very similar to those of the
true structures, as shown in Fig. 10. We then calculated the
designabilities of these ‘‘pseudo-structures’’ using Eq.~1! by
uniformly sampling 53107 random binary sequences. The
histogram of the designabilities~Fig. 11! is qualitatively
similar to that of the true structures~Fig. 2!. Next we con-
structed the designability estimatorM @Eq. ~7!# for the
pseudo-structures, using the eigenvalues and eigenvectors of
their covariance matrix. The quantityM is plotted versus

designability in Fig. 12 for all the artificial pseudo-structures
with nonzero designability. The pseudo-structures with the
top 1% value ofM include 60% of the highly designable
psuedo-structures.

These results suggest that a considerable amount of in-
formation about the designability is indeed contained in the
two point correlations of the string. The designability estima-
tor, Eq.~7!, in fact does a somewhat better job in the case of
pseudo-structures generated according to short-range Mar-
kov rules.

VI. CONCLUSIONS

One of the most intriguing properties of compact struc-
tures, which emerged from early extensive enumeration
studies,10 is that designabilities range over quite a broad dis-
tribution of values. Such a large variation in designability is
a consequence of a nonuniform distribution of structure vec-

FIG. 9. ~a! The diagonal elementŝuSqu2& ~dots! plotted together with the eigenvalues of the covariance matrix~pluses!. ~b! Diagonal elements of the Fourier
transformedCcyclic , which are also the eigenvalues of the covariance matrix of cyclic structures~pluses!. Eigenvalues of the covariance matrix for all
structures are indicated by stars.

FIG. 10. Eigenvalues of the covariance matrix for the structures generated
by the Markov model~circles!, and that of the true structure space~pluses!.
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tors, with highly designable structures typically found in re-
gions of low density.12 However, our study of 636 lattice
structures using PCA indicates that the nonuniform density
actually has a rather simple form that can be well approxi-
mated by a single multi-variable Gaussian, as in Eq.~7!.
Since this method of estimating structure designability is
based only on the overall distribution of structures, it can be
a useful tool in cases where there is not enough computa-
tional power to enumerate the whole structure space and cal-
culate the designability. To obtain an accurate enough cova-
riance matrix requires only a uniform sampling of the
structure space.

We can also attempt to use the numerical results as a
stepping stone to a more analytical approach for calculating
the density of structures.First, we note that the covariance
matrix for all structures is rather similar to that of the subset

of cyclic structures, and that for the latter PCA is equivalent
to Fourier decomposition.Second, we observe that the multi-
variable Gaussian approximation to structure density in Eq.
~7! is most sensitive to the eigenvalues that are close to zero.
In terms of Fourier components, these are eigenvalues corre-
sponding to values ofq close top, and related to the con-
straint of Eq.~3!. There is also a zero eigenvalue forq50,
related to condition~2!. However, the latter global constraint
appears not to have any local counterpart, as there is a dis-
continuity in the eigenvalues close to zero.Third, the conti-
nuity of the eigenvalues asq→p, along with the symmetry
of Eq. ~12!, suggests an expansion of the formlq5K(q
2p)21O((q2p)4). Indeed the numerical results indicate
that the important~smaller! eigenvalues can well be approxi-
mated byK(q2p)2, with K'0.06.25

With this approximation, the designability estimate of
Eq. ~7! becomes

M~$sW%!'expF(
q

uSqu2

2K~q2p!2G
5expF 1

2K (
i , j 51

N

~21! isiJN~ u i 2 j u!~21! j sj G .

~13!

The first form in the above equation expresses the estimate in
terms of the Fourier modes of the structure string, while the
second term is directly in terms of the elements$si%. The
functionJN(u i 2 j u) is the discrete Fourier transform of 1/q2,
which for largeN behaves asu i 2 j u. Equation~13! is thus
equivalent to the Boltzmann weight of a set of unit charges
on a discrete line ofN points marked by parity. The charges
on the sublattice of the same parity attract each other with a
potential JN(r ), while those on different sublattices repel.
Such an interaction gives a larger weight~and hence design-
ability! to configurations in which the charges alternate be-
tween the core and surface sites, as observed
empirically.12,15,23

It would be revealing to see how much of the above
results, developed on the basis of a lattice hydrophobic
model, can be applied to real protein structures. One could
use the exposure level of residues to the solvent in building
up the structure vectors. Current methods deal with structure
strings of a fixed length, equal to the dimension of the struc-
ture space. Since real proteins have different lengths, there is
a need for a scaling method to handle them all together. Our
study shows that the two point correlations of structure vec-
tors are approximately translationally invariant, and can be
captured by Fourier analysis. This suggests the possibility of
casting the density of points in structure space in universal
functional forms dependent only on a few parameters encod-
ing the properties of the underlying polymers. If so, it would
be possible to provide good estimates for designability with
polymers of varying length, without the need for extensive
numerical computations.

ACKNOWLEDGMENTS

We thank G. Gatz, N. Butchler and E. Domany for use-
ful discussions. The work was initiated, and partly com-

FIG. 11. Number of pseudo-structures with a given designability vs design-
ability for the pseudo-structure strings randomly generated using the Mar-
kov model. The data is generated by uniformly sampling 53107 binary
sequence strings. The designability of each pseudo-structure is normalized
by the maximum possible designability.

FIG. 12. The quantityM versus designability for all designable pseudo-
structures generated by the Markov model.

4283J. Chem. Phys., Vol. 118, No. 9, 1 March 2003 Structure space of model proteins



pleted, during the Program on Statistical Physics and Bio-
logical Information at the Institute for Theoretical Physics,
UCSB, supported in part by the NSF Contract No. PHY99-
07949. We acknowledge support by the NSF Grant No.
DMR-01018213~M.Y. and M.K.!, and an ITP Graduate Fel-
lowship ~M.Y.!.

1A. V. Finkelstein and O. B. Ptitsyn, Prog. Biophys. Mol. Biol.50, 171
~1987!.

2C. Chothia, Nature~London! 357, 543 ~1992!.
3S. E. Brenner, C. Chothia, and T. J. P. Hubbard, Curr. Opin. Struct. Biol.
7, 369 ~1997!.

4C. A. Orengo, D. T. Jones, and J. M. Thornton, Nature~London! 372, 631
~1994!.

5Z. X. Wang, Proteins26, 186 ~1996!.
6S. Govindarajan, R. Recabarren, and R. A. Goldstein, Proteins35, 408
~1999!.

7C. J. Camacho and D. Thirumalai, Phys. Rev. Lett.71, 2505~1993!.
8K. Yue and K. A. Dill, Proc. Natl. Acad. Sci. U.S.A.92, 146 ~1995!.
9S. Govindarajan and R. A. Goldstein, Biopolymers36, 43 ~1995!.

10H. Li, R. Helling, C. Tang, and N. S. Wingreen, Science273, 666 ~1996!.
11S. Govindarajan and R. A. Goldstein, Proc. Natl. Acad. Sci. U.S.A.93,

3341 ~1996!.
12H. Li, C. Tang, and N. S. Wingreen, Proc. Natl. Acad. Sci. U.S.A.95,

4987 ~1998!.
13N. E. G. Buchler and R. A. Goldstein, J. Chem. Phys.112, 2533~2000!.
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