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Simulation and Analysis of in vitro DNA Evolution
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We study theoretically the in vitro evolution of a DNA sequence by binding to a transcription factor.
Using a simple model of protein-DNA binding and available binding constants for the Mnt protein, we
perform large-scale, realistic simulations of evolution starting from a single DNA sequence. Varying
the evolution parameters reveals three different regimes characterized by distinct evolutionary
behaviors, and for each regime we find analytical estimates which agree well with simulation results.
We also study how the details of the DNA-protein interaction affect the evolution.
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TABLE I. The starting sequence SS. �K � e���E is the ratio
of the binding constants due to the specified mutation type (the
given base substitution at the given position).

Changes from WT

Position 4 7 9 10 13 15
WT base G C A C T G
SS base T A C T C C
molecule and the mnt protein is of the form E�S� �P
i�i�Si�, where Si 2 A;C;G; T is the base at the ith

�K 2.13 10.0 5.0 5.5 7.2 8.3
The concept of evolution has not only fundamentally
shaped our view of biology, but also found rich and
profound applications in bioengineering and biotechnol-
ogy. In particular, in vitro evolution has been widely used
to evolve DNA [1], RNA [2], and proteins [3]. For the
evolution of DNA via binding to a protein, the relation
between the genotype (DNA sequence) and the phenotype
(binding affinity) is direct and simple. If the binding
constants are known for various DNA sequences, the
selection process can be modeled quantitatively and it
can then serve as a model system for quantitative analysis
of molecular evolution. A recent Letter by Peng et al. [4]
analyzes the evolution dynamics of a model with weak
competition and high mutation rates, and shows an ex-
ponential approach to the equilibrium state. In this Letter
we study the (very different) behavior of a model in the
more experimentally relevant regime of strong competi-
tion and low mutation rates. We explore a large range of
experimentally accessible parameters and find various
regimes with very distinct evolution dynamics. A recent
experiment by Dubertret et al. [5] shows how such evolu-
tion can be carried out (but does not test our model [6]).

In this Letter, we study theoretically the in vitro evo-
lution of DNA sequences via binding to the mnt repressor
protein. DNA-mnt is perhaps the best experimentally
characterized system of sequence-specific DNA-protein
binding [8–10]. It has been demonstrated that the binding
energy of a sequence can be approximately decomposed
as the sum of contributions from the individual bases,
all of which have been estimated experimentally [8,10].
This additive form of binding energy greatly simplifies
the analysis—it enables us to perform realistic large-
scale simulations as well as to obtain analytic solutions
and estimates in various cases. (The values of the con-
tributions to the binding energy are not qualitatively
important.)

We assume that the binding energy between a DNA
0031-9007=04=92(3)=038101(4)$22.50 
position of the DNA sequence and �i�Si� is the contribu-
tion to the binding energy from this position, for which
we use the value in Ref. [8]. The relative binding constants
are then K�S� �

Q
iKi�Si� �

Q
ie

���i�Si� [11]. We start
with a population size N of identical DNA molecules of
a starting sequence (SS) that is significantly different
from the wild type (WT) [7], avoiding the potential
problem of enrichment [6]. An iteration of the evolution-
ary process consists of an amplification with mutation
followed by a selection. During amplification the popu-
lation is doubled [e.g., by polymerase chain reaction
(PCR)], with a (low) error rate of r per base for the new
copies. The population is then subject to a selection
process via binding to the mnt protein. Each DNA mole-
cule is selected with a probability 1

1�e��E�S���� , where the
chemical potential � is chosen such that the expected
number of selected molecules is N. [We limit our analysis
here to a single duplication (cycle of PCR) per iteration,
as this case is particularly tractable. Aspects of the gen-
eral case are discussed elsewhere [12], as are consequen-
ces of various assumptions we have made.]

The binding site for the mnt repressor consists of 17
important base pairs, at positions 3 through 19. For our
SS we chose, by random mutations (any choice yields
similar behavior, as long as specific binding dominates),
a sequence that differs from WT at m � 6 positions
(Table I). We call a specific sequence of mutations that
take a SS to the WT an evolution path. Each path contains
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the six required mutations in some order, and may contain
additional mutations (m! � 720 ‘‘minimum paths’’ con-
tain only the six required mutations). A simulation ends
when at least 90% of the DNA molecules are WT, giving
the number tM of iterations required and the number of
WT molecules n�tM coming from each path � [13].

Some of the key quantities from a single simulation run
are the fraction of WT that was produced through mini-
mum paths, fWT

min, the number of minimum paths used,
nmin, and the fraction of the WT produced through the
single best path in the simulation, fWT

best. Figure 1 shows
how these quantities depend on the population size (aver-
aged over many simulations): fWT

min is small for very small
N and is close to 1 for large N, with a fairly sharp
transition, whereas fWT

best slowly decreases from 1
with increasing N. This indicates that we may find quali-
tatively different behavior for small and large popula-
tion sizes.

Let us first consider N � 1, i.e., at each iteration a
single DNA molecule is duplicated and one of the two
molecules is selected. If there are no mutations during
amplification, nothing interesting can happen. If there is
a mutation i, the chance of selecting the mutant is �Ki

1��Ki
,

i.e., high for good mutations (�Ki > 1) and low for bad
mutations. The DNA molecule performs a biased random
walk, making a step whenever a mutant is selected.
Specifically, these transition probabilities describe a ran-
dom walk in the energy landscape given by the binding
energy—in equilibrium, Prob�S� / e��E�S�.

Now consider a population size 1<N 
 1=r. The
chance of having a mutation in any single iteration is
very low. When a mutation occurs, it will almost cer-
tainly either ‘‘die out’’ (disappear from the population) or
spread through (‘‘replace’’) the whole population before
the next mutation occurs; most of the time the population
consists of N identical DNA molecules [14]. During
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FIG. 1 (color). The average fraction of WT contributed by the
best path, the total fraction from all minimum paths, and the
number of different minimum paths used, for different popu-
lation sizes N. r � 10�4 for solid lines, and r � 10�7 for
dashed lines. The various regimes (random walk, middle
ground, and crossover to mean field) are indicated.
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selection, the chance of choosing a particular combina-
tion of DNA molecules is proportional to the product of
their binding constants. We keep exactly half the DNA at
each selection, and the probabilities pN

��k� that k identical
mutants of type i in a population of size N will replace the
population (p�) or die out (p�) can be shown to satisfy
pN
��N � k� � ��Ki�

2kpN
��k�. Including the probability for

a mutant to be selected in the first place, and using
pN
��k� � pN

��k� � 1, we find the probability Pi for a single
mutation of type i to replace the population:

Pi �
�Ki

�Ki � 1
pN
��1� �

��Ki�
2N � ��Ki�

2N�1

��Ki�
2N � 1

�

�
�1� 1

�Ki
�; �Ki > 1;

0; �Ki < 1;
(1)

where the approximation is valid for j2N log�Kij � 1.
The population again performs a random walk, but
now the energy landscape is 2N � 1 times the binding
energy of a single DNA molecule —in equilibrium,
Prob�N copies of S� / e���2N�1�E�S�.

The average time needed to improve the DNA pool by
one base relative to WT can now be estimated as

hTi �

"X
i

Nr
3

�
1�

1

�Ki

�#�1

�
log�N�

log� 2�K
1��K�

; (2)

where �K is a typical value for �Ki. The first term is the
average time needed to create a ‘‘seed’’ mutation—we
sum over all possible correct mutations the rate Nr

3 at
which each mutation occurs times the chance that it
survives—and the second term is the time required to
replace the population ( 2�Ki

1��Ki
is the effective amplifica-

tion for mutant type i), which is negligible for small N.
Since the first term, which dominates, is inversely propor-
tional to the distance from WT (i.e., the number of terms
in the sum), the average speed of the DNA pool is propor-
tional to that distance. Figure 2(a) shows the distance
from WT as a function of time, and except in the begin-
ning, it can be almost perfectly fitted to an exponential—
this is similar to the result in [4], which is for a very
different regime. The corrections for the beginning are
precisely what we would expect from the second term: It
limits the speed and causes a short delay. Our result for
the evolution speed in the random walk (RW) regime is
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FIG. 2. Average number of different bases between DNA pool
and WT as a function of time. r � 10�4.
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very similar to the one found in [14] for a birth-rate
model: As long as the second term of Eq. (2) is negligible,
the evolution speed of the DNA population is propor-
tional to the mutation rate and to the population size N.

Given a sequence S, mutation i will be the next surviv-
ing mutation with probability (for Nr 
 1 and large N)

PRWmut�S; i� �
1� 1

�KiP
j
1� 1

�Kj

; (3)

where j runs over all possible good mutations to S.
PRWpath��� �

Q
nPRWmut�S�n ; �n� is then the chance of fol-

lowing a given path �. Figure 3(a) compares these pre-
dicted values with simulation results (which are Poisson
distributed), and the agreement is excellent.

The approach to the small Nr limit for the observed
total fraction of minimum paths is shown in Fig. 1. The
random walk approach is not accurate if the second term
of Eq. (2) exceeds the first term: A mutation will not have
time to replace the population before the next favorable
mutation occurs.

For sufficiently large N, we expect mean field (MF)
behavior—there is no significant difference between one
experiment/simulation and another, and each path con-
tributes a fixed fraction to the total WT DNA produced. In
principle, in the limit of N ! 1 the fraction of popula-
tion S at time t, f�S; t� can be traced from iteration to
iteration and the chemical potential determined from
the selection criterion

P
Sf�S; t� 1=2�=f1� exp�E�S� �

��t��g � 1
2 , where f�S; t� 1=2� is the fraction of S just

after the amplification but before the selection. This
would require tracing all possible sequences—a tedious
and often impractical task. In practice, it suffices to
restrict ourselves to a limited set of paths [15]. With a
fixed set of paths, we can find the fraction of the DNA at
each step of each path at each iteration, as well as the
chemical potential used for each selection. The calcula-
tions proceed the same way as for the finite N simula-
tions, except there is no randomness involved, and we
discard the DNA that departs from the chosen paths.

Let nSS;�
0 be the number of WT molecules produced

from a single SS molecule through any specific path � in
an experiment/simulation. Once we know all the chemical
potentials ��t� used for the selections, we can use a set of
recursion relations to find both the average hnSS;�

0 i, the
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FIG. 3. Average contribution of individual minimum paths—
observed vs predicted. r � 10�7. (a) 217 and (b) 223 runs.
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variance Var�nSS;�0 �, and the probability P��n
SS;�
0 � �

P�nSS;�
0 > 0� that one SS molecule at time t � 0 will yield

some nonzero amount of WT at tM through � [12]. In the
mean field regime, the amount of WT produced through
each minimum path should be relatively constant from
one experiment to the next, which gives us a lower bound
for the population size:

N > max
�

Var�nSS;�
0 �

hnSS;�
0 i2

: (4)

These bounds vary from 1:1� 1019 (r � 10�4) to 1:4�
1038 (r � 10�7 and 15 cycles of PCR per iteration) [12].
The dependence on r is roughly N � r�m.

The speed of evolution in the mean field regime is
easily estimated—half the population is removed during
each selection, thus � will be close to the median binding
energy in the population, and any DNAwith significantly
higher binding energy than the majority will almost
certainly survive. After the very first iteration, a ‘‘seed
fraction’’ r=3 of the DNA will have each of the m ‘‘cor-
rect’’ mutations. In the following iterations, almost all of
this improved DNA will survive the selections, and the
amount of improved DNAwill thus roughly be doubled in
each iteration. After

T0 � 1�
log� 3

mr�

log�2�
(5)

iterations, the improved DNA will have replaced the
original population; i.e., most of the DNA will only
have m� 1 errors relative to WT.

Once the whole population has improved by one base,
the process is repeated. However, there have already been
T0 iteration in which improved DNA could improve fur-
ther through mutations, and this even better DNA was
amplified at the same rate as the regular improved DNA,
i.e., the seed fraction is now 1

2
T0�m�1�r

3 ( 1
2 because PCR

introduces mutations only in the copy). The DNA pool
will thus improve by one base roughly every

T�m0� � 1�
log� 3

m0Tr�

log�2�
(6)

iterations, where m0 is the number of errors left. Some of
the improved DNA will be lost during selection, and the
effective number of errors is much lower than the actual
number m0—these and other corrections can be addressed
by considering an infinite length model [16].

The resulting evolution speed is almost constant
[Fig. 2(b)]; using T�2� from Eq. (6) gives a very good
fit. The first improvement takes somewhat longer, as ex-
pected, and so does the last improvement: The error at
position 4 (usually the last error to be corrected) has a
very low �K, i.e., low effective amplification.

The argument used for the evolution speed in the MF
regime is qualitatively valid for all N > 1

r ; thus we expect
a smooth transition from the RW evolution behavior,
038101-3
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random with on average exponential approach, to the MF
behavior, constant speed. However, there is a significant
region where fWT

min � 1 and fWT
best > 0:5; i.e., usually a

single minimum path dominates (Fig. 1). In this region,
the average contribution of each path, hn�tMi, depends
strongly on how often that path dominates. As the overall
evolution behavior resembles that of the MF regime, we
can use as a first guess the probabilities PMF

� �nSS;�
0 � from

the large N discussion (with the superscript MF to em-
phasize that these are mean field calculations). Figure 3(b)
shows the results from simulations plotted against this
estimate, and hn�tMi is indeed closely related to PMF

� �nSS;�
0 �

(the relationship is not linear), at least for the most
probable paths—for the less probable paths, statistical
errors are large. hn�tMi varies far more here than in the
RW and MF regimes, and we consider this region to be a
third parameter regime, the middle ground.

The middle ground region corresponds fairly well to
1
r < N < �

P
�P

MF
� �nSS;�

0 ���1; i.e., the regime ends approxi-
mately when the population is large enough that, using
the mean field chemical potentials, we would expect to
find at least some WT in most simulations. There is a very
large crossover region between the MF regime and the
middle ground, and a smaller region between the middle
ground and the RW regime (Fig. 1).

It is difficult to completely and directly test the above
theoretical analysis experimentally— one would need to
sequence a large number of DNA. A more practical choice
is to consider only the distance from a sequence to WT,
i.e., the number of positions at which they differ, and
study its variance in different regimes. In the random
walk regime, at most times the DNA pool consists of
only a single sequence, thus the average variance for a
population snapshot is almost zero, but the variance be-
tween runs can be very large. As we increase the popu-
lation size, the variance within a run increases somewhat,
but the variance between runs decreases drastically, and
above the middle ground we have almost perfect coher-
ence (Fig. 4) —in particular, there are specific times at
which almost the whole population has each given dis-
tance from WT [Figs. 2(b) and 4(c)].
038101-4
Our simulation and analysis show that in the simple
case of additive binding energy the evolution behavior of
DNA-protein binding can be understood quantitatively
and rather completely. Depending on the population size
and the mutation rate, the evolutionary process exhibits
distinct behaviors in three parameter regimes, and for
large populations the behavior is very different from
those observed in other models [4,17]. Our results are
fairly general as long as the potential is mainly additive
and can be used to make sense of experimental data. The
additivity of the binding energy gives rise to a smooth
landscape, which greatly simplifies the analysis. The in-
clusion of a small perturbative nonadditive part to the
potential would not change the picture, but would none-
theless provide insights to the cases of more general
potentials and fitness functions.

We thank Qi Ouyang and Terry Hwa for very helpful
discussions.
[1] J. A. Bittker, K. J. Phillips, and D. R. Liu, Curr. Opin.
Chem. Biol. 6, 367 (2002).

[2] L. F. Landweber, Trends Ecol. Evol. 14, 353 (1999).
[3] Evolutionary Protein Design, edited by F. H. Arnold

(Academic Press, San Diego, 2001).
[4] W. Peng, U. Gerland, T. Hwa, and H. Levine, Phys. Rev.

Lett. 90, 088103 (2003).
[5] B. Dubertret, S. Liu, Q. Ouyang, and A. Libchaber, Phys.

Rev. Lett. 86, 6022 (2001).
[6] Enrichment (i.e., sequences very close to WT [7] in the

initial pool being amplified exponentially) was crucial
for the observed evolution dynamics in [5], as the authors
started from a mix of random DNA sequences.

[7] We let WT denote the highest affinity sequence, although
this is not the actual wild type [5,8].

[8] D. S. Fields, Y. He, A. Al-Uzri, and G. D. Stormo, J. Mol.
Biol. 271, 178 (1997).

[9] G. D. Stormo and D. S. Fields, Trends Biochem. Sci. 23,
109 (1998).

[10] T.-K. Man and G. D. Stormo, Nucleic Acids Res. 29, 2471
(2001).

[11] DNA molecules may also bind to the protein in a non-
specific manner [M. T. Record, Jr., P. L. deHaseth, and
T. M. Lohman, Biochemistry 16, 4791 (1977)], Ktot�S� �
K�S� � KNSB. This binding dominates for DNA sequen-
ces very far from WT, but is negligible for the case
studied in this Letter [12](we include it in simulations).

[12] M. Kloster and C. Tang, cond-mat/0301372.
[13] For molecules simultaneously mutated at multiple posi-

tions, we randomly assign an order to the mutations.
[14] D. A. Kessler, H. Levine, D. Ridgway, and L. Tsimring,

J. Stat. Phys. 87, 519 (1997).
[15] For large N, almost all the WT comes from minimum

paths (Fig. 1). To be safe, we allow one erroneous muta-
tion and verify that this is a minor correction.

[16] M. Kloster (unpublished).
[17] D. Ridgway, H. Levine, and D. A. Kessler, J. Stat. Phys.

90, 191 (1998).
038101-4


