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Stochastic model of yeast cell-cycle network
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Abstract

Biological functions in living cells are controlled by protein interaction and genetic networks. These molecular networks should be dynamically
stable against various fluctuations which are inevitable in the living world. In this paper, we propose and study a stochastic model for the network
regulating the cell cycle of the budding yeast. The stochasticity in the model is controlled by a temperature-like parameter β. Our simulation
results show that both the biological stationary state and the biological pathway are stable for a wide range of “temperature”. There is, however, a
sharp transition-like behavior at βc, below which the dynamics are dominated by noise. We also define a pseudo energy landscape for the system
in which the biological pathway can be seen as a deep valley.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The quantitative understanding of biological systems and
functions from their components and interactions presents a
challenge as well as an opportunity for interested scientists
of various disciplines. Recently, a considerable amount of
attention has been paid to the quantitative modeling and
understanding of budding yeast cell-cycle regulation [1–10].
In particular, Li et al. [3] introduced a deterministic Boolean
network model and investigated its dynamic and structural
properties. Their main results are that the network is both
dynamically and structurally stable. The biological stationary
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state is a global attractor of the dynamics; the biological
pathway is a globally attracting dynamic trajectory. These
properties are largely preserved with respect to small structural
perturbations to the network, e.g. adding or deleting links.
However, one crucial point left unaddressed in their study is
the effect of stochasticity or noise, which inevitably exists
in a cell and may play important roles [11]. In this paper,
we advance a probabilistic Boolean network [12,13] on the
protein interaction network of the yeast cell cycle. We found
that both the biological stationary state and the biological
pathway are well preserved under a wide range of noise level.
When the noise is larger than a value of the order of the
interaction strength, the network dynamics quickly become
noise dominating and lose their biological meaning.

2. Method

Our stochastic model is based on the updated protein
interaction network of Li et al. [3], which is depicted in Fig. 1.
Nodes in the figure represent proteins or protein complexes.
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Fig. 1. The cell-cycle network of the budding yeast. Each node represents a
protein or a protein complex. Arrows are positive regulation, “T”-lines are
negative regulation, dotted “T”-loops are degradation.

Arrows represent positive interaction, or “activation”. Lines
with a bar at the end represent negative interaction,
or “repression”. Dotted loops with a bar represent self-
degradation. We refer the reader to Ref. [3] for a full biological
account of this network. Here we only give a very brief
summary. There are four phases in the cell-cycle process: the
G1 phase in which the cell grows, the S phase in which the
DNA is copied, the G2 phase in which the cell prepares for
mitosis, and the M phase in which the two chromosome copies
are separated and the cell divides into two. There are several
checkpoints during the process to ensure that the next event will
not happen until the current event is finished. So the process
could be blocked at checkpoints. Following Ref. [3], we keep
only one such checkpoint in the model: “cell size”. Thus the
picture for the cell division process is the following: The cell
is resting on a stationary state G1 (blocked at the checkpoint
until it grows big enough). The “signal” to start the cell-cycle
process comes from the “cell size” which turns on a cyclin
Cln3. Cln3 activates a pair of nodes, SBF and MBF. SBF
and MBF stimulate the transcription of G1/S genes, including
those of Cln2 and Clb5. The S phase cyclin Clb5 initiates
DNA replication, after which the transcription factor complex
Mcm1/SFF is turned on, which stimulates the transcription of
many G2/M genes, including the gene of the mitotic cyclin
Clb2. The cell will exit from mitosis and divide into two after
Clb2 is inhibited and degraded by Cdc20, Cdh1 and Sic1. The
cell (or two cells: the mother and the daughter) now comes back
to the stationary G1 state, waiting for the signal for another
round of division. So from a dynamics point of view, the cell’s
stationary state G1 is a fixed point. A “start” signal will take
it out of the fixed point, and it will then go through a specific
dynamic trajectory (the biological pathway for cell division),
and come back to the fixed point.

In our model, the 11 nodes in the network shown in Fig. 1,
namely Cln3, MBF, SBF, Cln2, Cdh1, Swi5, Cdc20, Clb5, Sic1,
Clb2, and Mcm1, are represented by variables (s1, s2, . . . , s11),
respectively. Each node i has only two values, si = 1 and
si = 0, representing the active state and the inactive state
of the protein i , respectively. Mathematically, we consider the
network evolving on the configuration space S = {0, 1}

11; the
211

= 2048 “cell states” are labelled by {n = 0, 1, . . . , 2047}.
The statistical behavior of the cell state at the next time step is
determined by the cell state at the present time step. That is,
the evolution of the network has the Markov property [14]. The
time steps here are logic steps that represent causality rather
than actual times. The stochastic process is assumed to be time
homogeneous. Under these assumptions and considerations, we
define the transition probability of the Markov chain as follows:

Pr (s1(t + 1), . . . , s11(t + 1) | s1(t), . . . , s11(t))

=

11∏
i=1

Pr (si (t + 1) | s1(t), . . . , s11(t)), (1)

where

Pr (si (t + 1) = σi | s1(t), . . . , s11(t))

=
exp(β(2σi − 1)T )

exp(βT ) + exp(−βT )
,

if T =
∑11

j=1 ai j s j (t) 6= 0, σi ∈ {0, 1}; and

Pr (si (t + 1) = si (t) | s1(t), . . . , s11(t)) =
1

1 + e−α
, (2)

if T =
∑11

j=1 ai j s j (t) = 0. We define ai j = 1 for a positive
regulation of j to i and ai j = −1 for a negative regulation
of j to i . If the protein i has a self-degradation loop, ai i =

−0.1. The positive number β is a temperature-like parameter
characterizing the noise in the system [15]. Noticeably, the
actual noises within a cell might not be constant everywhere,
but here we use a system-wide noise measure for simplicity.
To characterize the stochasticity when the input to a node is
zero, we have to introduce another parameter α. This parameter
controls the likelihood for a protein to maintain its state when
there is no input to it. Notice that, when β, α → ∞, this model
recovers the deterministic model of Li et al. [3]. In this case,
they showed that the G1 state (the purple node in Fig. 3) is
a big attractor, and the path (blue nodes → olive-green nodes
→ dandelion nodes → red nodes → purple node in Fig. 3)
is a globally attracting trajectory. Our study focuses on the
stochastic properties of the system.

Because the Markov chain consists of finite states and is
irreducible, every state is accessible to all others. Therefore all
of the 2048 states constitute a communicated recurrent class,
and the Markov chain is ergodic. In this case, there exists a
probability distribution Π = (π0, π1, . . . , π2047), an invariant
measure, such that, for all states m, n ∈ {0, 1, . . . , 2047},

lim
r→∞

pmn(r) = πn

where pmn(r) is the r -step transition probability from the initial
state m to the target state n. That is to say, when r is big
enough, the probability for the system to reach state n is almost
independent of the starting position m. Even though each state
has a positive probability, the orders of magnitudes of the
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Fig. 2. The probability of the stationary G1 state. The order parameter πG1 as a function of β with (a) α = 2; (b) α = 5, and (c) α = 10. The solid line in (b) is the

fitting function ϕ(β) = 0.36
∣∣∣ β

1.03 − 1
∣∣∣0.36

.

probabilities are very different among the states; some are so
small that, in realistic cases, they can never be observed.

Our interests are in the asymptotic behavior of the
dynamic system. The steady-state probability distribution Π =

(π0, π1, . . . , π2047) can be found by solving linear equations
Π P = Π , where P is the transition matrix of the Markov chain.
The net probability flux from m to n is then πm pmn − πn pnm ,
where pmn is the transition probability from m to n. For a given
β, one can define a pseudo energy for the state n as [16]

En = −
log πn

β
. (3)

We first study the property of the biological stationary state
G1 and define an “order parameter” as the probability for the
system to be in the G1 state, πG1. Plotted in Fig. 2 is the value of
the order parameter (πG1) as a function of the control parameter
β with different α. At large β (low “temperature” or small noise
level), the G1 state is the most probable state of the system and
πG1 has a significant value. Note that, for a finite α, there are
always “leaks” from the G1 state, so that the concept of attractor
in the deterministic model in Ref. [3] cannot be applied here.
πG1 decreases with a decrease in β; one observes a transition-
like behavior like the function of β (similar behavior has been
seen in [13]). In order to compare this transitional behavior to
the transition in the system of thermodynamic equilibrium, we
define

ϕ(β) = b

∣∣∣∣ β

βc
− 1

∣∣∣∣a

, (4)

to fit the order parameter (πG1) curves in Fig. 2, where βc,
b, and a are parameters. When α is fixed to 5, we obtain
βc ≈ 1.03, b ≈ 0.36, and a ≈ 0.36 (see Fig. 2(b)).

At around βc = 1.03, πG1 drops to a very small value,
indicating a “high-temperature” phase in which the network
Fig. 3. The probability flux. For a node, only the largest flux from it is shown.
The nodes on the biological pathway are denoted with different colors: purple,
the stationary G1 state; blue, the other G1 states; olive-green, the S state;
dandelion, the G2 state; and red, the M states. All other states are denoted by
normal green. The simulations were performed with α = 5 and β = 6.

dynamics cannot converge to the biological steady state G1.
The system is, however, rather resistant to noise. The “transition
temperature” is quite high: the value of βc ≈ 1.03 implies
that the system will not be significantly affected by noise
until approximately 10% of the updating rules are wrong
(e−1.03/(e1.03

+ e−1.03) ≈ 0.1).
We next study the statistical properties of the biological

pathway of the cell-cycle network. We search the probability
for the system to be in any of the biological states along the
biological pathway, as a function of β. One observes a similar
transition-like behavior as shown in Fig. 2. The jump of the
probability of the states along the biological pathway in the
low-temperature phase is due to the fact that, in this phase,
the probability flux among different states in the system is the
predominant flow along the biological pathway. To visualize
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Fig. 4. The “potential” landscape of the system before and after the critical point: (a) β = 0.01, (b) β = 0.6, (c) β = 1.5, and (d) β = 6.0, all for α = 5. The color
code gives the relative value of the potential function.
this, in Fig. 3 we show an example of the probability flux among
all 2048 states. Each node in Fig. 3 represents one of the 2048
states. The size of a node reflects the stationary distribution
probability of the state. If the stationary probability of a state
is larger than a given threshold value, the size of the node is
in proportion to the logarithm of the probability. Otherwise, the
node is plotted with the same smallest size. The arrows reflect
the net probability flux (only the largest flux from any node is
shown). The probability flux is divided into seven grades, which
are expressed by seven colors: light-green, canary, golden-rod,
dandelion, apricot, peach and orange. The warmer that the color
is, and the wider that the arrow is, then the larger the probability
flux. The width of an arrow is in proportion to the logarithm of
the probability flux that it carries. The arrow representing the
probability flux from the stationary G1 state to the excited G1
state (the START of the cell cycle) is shown by dashed lines.
One observes that, once the system is “excited” to the START of
the cell-cycle process (here by noise, α, and in reality mainly by
signals like “cell size”), the system will essentially go through
the biological pathway and come back to the G1 state. Another
feature of Fig. 3 is that the probability flux from any state other
than those on the biological pathway is convergent onto the
biological pathway. Notice that this diagram also characterizes
the properties of fixed points that are ignored by Li (Ref. [3]).
Those fixed points also converge onto biological pathway. For
β < βc, this feature of a convergent high-flux bio-pathway
disappears.

In the previous discussions, we see that there is a “phase
transition” as a function of the “temperature” in the stochastic
cell-cycle model. The next step is to try to understand
this transition-like behavior. For this purpose, we define a
“potential” function and study the change of the “potential
landscape” as a function of β. Specifically, we define

Sn = − log πn = βEn, (5)

where En is the pseudo energy defined in Eq. (3). Fig. 4 shows
four examples of the 1Sn = Sn − S0 distribution, where the
reference potential S0 in each plot is set as the highest potential
point in the system. Note that the 11-dimensional phase space
is reduced to two dimensions and there is no distance metric
among the states in two-dimensional (2D) phase space. The
states in 2D are arranged for clarity, which reflect a kind of
dynamic relationship as in Fig. 3. One observes that, far from
the critical point (β = 0.01, Fig. 4(a)), the potential values are
high (around −4) and the landscape is flat. Near the critical
point but below it (β = 0.6, Fig. 4(b)), some local minima
(blue points) become more pronounced, but the landscape still
remains rather flat. We notice that these minimum points do
not correspond to the biological pathway. Just after the critical
point (β = 1.5, Fig. 4(c)), the system quickly condenses into a
landscape with deep valleys [17]. The state with the lowermost
potential value corresponds to the stationary G1 state. A linear
line of blue dots from upper-left to lower-middle corresponds to
the biological pathway, which forms a deep valley. Some deep-
blue dots out of the biological pathway are local attractors in
Ref. [3]. Notice that, although their potential values are low,
they attract only a few nearby initial states—all these points
are more or less isolated. After the critical point, the potential
landscape does not change qualitatively (see Fig. 4(d) with
β = 6). As β, α → ∞, the landscape becomes nine deep holes,
each corresponding to an attractor of the determinate system.

3. Conclusion

In conclusion, we introduced a stochastic model for the yeast
cell-cycle network. We found that there exists a transition-like
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behavior as the noise level is varied. With large noise, the
network behaves randomly; it cannot carry out the ordered
biological function. When the noise level drops below a critical
value, which is of the same order as the interaction strength
(βc ≈ 1.03), the system becomes ordered: the biological
pathway of the cell-cycle process becomes the most probable
pathway of the system and the probability of deviating from
this pathway is very small. So, in addition to the dynamical
and structural stability [3], this network is also stable against
stochastic fluctuations. We used a pseudo potential function to
describe the dynamic landscape of the system. In this language,
the biological pathway can be viewed as a valley in the
landscape [17–19]. This analogy to equilibrium systems may
not be generalizable, but it would be interesting to see if one
can find more examples in other biological networks, which are
very special dynamical systems.
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