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We describe the selection mechanism for novel pattern formation in a driven chain of nonlinear oscil-
lators. Phase organization arises as a consequence of dynamical selection of minimally stable states.

PACS numbers: 03.20.+i, 02.90.+p, 05.40.+j, 05.45.+b

Understanding the behavior of complex (many-
degrees-of-freedom) systems continues to present a great
challenge to physicists. The standard statistical mechan-
ics is a powerful theory for equilibrium and uniform sys-
tems; however, for nonequilibrium systems possessing
spatio-temporal structure there is no general theory—indeed, it is not even clear what quantities might
characterize the physics of such systems. Recently a
large step has been taken towards the understanding of
these complex systems, in large part because of the study
of simple low-dimensionality discrete dynamical equa-
tions. It is now realized that (1) simple nonlinear maps
can have very rich time series and very complex struc-
tures can be produced from very simple algorithms; (2)
there exist universality classes, such that very diff'erent

systems possess identical scaling properties. The hope is
that the study of these simple deterministic models can
help us pose and answer more general questions in com-
plex systems; this approach is in some sense the obverse
of the statistical point of view.

To date, significant progress has been made in under-
standing complex systems whose behavior can be cap-
tured by few "effective degrees of freedom" (EDF) '; in

contrast, very little is known in general about high-EDF

behavior. Systems where few-EDF models appear inade-
quate include spin-glasses, arrays of coupled maps,
spatio-temporal chemical oscillators, neural networks,
large-aspect-ratio Quid convention, and a video feed-
back system. In this Letter, we study a high-EDF sys-
tem displaying complex dynamics and interesting organ-
izing behavior. In contrast with these other complex sys-
tems, ours is simple enough to completely characterize
theoretically. Our hope is that this will stimulate pro-
gress toward a general characterization of high-EDF be-
havior.

The model consists of an array of N balls of mass m,
each connected to its neighbors by springs with force
constant K. The array is subject to a sinusoidal potential
and driven by a time-periodic square-wave force E(t).
The equation of motion is

my = —
yyl +K(yl. +1 —2y~+y~ -1)—A sin (2nyj ) +E,

j=1,2, . . . , N,

where y~. is the position of the jth ball, y is the damping
constant, and 2 the amplitude of the potential. In the
static case (m =

y =E =0), Eq. (1) is the Frenkel-
Kontorova model which has been studied extensively.
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—:y~ (n) +kX)y~ (n) +F,

y&(n+1) = i nt[nz (n~)],

(2a)

(2b)

where y, (n) and z~(n) are the positions of the jth ball
just before the nth pulse is turned on and off, respective-
ly, and nint(x) =int(x+0. 5) is the nearest integer of x.
The parameters k and F are the eff ective nearest-
neighbor coupling and external force, respectively, and
are related to the parameters in Eq. (1). Equation (2b)

Of particular interest for our purpose is that the
Frenkel-Kontorova model has a very large number
(-e ) of stable configurations —in our problem there is

a similarly large number of stable time-periodic station-
ary states and a hierarchy of metastable states.

What is a phase-organized state? It is a time-periodic
state with the property shown in Fig. 1: A snapshot at
an instant just before the pulse is turned oN' shows the
majority of balls sitting at maxima of the periodic poten-
tial. The phase of p of a ball is its distance from the
nearest-potential minimum; a configuration is phase or-
ganized when p= —,

' for most of the balls at the falling
edge of a pulse. Remarkably, in the appropriate param-
eter regime (weak springs and large damping), simula-
tions reveal that the phase-organized states are always
reached for suSciently random initial conditions even
though these states are measure zero (as N goes to
infinity) with respect to the total number of stable states.
This phenomenon was first discovered in the context of
the pulse-duration memory effect in charge-density
waves, where experiments show a macroscopic manifes-
tation of this microscopic organization. We will return
to this point briefly later on.

Our goal is to understand the selection mechanism
leading to phase organization. We accomplish this by
writing down a "Poincare map" for Eq. (1). By studying
the set of fixed points we recognize a "topological" selec-
tion for marginally stable states and identify the subset
of minimal' stable states as the phase-organized states.
The dynamics then selects for these latter states, and re-
veals the existence of a hierarchy of metastable, "al-
most" phase-organized configurations.

In the limit of strong damping, weak coupling, and
high field (y))m, E )A)) K), we approximate Eq. (1)
by the mapping

z, (n) y~(n)+k[yj+1(n) —2y, (n)+y~ 1(n)]+F

yj (n + 1 ) =y~ (n ) +F + intn[k 2)y (in ) ]. (3)

Applying the operator S to both sides and denoting the
"curvature" Dy~(n) as C~(n) yields

C~(n+1) =C~(n)+2) nint[kC, (n)]. (4)

Equation (4) is a nonlinear diA'usion equation on the lat
tice phase space Z . In contrast with linear diffusion,
the competition between diffusion (pulse on) and local
relaxation (pulse oA) allows the chain to stably maintain
nonzero curvature configurations. The fixed-point condi-
tion C~(n+1) =C~(n) implies

intn[kC, :(n)] =m+lj, j=1,2, . . . , N, (s)

where m and I are integers. For periodic or free bound-
ary conditions, only m =1=0 is allowed, so that the set
of fixed-point solutions is given by

—1/2k ( C~ ( 1/2k, j = 1,2, . . . , N (6)

Since k is small, this defines a large (compact) hyper-
cube in [C~] space. Any point in or on this cube is an al-
lowed solution" and represents a stable time-periodic
solution of Eq. (1); it can be proven that there are no at-
tractors outside this cube. The origin is located at the
center of the cube and is the most stable configuration, in
that it requires the largest (finite) perturbation to violate

says that when the pulse is off each ball falls directly into
its nearest potential minimum, while Eq. (2a) says that
during the pulse the balls are depinned from their mini-
ma and their motion is determined by the pulse force F
and the nearest-neighbor elastic interaction leading in

general to a net drift current. That Eq. (2) captures the
essential physics of Eq. (1) is supported by extensive nu-
merical simulations of both the iterative map and the or-
dinary differential equations; a derivation of a closely re-
lated map for m =0 is possible within the context of per-
turbation theory. ' The chief effect of the approxima-
tion leading to Eq. (2) is that simulations of the mapping
typically lead to more perfect phase organization than do
the corresponding ordinary differential equations. In
what follows, we focus on the iterative map since its
dynamical properties can be completely characterized by
analytic means.

Without loss of generality, we take F to be an integer
and rewrite Eq. (2) as

FIG. 1. Snapshot of a phase-organized solution of Eq. (1) just before the field is switched oA, showing the positions of the balls
relative to the sinusoidal potential; IV=55, m =1, y =100, %=1, A =100, E =305, T,„=5, T,ff=2, free boundary conditions. Only
an eight-ball portion of the chain is shown.
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Eq. (6). Points on the surface of the cube are "margin-
ally stable" (this is a slight misuse of terminology) since
at least one of the C~'s only barely satisfies Eq. (6), i.e.,
C, = 4-int[1/(2k)], while points at the corners of the
cube are also minimally stable since every C~ barely
satisfies Eq. (6).

Thus, based only on the topology of the solution set,
we see that the marginally stable states are preferred.
Starting with any initial condition outside the cube, the
diA'usive nature of Eq. (4) drives trajectories toward the
origin, until it hits the cube where it "sticks." One ex-
pects that trajectories will hit the surface states with

roughly uniform probability, but this is not the case.
Rather, the dynamics funnels trajectories toward the
corners: If one starts with initial conditions sufficiently
far from the cube, the system will arrive at a corner state
with probability 1. To understand this selection, one
must probe beyond this topological picture, and look at
the dynamics outside the cube.

Not only are the corner states minimally stable, but
they also correspond to states having perfect phase or-
ganization. This follows from Eqs. (2) and (6): One
sees immediately that these solutions correspond to
z~

= —,
' (mod 1) for all j. Thus, each time the pulse is

switched ofI, all the balls are sitting on the tops of the
potential! Before giving an explanation for this selection
of corner solutions, we note that there is a hierarchy of
"almost" fixed points wherein only a tiny fraction of the

C, 's change each iteration of Eq. (4). These metastable
configurations consist of local domains (subchains)
which satisfy Eq. (5) with nonzero m and I, with
difl'erent domains having diferent values of m and l. If
we consider only the lower-dimensionality phase space
for a subchain, the set of possible metastable configur-
ations defines a nested sequence of hypercubes indexed

by m. Again, the corners of these nested hypercubes are
dynamically preferred.

We now explain the dynamical mechanism underlying
the selection of the corner states. Imagine a plot of C~ vs

j after each time iteration n (see Fig. 2). Then the
stable (metastable) corner states correspond to each C~

being one of the values ~ 1/2k [+ (2m+1)/2k]. Con-
sider a very random initial configuration of C~'s, say C~

distributed uniformly between —c and +c where
c»1/k. Then for times less than O(1/k), Eq. (4) acts
essentially like ordinary diA'usion with diffusion constant
k, and the shortest wavelength spatial components die
out so that neighboring C~'s are likely to have values
within —1/k of each other —in fact, it is natural to
break the j-C~ plane into horizontal strips such that
2m —

1 & 2kC~ & 2m+1 for each integer m. At this
point, the nonlinear function nint in Eq. (4) comes to
play an important role, driving each C~ toward the bor-
ders of these horizontal strips. To see this, suppose that
C~ i and C~ are the m th strip with C~+1 in the
(m —1)th. Then nint(kC~) = —1 and CJ will move
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FIG. 2. Curvature C,- of a chain of 200 masses at four times,
as Eq. (4) evolves toward a phase-organized state, with

k =0.05 and free boundary conditions. From a random initial
condition the system quickly evolves toward a metastable state,
then slowly relaxes toward a stable corner state. Integers on

the right denote the strip index m, as described in the text.

down one unit. As long as its neighbors remain in their
strips, C~ will continue to move downward until it just
enters the (m —1)th strip. But now nint(kC~) =+1,
and C~ will move upward one unit, again crossing the
border, then down, then up, etc. ; so, once C~ reaches the
border of a strip, it stays there. By the same argument
one easily shows that if C~ —1, C~., and C~+& lie within two
neighboring strips, Cj will move to the border of the two
strips and stay there. Finally, if the triple are all in the
same strip, or in three consecutive strips, C~ will not
move. Consequently, there is a tendency for the C~'s to
cluster about the border lines of the strips. This is illus-
trated by the time series shown in Fig. 2. Note that any
of these border lines corresponds to phase-organized be-
havior, though the system has not reached a bona jtde
stable configuration at this stage.

The time scale for this clustering process is —1/k
since the width of the strips is 1/k. After this clustering,
the system only very slowly relaxes to one of the stable
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corner states, since only the edges of a cluster can have
significant change under Eq. (4). This slow "leaking"
process towards a stable state takes a time O(N/k).

We now discuss some ramifications of the picture
developed above.

First, the fact that the dynamics selects configurations
of minimal stability has significant implications for the
statistical mechanics of this system. The usual approach
would be to seek some global free energy, e.g. , the total
elastic energy of the chain, and assume a probability
density that peaks at the energy minimum. In fact, pre-
cisely the opposite situation applies here: The most
stable (minimum-energy) configuration is the state least
likely to be observed; the minimally stable (maximum-
energy) configurations should be most heavily weighted.

Next, we can extend our analysis to include the eAect
of quenched randomness modeled by the addition of ran-
dom constants aJ to Eq. (2a). In fact, it was simulations
on this random system that first detected the phenom-
enon of phase organization. This complication is
nonessential to the problem since the rigid translation

since the training pulses may bring the CDW directly to
one of the stable corner states. Then, decreasing k (i.e. ,

shortening the pulse) simply expands the stable hyper-
cube, so that the system is already in a stable config-
uration and no relearning will occur, though increasing k
instead will give the familiar eA'ect.

In conclusion, we have studied a periodically pulsed,
weakly coupled dissipative many-body system. This
high-EDF system displays spontaneous self-organization
with a selection mechanism which can be fully charac-
terized. This collective behavior is not due to a long-
range correlation (like that in second-order phase transi-
tions), but rather due to a very local dynamical rule; we

expect this rule to play a role in a wide class of complex
dynamical systems.

We thank Vic Emery and Laszio Mihaly for useful
discussions. This work was supported by the Division of
Materials Sciences, U.S. Department of Energy, under
Contract No. DE-AC02-76CH00016.

where

PJ, ZJ ZJ PJ,

k2)PJ =aJ

eliminates the aJ. (This is analogous to the nonessential
nature of randomness in the 1D spin-glass problem. ' )
The corner states still are selected, and are phase organ-
ized. In eftect, the a~'s change the potential from
sinusoidal to irregular, but the selected states are still
those where the balls sit at potential maxima at the in-
stant the pulse is turned ofI.

Finally, we revisit the original realization of this mod-
el, namely the pulse-duration memory efect in charge-
density waves (CDW's). A discussion of the relevance of
Eqs. (1) and (2) to CDW's appears in Ref. 9. Recall
that periodic voltage pulses cause the CDW to "learn"
the length of the pulse. For a "dirty" CDW, the pulses
bring the system to some metastable state, so that chang-
ing the pulse duration (i.e., changing k in our model)
causes the CDW to "relearn" since the structure of the
rnetastable state space has changed. This relearning pro-
cess has been observed experimentally. However, for a
clean enough CDW we can expect a diferent behavior,
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