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Robust, Tunable Biological
Oscillations from Interlinked Positive
and Negative Feedback Loops
Tony Yu-Chen Tsai,1* Yoon Sup Choi,1,2* Wenzhe Ma,3,4 Joseph R. Pomerening,5
Chao Tang,3,4 James E. Ferrell Jr.1†

A simple negative feedback loop of interacting genes or proteins has the potential to generate
sustained oscillations. However, many biological oscillators also have a positive feedback loop, raising
the question of what advantages the extra loop imparts. Through computational studies, we show that
it is generally difficult to adjust a negative feedback oscillator’s frequency without compromising its
amplitude, whereas with positive-plus-negative feedback, one can achieve a widely tunable frequency
and near-constant amplitude. This tunability makes the latter design suitable for biological rhythms
like heartbeats and cell cycles that need to provide a constant output over a range of frequencies.
Positive-plus-negative oscillators also appear to be more robust and easier to evolve, rationalizing
why they are found in contexts where an adjustable frequency is unimportant.

The mammalian heart rate is normally es-
tablished by the sino-atrial node. The node
generates constant-amplitude action poten-

tials at a tunable frequency of ~50 to 150 action
potentials per minute, depending on the body’s
oxygen demands. The cell cycle oscillator may
also require this combination of an adjustable
frequency and invariant amplitude. The period of
the cell cycle ranges from about 10min in rapidly
dividing embryos to tens of hours in rapidly di-
viding somatic cells (and longer in slowly dividing
somatic cells), but variations in the amplitude

[the peak concentration of active cyclin-dependent
kinase-1 (CDK1)] of the oscillations seem neither
necessary nor desirable.

Two basic types of circuits have been pro-
posed for biological oscillators: (i) those that con-
tain both positive and negative feedback loops
and (ii) those containing only negative feedback
(Table 1) (1–6). Both the sino-atrial node oscil-
lator and the cell cycle oscillator fall into the
positive-plus-negative feedback class, suggesting
that this design might be better suited for gen-
erating oscillations with a tunable frequency and
constant amplitude.

We tested this idea through computational
studies, beginning with an ordinary differen-
tial equation model of CDK1 oscillations in the
Xenopus embryonic cell cycle (7). The model
includes a negative feedback loop [active CDK1
brings about its inactivation through the anaphase-
promoting complex (APC)] and a pair of positive
feedback loops (active CDK1 activates its acti-
vator Cdc25 and inactivates its inhibitor Wee1)
(Fig. 1A). We specified the strength of the posi-

tive feedback through a parameter r, the ratio of
the activities of Cdc25 and Wee1 in interphase
versus M phase. Because the rate of cyclin syn-
thesis determines the frequency of CDK1 oscil-
lations in Xenopus embryos (7, 8), we varied the
cyclin synthesis rate constant ksynth in the model
and determined how the amplitude and frequency
of the oscillations were affected by this variation.

In the negative feedback–only version of the
model (r = 1 in Fig. 1, B and C), a relatively small
range of ksynth values yielded oscillations. Plotting
the amplitude and frequency of the oscillations on
a log-log plot yielded a tight, inverted U-shaped
curve (Fig. 1B). The range of frequencies over
which the oscillator functionedwas small (1.7-fold),
and even within this range, the frequency could
not be adjusted without compromising the am-
plitude substantially.

Adding positive feedback markedly changed
the amplitude/frequency relation (Fig. 1, B and
C). At a biologically realistic feedback strength
of r = 10 (9–11), the oscillator functioned over a
4900-fold range of frequencies (Fig. 1B, green
points). Over much of this range, the frequency
of the oscillator was linearly proportional to ksynth,
and the amplitude was approximately constant
(Fig. 1, B and C). Thus, positive feedback pro-
vided a highly tunable frequency and robust
amplitude.

Something other than the cyclin synthesis rate
may tune the frequencies of some cell cycles. We
therefore asked whether the negative feedback–
only oscillator might operate over a wider range
of frequencies if one of the model’s other 20
parameters were varied. This was not the case;
invariably, the oscillator operated over only a
narrow frequency range. Of course if all of the
rate constants were multiplied by the same factor
(equivalent to scaling the units of time), the
oscillator’s frequency could be varied without
changing the amplitude. However, this type of
coordinated regulation is not relevant to any of
the biological oscillators that we are familiar
with (Table 1).
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Both the tunable frequency and constant am-
plitude of the positive-plus-negative feedback cell
cyclemodel arise because the system behaves like
a relaxation oscillator (12–15). Relaxation oscilla-
tors are built on a hysteretic switch, and experi-
mental studies have shown that inXenopus extracts
the response of theCDK1/Cdc25/Wee1/Myt1 posi-
tive feedback loop is hysteretic, resembling that
shown in Fig. 2A (16, 17).

To see how relaxation oscillations can arise
from a hysteretic switch and to see why this per-
mits a tunable period and constant amplitude, as-
sume that a cell cycle begins with no cyclin B and
no active CDK1 and that cyclin B synthesis is
slow relative to the phosphorylation and dephos-
phorylation reactions that allow the hysteretic
switch to approach its steady state (Fig. 2A). As
cyclin B accumulates, the system moves up the

lower branch of the stimulus/response curve, and
the CDK1 activity slowly rises (Fig. 2, A and B,
segments 0 and 1). Ultimately, the branch termi-
nates and the system switches (“relaxes”) to the
other branch (Fig. 2, A and B, segment 2).

Now assume that at this higher, mitotic level
of CDK1 activity, the APC is turned on and the
cyclin B concentration begins to fall slowly. The
system progresses down the upper branch of
the stimulus/response curve (Fig. 2, A and B,
segment 3) until the branch terminates and the
system switches to the lower branch (Fig. 2, A
and B, segment 4). The APC turns back off, cyclin
B reaccumulates, and the cycle starts over. Thus,
oscillations in this system essentially represent a
walk around the hysteretic steady-state stimulus/
response loop. The frequency of the oscillator is
determined by how rapid the walk is, and the
amplitude (the height of the loop) is constant.

In reality, the rate of cyclin B destruction by
the APC is not slow compared with the phos-
phorylation and dephosphorylation reactions (7).
This fact is incorporated into the cell cycle model
examined here, and it makes the orbits of the
oscillator overshoot the hysteretic loop (Fig. 2C).
Nevertheless, the model still behaves much like a
relaxation oscillator, especially at low ksynth values
(Fig. 2, C and D).

To test the generality of the idea that positive
feedback enables an oscillator to have a tunable
frequency and constant amplitude, we examined
several other oscillator models, including five
negative feedback–only models: (i) the Goodwin
oscillator, a well-studied model relevant to cir-
cadian oscillations (18, 19); (ii) the Repressilator,
a transcriptional triple-negative feedback loop con-
structed inEscherichia coli (20); (iii) the “Pentilator,”
a Repressilator with five (rather than three) re-
pressors; (iv) the Metabolator (21), a synthetic
metabolic oscillator; and (v) the Frzilator, a model
of the control of gliding motions in myxobacteria
(22). In four of the cases (Goodwin, Repressilator,
Pentilator, andMetabolator), the amplitude/frequency
curves were inverted U-shaped curves similar to
that seen for the negative feedback–only cell cy-
cle model (Figs. 1B and 3A). In the case of the

Table 1. Positive feedback loops in biological oscillators.

Oscillator Period Positive feedback Refs.

Sino-atrial pacemaker ~1 s Depolarization → Na+ channel
activation → depolarization

(29)

Calcium spikes ~100 s Cytoplasmic Ca2+ → PLC → IP3 →
cytoplasmic Ca2+

Cytoplasmic Ca2+ → IP3R →
cytoplasmic Ca2+

Cytoplasmic Ca2+ → IP3R -|
ER Ca2+ -| SOC → cytoplasmic Ca2+

(25, 30, 31)

Myxobacterial gliding ~10 min None known (22)
Animal cell cycle
(Xenopus laevis embryos)

~30 min Cdk1 → Cdc25 → Cdk1
Cdk1 -| Wee1 -| Cdk1
Cdk1 -| Myt1 -| Cdk1

(32, 33)

Somitogenesis ~30 min DeltaC → Notch → DeltaC (34)
Yeast cell cycle

(S. cerevisiae)
~2 hours CLN1,2 transcription → CDK1 →

CLN1,2 transcription
CDK1 -| Sic1 -| CDK1
CDK1 -| Cdh1 -| CDK1

(6, 35–39)

NF-kB responses ~100 min None known (40, 41)
p53 responses ~100 min p53 → PTEN -| Akt → Mdm2 -| p53

p53 → p21 -| Cdk2 -| Rb -| Mdm2 -| p53
(42, 43)

Animal cell cycle
(somatic cells)

~24 hours CDK2 -| Rb -| E2F → CDK2
Cdk1 → Cdc25 → Cdk1
Cdk1 -| Wee1 -| Cdk1
Cdk1 -| Myt1 -| Cdk1

(44)

Circadian rhythm
(mammals)

~24 hours BMAL1 → Rora → BMAL1 (45)

Circadian rhythm
(Drosophila)

~24 hours CLK → PDP1 → CLK (45)

Circadian rhythm
(fungi)

~24 hours FRQ → WC-1 → FRQ (46)

Circadian rhythm
(cyanobacteria)

~24 hours KaiC-SP -| KaiA -| KaiC-SP (26)

Fig. 1. Positive feedback provides an os-
cillator with a tunable frequency and nearly
constant amplitude. (A) Schematic view of the
Xenopus embryonic cell cycle. (B) Amplitude/
frequency curves for various strengths of
positive feedback (r). The frequency of the
oscillator was changed by varying the rate constant for cyclin B synthesis, ksynth. (C) Frequency as a function of ksynth for various strengths of positive feedback.
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Frzilator, the legs of the curve were truncated; the
oscillator had a nonzero minimal amplitude (Fig.
3A). For all five of the negative feedback–only
models, the oscillators functioned over only a
narrow range of frequencies (Fig. 3A).

We also examined four positive-plus-negative
feedback oscillators: (i) the van der Pol oscillator,
inspired by studies of vacuum tubes (12); (ii) the
Fitzhugh-Nagumo model of propagating action
potentials (23, 24); (iii) the Meyer-Stryer model of
calcium oscillations (25); and (iv) a model of cir-
cadian oscillations in the cyanobacterial KaiA/B/C
system (26–28). In each case, we obtained a flat,
wide amplitude/frequency curve (Fig. 3B). Thus,
a tunable frequency plus constant amplitude can
be obtained from many different positive-plus-
negative feedbackmodels; this feature is not peculiar
to one particular topology or parameterization.

These findings rationalize why the positive-
plus-negative feedback design might have been
selected through evolution in cases where a tun-
able frequency and constant amplitude are impor-
tant, such as heartbeats and cell cycles. However,
it is not clear that an adjustable frequency would
be advantageous for circadian oscillations, be-
cause frequency is fixed at one cycle per day.
Nevertheless, the cyanobacterial circadian oscil-
lator appears to rely on positive feedback (26),
and positive feedback loops have been postulated
for other circadian oscillators as well (Table 1).
This raises the question of whether the positive-
plus-negative feedback design might offer addi-
tional advantages.

One possibility is that the positive-plus-
negative feedback design permits oscillations
over a wider range of enzyme concentrations and
kinetic constant values, making the oscillator
easier to evolve and more robust to variations in
its imperfect components. We tested this idea
through a Monte Carlo approach. We formulated
three simple oscillator models: (i) a three-variable
triple negative feedback loop with no additional
feedback (Fig. 4A), (ii) one with added positive
feedback (Fig. 4B), or (iii) one with added negative
feedback (Fig. 4C). We generated random pa-
rameter sets for the models and then for each set
determined whether the model produced limit cycle
oscillations.We continued generating parameter sets
until we had amassed 500 that gave oscillations.

For the negative feedback–only model, 500
out of 138,785 parameter sets (0.36%) yielded
oscillations (Fig. 4D). For the positive-plus-
negative feedback model, oscillatory parameter
sets were found at a higher rate: 500 out of 23,848
parameter sets (2.1%) if we assumed weak posi-
tive feedback and 500 out of 9854 sets (5.1%) for
strong positive feedback (Fig. 4D). The negative-
plus-negative feedbackmodel yielded oscillations
at a lower rate than even the negative feedback–
only model: 500 out of 264,672 parameter sets
(0.19%) for the weaker feedback strength and 500
out of 583,263 (0.086%) for the stronger feed-
back. This is probably because the short negative
feedback loop stabilizes the output of A, making
it difficult for changes in C’s activity to be propa-

gated onward. Thus, the positive-plus-negative
feedback design was substantially more robust, by
this measure, than either the negative feedback–
onlymodel or the negative-plus-negative feedback
model.

The random parameter sets also provided a
further test of the hypothesis that the positive-
plus-negative design allows for a tunable frequency.
For each oscillatory set, we varied one parameter
(k3) and calculated amplitude/frequency curves
and operational frequency ranges. For the nega-
tive feedback–only and the negative-plus-negative

feedback models, all of the oscillatory parameter
sets yielded narrow, inverted U-shaped amplitude/
frequency curveswith small operational frequency
ranges (Fig. 4, E and F, and fig. S1). In contrast,
many of the amplitude/frequency curves for the
positive-plus-negative feedback model were flat
and wide, with large operational frequency ranges
(Fig. 4, E and F). Thus, the positive-plus-negative
design provided the possibility of a tunable fre-
quency and near-constant amplitude.

The frequent presence of positive feedback
loops in natural biological oscillators suggests

Fig. 2. From a hysteretic switch to a relaxation oscillator. (A) Hysteretic steady-state response of CDK1 to
cyclin B, on the basis of previous experimental studies (16, 17). (B) CDK1 activation and inactivation in
the limit of slow cyclin B synthesis and degradation. (C and D) Cell cycle model run with biologically
realistic parameters, showing a looser relation between the oscillations and the hysteretic steady-state
response.

Fig. 3. Amplitude/frequency curves for various legacy oscillators. (A) Negative feedback–only models.
(B) Positive-plus-negative feedback models.
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that this type of circuit possesses some perform-
ance advantages over simple negative feedback
loops. The present work demonstrates two such
advantages: (i) the ability to tune the oscillator’s
frequency without changing its amplitude and (ii)
a greater robustness and reliability.
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Fig. 4. Randomly parameterized oscillator models. (A) Negative feedback–only. A, B, and C, the fractions
of proteins A, B, and C that are active; K, median effective concentration values of the Hill functions; n, Hill
coefficients; k, rate constants. (B) Positive-plus-negative feedback. (C) Negative-plus-negative feedback.
(D) Percentage of parameter sets that yielded limit cycle oscillations. For the positive-plus-negative and
negative-plus-negative models, we looked at two ranges of feedback strengths: (i) k7 = 0 to 100 (weak)
and (ii) k7 = 500 to 600 (strong). (E) Operational frequency ranges for the oscillators. Each point
represents freqmax / freqmin for one of the 2500 parameter sets that produced oscillations, with k3 as the
bifurcation parameter. Mean operational frequency ranges were 1.6, 370, 63, 1.6, and 1.6. Medians were
1.6, 2.2, 3.3, 1.6, and 1.6. (F) Amplitude/frequency curves for the randomly parameterized models. We
show 300 out of 500 curves for the negative feedback–only model (red) and the positive-plus-negative
feedback model with weak (blue) or strong (green) positive feedback. Curves for the negative-plus-
negative feedback model are shown in fig. S1.
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Computational modeling 
For each ordinary differential equation (ODE) model analyzed, we solved the differential 
equations numerically using a Runge-Kutta method.  To construct amplitude vs. frequency 
curves, we first chose a bifurcation parameter and then identified the range of the parameter over 
which the system exhibited limit cycle oscillations by locating the Hopf bifurcations at which 
oscillations were born and extinguished.  We then used an iterative algorithm to march along the 
chosen parameter between the two bifurcations.  For each set of parameters we calculated the 
limit cycle solution of the system, keeping track of the amplitude and frequency of the limit 
cycle solution.  We made use of Mathematica (Wolfram Research, Inc.) and MatCONT (S1), a 
public toolbox for bifurcation analysis in Matlab (The MathWorks Inc.), for these computations. 
 
Below we describe the ODE models, parameter sets, and bifurcation parameters we examined. 
 
1. Negative feedback and positive-plus-negative feedback cell cycle oscillators.  This is 
a nine ODE model of the embryonic mitotic oscillator in Xenopus laevis (S2).  Depending upon 
parameter choice, the model can function as a negative feedback circuit or as a positive-plus-
negative feedback circuit.  Parameters were chosen so that at a realistic feedback strength of 
r=10, the model would reproduce the experimental curves for the steady-state activity of CDK1 
as a function of constant cyclin concentration, and for the time course of CDK1 activation when 
driven by a constant rate of cyclin synthesis (S2, S3).   

 
To make it easier to distinguish between complexes (e.g. CDK1-cyclin) and products of 
individual species (e.g. CDK1 × cyclin), for this model we have written all time-dependent 
species as explicit functions of time.  Thus, cdk1cyclin[t] represents the concentration of the 
CDK1-cyclin complex, whereas cdk1[t]cyclin[t] represents the product of the free CDK1 and 
cyclin concentrations. 
 
ODEs: 
 

! 

dcyclin[t]

dt
= ksynth " kdestapcact[t]cyclin[t]"

ka cdk1tot " cdk1cyclin[t]" cdk1cyclinyp[t]" cdk1cyclinyptp[t]" cdk1cyclintp[t]( )cyclin[t]+

kdcdk1cyclin[t]

 



2 

! 

dcdk1cyclin[t]

dt
=

ka cdk1tot " cdk1cyclin[t]" cdk1cyclinyp[t]" cdk1cyclinyptp[t]" cdk1cyclintp[t]( )cyclin[t]"

kdcdk1cyclin[t]" kdestapcact[t]cdk1cyclin[t]" kwee1wee1act[t]cdk1cyclin[t]"

kwee1basal wee1tot " wee1act[t]( )cdk1cyclin[t]+ kcdc25cdc25act[t]cdk1cyclinyp[t]+

kcdc25basal cdc25tot " cdc25act[t]( )cdk1cyclinyp[t]

 

! 

dcdk1cyclinyp[t]

dt
= kwee1wee1act[t]cdk1cyclin[t]+ kwee1basal wee1tot " wee1act[t]( )cdk1cyclin[t]"

kcdc25cdc25act[t]cdk1cyclinyp[t]" kcdc25basal cdc25tot " cdc25act[t]( )cdk1cyclinyp[t]"

kcakcdk1cyclinyp[t]+ kpp2ccdk1cyclinyptp[t]" kdestapcact[t]cdk1cyclinyp[t]

 

! 

dcdk1cyclinyptp[t]

dt
= kcakcdk1cyclinyp[t]" kpp2ccdk1cyclinyptp[t]"

kcdc25cdc25act[t]cdk1cyclinyptp[t]" kcdc25basal cdc25tot " cdc25act[t]( )cdk1cyclinyptp[t]+

kwee1wee1act[t]cdk1cyclintp[t]+ kwee1basal wee1tot " wee1act[t]( )cdk1cyclintp[t]"

kdestapcact[t]cdk1cyclinyptp[t]

 

! 

dcdk1cylintp[t]

dt
= kcdc25cdc25act[t]cdk1cyclinyptp[t]+

kcdc25basal cdc25tot " cdc25act[t]( )cdk1cyclinyptp[t]" kwee1wee1act[t]cdk1cyclintp[t]"

kwee1basal wee1tot " wee1act[t]( )cdk1cyclintp[t]" kdestapcact[t]cdk1cyclintp[t]

 

! 

dcdc25act[t]

dt
= kcdc25on

cdk1cyclintp[t]
ncdc25

ec50cdc25
ncdc25 + cdk1cyclintp[t]ncdc25

" 

# 
$ 

% 

& 
' cdc25tot ( cdc25act[t]( ) (

kcdc25off cdc25act[t]

 

! 

dwee1act[t]

dt
= "kwee1off

cdk1cyclintp[t]
nwee1

ec50wee1
nwee1 + cdk1cyclintp[t]nwee1

# 

$ 
% 

& 

' 
( wee1act[t]+ kwee1on wee1tot " wee1act[t]( )  

! 

dplx1

dt
= kplx1on

cdk1cyclintp[t]
nplx1

ec50plx1
nplx1 + cdk1cyclintp[t]nplx1

" 

# 
$ $ 

% 

& 
' ' plx1tot ( plx1act[t]( ) ( kplx1off plx1act[t] 

! 

dapcact[t]

dt
= kapcon

plx1act[t]
napc

ec50plx1
napc + plx1act[t]

napc

" 

# 
$ $ 

% 

& 
' ' apctot ( apcact[t]( ) ( kapcoff apcact[t] 

 
Initial conditions: 
 

! 

cyclin[0] = 0  

! 

cdk1cyclin[0] = 0  

! 

cdk1cyclinyp[0] = 0  
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! 

cdk1cyclinyptp[0] = 0 

! 

cdk1cyclintp[0] = 0  

! 

cdc25
act
[0] = 0  

! 

wee1
act
[0] = wee1

tot
 

! 

plxact[0] = 0  

! 

apcact[0] = 0 

 
Parameters: 
 

! 

kdest = 0.01

ka = 0.1

kd = 0.001

kwee1 = 0.05

kwee1basal = kwee1 /r

kcdc25 = 0.1

kcdc25basal = kcdc25 /r

cdc2tot = 230

cdc25tot =15

wee1tot =15

apctot = 50

plx1tot = 50

nwee1= 4

ncdc25 = 4

napc = 4

 

! 

nplx1= 4  

! 

ec50plx1 = 40 

! 

ec50
wee1

= 40  

! 

ec50
cdc25

= 40  

! 

ec50apc = 40  

! 

k
cdc25on

=1.75  

! 

kcdc25off = 0.2 

! 

kapcon =1 

! 

kapcoff = 0.15 

! 

kplx1on =1 
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! 

kplxoff = 0.15 

! 

k
wee1on

= 0.2  

! 

kwee1off =1.75 

! 

k
cak

= 0.8 

! 

kpp2c = 0.008  

For the negative feedback model, we took r = 1, which is equivalent to assuming that the 
activities of Wee1 and Cdc25 are not affected by the activity of CDK1.  For the positive-plus-
negative feedback model, we took r = 5, 10, or 15 to compare the effects of different feedback 
strengths.  In all cases, the oscillations were found to be born and extinguished through 
supercritical Hopf bifurcations.  Thus a change in the type of bifurcation was not responsible for 
the change in the shape of the amplitude vs. frequency curves that positive feedback produced. 
 
 
The following five models are negative-feedback-only oscillators: 
 
2. Repressilator.  Elowitz and Leibler used a six variable ODE model to guide their 
construction of the Repressilator, an artificial negative feedback oscillator, in E. coli (S4).  The 
model consists of three mRNAs, m1, m2, and m3, which give rise to three proteins, p1, p2, and 
p3.  Each protein inhibits the transcription of the next message (e.g. p1 represses m2).  We varied 
the frequency of the oscillator by varying one of the translation rates by a factor φ.  Oscillations 
were born and extinguished through supercritical Hopf bifurcations.  The parameters for the 
model are as given by Elowitz and Leibler (S4).   
 
ODEs: 
 

! 

dm
1

dt
= "m

1
+

#

1+ p
3

n
+#

0
 

! 

dm
2

dt
= "m

2
+

#

1+ p
1

n
+#

0
 

! 

dm
3

dt
= "m

3
+

#

1+ p
2

n
+#

0
 

! 

dp
1

dt
= " m

1
#$p

1( )  

! 

dp
2

dt
= " m

2
# p

2( )  

! 

dp
3

dt
= " m

3
# p

3( )  
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Initial conditions: 
 

! 

m
1
[0] =1

m
2
[0] = m

3
[0] = p

1
[0] = p

2
[0] = p

3
[0] = 0

 

 
Parameters: 
 

! 

n = 2

" = 300

"
0

= 0

# = 0.2

 

 
3. Pentilator.  If the time scales of transcription and translation are separable, the 
Repressilator can be reduced to three ODEs.  Since a two-ODE negative feedback loop cannot 
generate sustained oscillations, it seemed reasonable that a three ODE system would require 
careful balancing of kinetic parameters to oscillate, and would therefore oscillate over a limited 
range of frequencies.  We were therefore curious to see if a five-ODE analog of the repressilator 
(the ‘Pentilator’) might have a qualitatively different amplitude/frequency relationship compared 
to the Repressilator and the other three ODE negative feedback oscillators being examined here.  
However, as shown in Figure 2, it turned out to behave very similarly to the Repressilator: 
oscillations were born and extinguished through supercritical Hopf bifurcations, and the 
operational frequency range of the model was small. 
 
ODEs: 
 

! 

dm
1

dt
= "m

1
+

#

1+ p
5

n
+#

0
 

! 

dm
2

dt
= "m

2
+

#

1+ p
1

n
+#

0
 

! 

dm
3

dt
= "m

3
+

#

1+ p
2

n
+#

0
 

! 

dm
4

dt
= "m

4
+

#

1+ p
3

n
+#

0
 

! 

dm
5

dt
= "m

5
+

#

1+ p
4

n
+#

0
 

! 

dp
1

dt
= " m

1
#$p

1( )  

! 

dp
2

dt
= " m

2
# p

2( )  
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! 

dp
3

dt
= " m

3
# p

3( )  

! 

dp
4

dt
= " m

4
# p

4( ) 

! 

dp
5

dt
= " m

5
# p

5( )  

 
Initial conditions: 
 

! 

m
1
[0] =1

m
2
[0] = m

3
[0] = m

4
[0] = m

5
[0] = p

1
[0] = p

2
[0] = p

3
[0] = p

4
[0] = p

5
[0] = 0

 

 
Parameters: 
 

! 

n = 2

" = 300

"
0

= 0

# = 0.2

 

 
4. Goodwin oscillator.  The Goodwin model is a three-variable ODE system proposed forty 
years ago (S5), which has been applied to the analysis of circadian oscillations (S6-S10).  The 
parameters used here were taken from Ruoff and co-workers (S8).  Because they have 
emphasized that the frequency of the oscillator is a relatively sensitive function of the 
degradation rates, we chose the degradation rate constant to be the bifurcation parameter φ. 
 
Note that for some of the parameter sets used by Ruoff and co-workers, the Goodwin model 
produces damped oscillations that approach a stable steady state (or stable spiral) rather than a 
stable limit cycle (S8).  Here we examined only limit cycle oscillations. 
 
ODEs: 
 

! 

dx

dt
=

k
1

1+ z
9
" k

4
x  

! 

dy

dt
= k

2
x "#y  

! 

dz

dt
= k

3
y " k

6
z  
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Initial conditions: 
 

! 

x[0] = 0.0348  

! 

y[0] = 0.347  

! 

z[0] =1.735 

 
Parameters: 
 

! 

k
1

=1

k
2

=1

k
3

=1

k
4

= 0.2

k
6

= 0.1

 

 
5. Frzilator.  The Frzilator was proposed by Igoshin and co-workers to account for 
oscillatory swarming motions in Myxococcus (S11).  The model consists of three ODEs and 
assumes that all of the activating and inactivating enzymes are highly saturated by their 
substrates.  This model differs from the other negative feedback models considered here in that 
oscillations are born and extinguished through subcritical Hopf bifurcations rather than 
supercritical Hopf bifurcations.  This means that there is a non-zero amplitude below which the 
model cannot generate sustained oscillations.  It also means that near the bifurcations, a locally 
stable steady-state (or spiral) coexists with limit cycle oscillations, and the initial conditions 
determine which behavior is exhibited by the model. 
 
ODEs: 
 

! 

df

dt
= "

1# f

0.01+ (1# f )

$ 

% 
& 

' 

( 
) # d f

f

0.005 + f

$ 

% 
& 

' 

( 
) e

dc

dt
= kc

1# c

0.005 + (1# c)

$ 

% 
& 

' 

( 
) # dc

c

0.005 + c

$ 

% 
& 

' 

( 
) 

de

dt
= ke

1# e

0.005 + (1# e)

$ 

% 
& 

' 

( 
) # de

e

0.005 + e

$ 

% 
& 

' 

( 
) 

 

 
Initial conditions: 
 

! 

f [0] = 0.503 

! 

c[0] = 0.623 

! 

e[0] = 0.980 
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Parameters: 
 

! 

kc = 4

ke = 4

df =1

dc = 2

de = 2

 

 
6.  Metabolator.  The Metabolator is a synthetic gene-metabolic oscillator that rewires the 
glycolytic flux to drive an oscillation between two pools of metabolites in acetate pathway (S12).  
The design is based on two negative feedback loops.  When acetyl phosphate (AcP) level 
increases,  acetyl-CoA synthetase (Acs) is activated to drive the flux away from AcP, and 
phosphate acetyltransferase (Pta) is repressed to decrease the production of AcP.  Here we vary 
the enzyme copy number φ in the model to change the frequency of the oscillations. 
 
ODEs:  
 

! 

d[AcCoA]

dt
=VAcs "Vpta +Vgly " kTCA[AcCoA]

d[AcP]

dt
=Vpta "VAck

d[OAc
"
]

dt
=VAck " k3[HOAc]

d[HOAc]

dt
=VAcE " k3[HOAc]

d[lacI]

dt
=
# [AcP]/Kg,1( )

n

1+ [AcP]/Kg,1( )
n

+$
0
" d[lacI]

d[Aca]

dt
=
a
1
# [AcP]/Kg,2( )

n

1+ [AcP]/Kg,2( )
n

+ a
1
$
0
" d[Acs]

d[pta]

dt
=

a
2
#

1+ [lacI]/Kg,3( )
n

+ a
2
$
0
" d[pta]

 

 
where 
 

! 

Vpta =
k
1
[pta][AcCoA]

Km1 + [AcCoA]
 

! 

V
Acs

=
k
2
[Acs][OAc

"
]

K
m2

+ [OAc
"
]
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! 

VAck = kAck, f [AcP]" kAck,r[OAc
"
] 

! 

VAcE =100 [OAc"][H +
]"Keq[HOAc]( ) 

! 

V
out

= k
3
[HOAc]" [HOAc

E
]( ) 

 
Initial conditions:  
 

! 

AcCoA[0] = 0

AcP[0] = 2

OAc
"
[0] = 0

HOAc[0] = 0.0009

lacI[0] = 0.00055

Acs[0] = 0.011

pta[0] = 0.00844

 

 
Parameters:  
 

! 

kTCA =10

k
1

= 80

k
2

= 0.8

Km1 = 0.06

Km2 = 0.1

kAck, f = kAck,r =1

[H
+
] =10

"7.6

Keq =10
"4.5

k
3

= 0.01

a
0

= 0

a
1

= a
2

= 20

Kg,1 = Kg,2 =10

Kg,3 = 0.001

d = 0.06

 

 
 
The following four models are positive-plus-negative feedback oscillators:  
 
7. Meyer and Stryer model of calcium oscillations. This is a three ODE model that 
accounts for many of the observed characteristics of cytosolic calcium oscillations (S13).  The 
variable x represents cytoplasmic Ca2+; y represents IP3; and z represents ER Ca2+.  The parameter 
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R, which represents the fractional activation of a calcium-mobilizing G-protein coupled receptor, 
is used to vary the oscillator’s frequency. 
 
ODEs: 
 

! 

dx

dt
= c1

y
3

K1 + y( )
3
z " c2

x
2

x + K2( )
2

+ c3z
2
" c6(x /c7)

3.3 + c6

dy

dt
= c4R

x

x + K3

" c5y

dz

dt
= "c1

y
3

K1 + y( )
3
z + c2

x
2

x + K2( )
2
" c3z

2

 

 
Initial conditions: 
 

! 

x[0] = 0.1

y[0] = 0.01

z[0] = 25

 

 
Parameters: 
 

! 

c
1

= 6.64

c
2

= 5

c
3

= 0.0000313

c
4

=1

c
5

= 2

c
6

= 0.5

c
7

= 0.6

K
1

= 0.1

K
2

= 0.15

K
3

=1

 

 
8. van der Pol oscillator.  The van der Pol oscillator model is a one-variable, second order 
differential equation, which can also be written as a pair of first order differential equations.  The 
model has one parameter, φ, which was used to vary the frequency of oscillations. 
 
ODEs: 
 

! 

dx

dt
= y  

! 

dy

dt
= "(1# x 2)y # x  
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Initial conditions: 
 

! 

x[0] = 0.1

y[0] = 0
 

 
9. Fitzhugh-Nagumo oscillator.  Parameters for the Fitzhugh-Nagumo relaxation oscillator 
(S14, S15) were taken from the Vibe website (S16).  The coupling parameter φ was varied to 
change the frequency of the oscillations. 
 
ODEs: 
 

! 

dv

dt
= v(v "#)(1" v) " w +$

dw

dt
= %(v " &w)

 

 
Initial conditions: 
 

! 

v[0] = 0

w[0] = 0
 

 
Parameters: 
 

! 

" = 0.2

# = 0.112

$ = 2.5

 

 
10.  Cyanobacteria circadian oscillator.  The cyanobacterial circadian oscillator has been 
reconstituted in vitro using three purified proteins, KaiA, KaiB, and KaiC (S17).  One of these 
proteins, KaiC, undergoes a sequence of phosphorylation and dephosphorylation reactions that 
produces the circadian cycles.  Rust and co-workers have modeled these oscillations as a set of 
three experimentally-constrained ODEs that describe the interconversion of KaiC between a 
threonine-phosphorylated form (T), a doubly-phosphorylated form (D), and a serine-
phosphorylated form (S) (S18).  The remaining unphosphorylated form of KaiC can be calculated 
from these three forms and a conservation equation. 
 
ODEs: 
 

! 

dT

dt
= k

UT
(S)U + k

DT
(S)D" k

TU
(S)T " k

TD
(S)T  

! 

dD

dt
= k

TD
(S)T + k

SD
(S)S " k

DT
(S)D" k

DS
(S)D 
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! 

dS

dt
= k

US
(S)U + k

DS
(S)D" k

SU
(S)S " k

SD
(S)S  

 
where 
 

! 

k
XY
(S) " k

XY

0 +
k
XY

A
A(S)

K
1/ 2

+ A(S)

A(S) "max 0, [KaiA]# 2S{ }

 

 
Initial conditions:  
 

! 

T[0] = 0.68

D[0] =1.36

S[0] = 0.34

 

 
Parameters:  
 

! 

[KaiA] =1.3

[KaiC]
total

=U + T + D+ S = 3.4

K
1/ 2

= 0.43

k
UT

0
= k

TD

0
= k

SD

0
= k

US

0
= k

DT

0
= 0

k
TU

0
= 0.21

k
DS

0
= 0.31

k
SU

0
= 0.11

k
UT

A
= 0.479

k
TD

A
= 0.213

k
SD

A
= 0.506

k
US

A
= 0.053

k
TU

A
= 0.0798

k
DT

A
= 0.173

k
DS

A
= "

k
SU

A
= #0.133
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Supplementary Figure S1: 
 

 
 
Fig. S1.  Amplitude vs. frequency curves for randomly-parameterized oscillator models.  Each 
curve corresponds to a different random parameter set.  The red curves are from the negative-
feedback-only model (Fig. 4A).  The same curves are also included in Fig. 4F.  The yellow and 
cyan curves are from the negative-plus-negative feedback model (Fig. 4C).  The yellow curves 
correspond to weaker feedback (k7=0-100) and the cyan curves to stronger feedback (k7=500-
600). 
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Table S1:  Ranges for the random parameter sets 
 
Parameter Units Range Distribution 
k1 dimensionless 0 – 10 Uniform 
k2 dimensionless 0 – 1000 Uniform 
k3 dimensionless 0 – 10 Uniform 
k4 dimensionless 0 – 1000 Uniform 
k5 dimensionless 1 Fixed 
k6 dimensionless 0 – 1000 Uniform 

Neg 0 Fixed 
Pos+neg, Neg+neg 0 – 100 Uniform 

k7 dimensionless 

Stronger pos+neg, 
Stronger neg+neg 

500 – 600 Uniform 

n1 dimensionless 1 – 4 Uniform 
n2 dimensionless 1 – 4 Uniform 
n3 dimensionless 1 – 4 Uniform 
n4 dimensionless 1 – 4 Uniform 
K1 concentration 0 – 4 Uniform 
K2 concentration 0 – 4 Uniform 
K3 concentration 0 – 4 Uniform 
K4 concentration 0 – 4 Uniform 
The parameters refer to the ordinary differential equation models shown in Figure 4A-C.  The 
seven rate constants (k1 through k7) were non-dimensionalized by dividing by k5.  
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