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Modeling gene regulatory networks (GRNs) is an important topic in systems biology. Although there has been much
work focusing on various specific systems, the generic behavior of GRNs with continuous variables is still elusive. In
particular, it is not clear typically how attractors partition among the three types of orbits: steady state, periodic and
chaotic, and how the dynamical properties change with network’s topological characteristics. In this work, we first
investigated these questions in random GRNs with different network sizes, connectivity, fraction of inhibitory links
and transcription regulation rules. Then we searched for the core motifs that govern the dynamic behavior of large
GRNs. We show that the stability of a random GRN is typically governed by a few embedding motifs of small sizes,
and therefore can in general be understood in the context of these short motifs. Our results provide insights for the
study and design of genetic networks.
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INTRODUCTION

Gene regulatory network as a dynamical system has long
attracted much attention [1–3]. As a product of evolution,
a biological network possesses certain “evolved” proper-
ties and features that are specific to the function it is
performing [4–6]. Nonetheless, it would be revealing to
study and understand the “generic” or typical properties
of the networks of this kind, and generate a “null” model
that can be compared and contrasted with various specific
natural networks. Kauffman and others have studied
random Boolean networks and a key finding is that these
networks exhibit an order to chaos transition as the
network connectivity is increased [7,8]. Thus, for a
typical random Boolean network of connectivity larger
than two, the typical behavior of the network dynamics is
chaotic. This result seems at odds with the observation
that most, if not all, natural gene regulatory networks have
highly ordered dynamics [9]. Less attention has been paid

to generic properties of GRNs modeled by continuous
variables, which represent an important class of modeling.
Glass and colleagues studied a piecewise linear GRN
model with a hybrid rule: continuous time but Boolean-
like regulations [10]. They found that the probability of
observing different types of attractors changes with the
network size and connectivity: the probability of reaching
periodic or chaotic attractors first increases with the
network size and then decrease. In this work, we model
GRNs by ordinary differential equations (ODEs) and with
biological-like regulation rules. We first systematically
explored their dynamical properties with different net-
work size, connectivity, regulation rules and fraction of
inhibitory links. We further investigated the general
mechanism that determines the network stability. We
found that generally the dynamic behavior of a GRN is
governed by short motifs, so that the probability for a
GRN to have steady state or non-stationary behavior can
be predicted by analyzing these short motifs, even for
large GRNs.
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RESULTS

The model

In characterizing the network topology, N stands for the
number of nodes (genes), K stands for connectivity, and ε
is the fraction of inhibitory regulations. For three-node
networks (N = 3), we enumerated all possible topologies.
For larger networks, regulations between pairs of genes

were randomly assigned to present with the probability
K

N
and to be either inhibition or activation with probability ε
and 1 – ε, respectively. Once assigned, the regulation links
are fixed. Note that a gene can simultaneously activate
some of its targets and inhibit the others, and that a gene
can be regulated by multiple genes. The time derivative of
the k-th gene product is generally written as:

dgk
dt

=
1

τk
ðGkðga1 , ga2 ,:::, gi1 , gi2 ,:::Þ – gkÞ (1)

The generation rate of the gene product, Gk, is a
function of all the activators ðga1 , ga2 ,:::Þ and the
inhibitors ðgi1 , gi2 ,:::Þ that regulate the k-th gene. We
model gene regulations with Hill functions. Each

activating regulation is modeled as
gna

gna þ Kn
a
, and

inhibitory regulation as
Kn
i

gni þ Kn
i
. When a gene is

regulated by two or more genes, it is necessary to specify
the regulation as “logic”, i.e., the effect of the multiple
regulations [11,12] (Figure S1). The regulation logic
depends on the promoter structure and the interactions
between and among the transcription factors (TFs), the
promoter and the RNA polymerase. Three rules com-
monly used in modeling are presented here in the main
text: the AND rule (multiplying all the activating and the
inhibiting Hill functions), the Additive rule (summing up
these Hill functions) and the Strong Inhibition rule (first
summing up the activating Hill functions and then
multiply the sum with all inhibiting Hill functions)
[13,14]. Results on other rules are shown in Figure S3.

Small networks

In exploring the attractor properties of randomGRNs with
different topological characteristics, we first studied small
networks – all network topologies made of three nodes
[15,16]. Here, different transcription regulatory rules
yield similar results: mono-stable and bi-stable asympto-
tic states are the most probable outcomes, appearing with
probabilities around 70% and 25%, respectively (Supple-
mentary Table S1-3 and Fig.S2 ). Periodic limit cycles
and chaos are infrequent (less than 1%), which is
consistent with a recent work by Zhang et al. [17].

Multi-stability is uncommon. The highest number of
stable states is 23= 8 and the only core motif to have 8
fixed points is the topology with self-activation on all
nodes but no inter-gene regulations (Figure S2).

Large networks

Next, we extended our study to larger networks with
equal fraction of activation and inhibition. Previous
studies have shown that Boolean networks exhibit an
order to chaos transition when the connectivity exceeds a
threshold [8,18]. Using ODEs, we investigated the
dynamic properties of networks with 100 nodes and
increasing connectivity. As summarized in Figure 1, the
results depend largely on the transcription regulatory
rules. When the gene regulation logic is AND or Additive,
a slightly higher occurrence of limit cycles is observed for
K smaller than 5 (Figures 1A and B). Further increase of
connectivity results in most trajectories being at steady
state. This situation is comparable to the piecewise linear
model, where the basin size of the asymptotic periodic
and chaotic states increase and then decrease with the
connectivity [10]. However, if the rule is chosen to be
Strong Inhibition, the percentage of periodic or chaotic
trajectories increases drastically with the network con-
nectivity (Figure 1C). When the network is very densely
connected (K = 20), more than 30% of the trajectories are
periodic and around 40% are chaotic. This increased
instability is comparable to the Random Boolean Net-
works. Multi-stability is suggested to be essential for cell
fate decisions during development and differentiation
[19]. Interestingly, under Strong Inhibition rule, though
the total number of all types of attractors increases with
the network size, the number of steady states decreases
(Figure1D), implying that either biological systems with
multiple cell fates are carefully rewired to avoid random
behaviors, or possess multi-oscillator rather than multi-
steady as the fate attractor. These results suggest that the
stability of large GRNs depends on the rule of transcrip-
tion regulation, and may become more chaotic in certain
cases.

The role of inhibitory links in network stability

We now proceed to study the influence of inhibitory links
on network dynamics. We varied the fraction of inhibition
links in randomly generated GRNs from 0 to 1. In large
networks (N = 100, K = 5), the percentages of trajectories
entering periodic (Figure 2A) and chaotic (Figure 2B)
attractors increase under the AND rule and the Strong
Inhibition rule. In more densely connected networks with
N = 100 and K = 10, when all the interactions are
inhibitory, over 50% of the trajectories show asymptoti-
cally chaotic behavior (Figure S6). The phenomenon that
inhibition destabilizes network is mainly contributed by
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the increased number of the all-inhibition three-node and
five-node negative feedback loops (Figure 2C and D), as
will be discussed in detail later.

Core motifs

Next, in order to understand the mechanism that
determines the network stability, we identified the
“sources” of unstable behaviors in GRNs. For a network
entering periodic or chaotic attractors, we “freeze” links
one by one by assigning the regulating node its average
value. If this action turned the attractor into a stable one or
significantly perturbed the shape of the attractor (defined

by 10% change in period for limit cycle or 5% change in
amplitude for chaos), the link is marked as “essential”. We
then identified the core motifs constituted by these
essential links (see Figure S7 for an example). For a
large network (N = 100), the number of the core motifs is
small and their lengths are short; the majority of them are
negative feedback loops. We denote the negative feed-
back loops of lengths between 3 to 5 as “short motifs”
(See Figure S8 for topologies of all 7 short motifs). For
AND and Additive rules with K = 2, there is on average 1
feedback loop that is the core of the dynamics, compared
to more than 108 loops in total (Figure 3A). Over 80% of
the core motifs are short motifs. For Strong Inhibition rule

Figure 1. (A)–(C) The percentages of asymptotically steady state (green circle), periodic (blue triangle), and chaotic (red
star) trajectories with increasing network connectivity (K = 1–20), in 100-node GRNs. The regulation rule is shown above

the panel. (D) The number of three types of attractors (green star: steady state; blue triangle: limit cycle; red square:
chaotic attractor) with increasing network size under Strong Inhibition rule (K = 10). The results of each panel are averages
from 103 random GRNs with equal fractions of activating and inhibiting links. Each set of ODEs (corresponding to one
network topology) is simulated with 100 random initial conditions.
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with K = 5, there are on average 2 feedback loops that are
essential for the network’s dynamical behavior, compared
to more than 1033 loops in total (Figure 3B). 60% of the
core motifs are short motifs, and 81% of all networks have
at least one such short core motif. In order to test if the
presence of these motifs is sufficient to drive instability in
the whole network, we freeze all links in the network but
those that are part of the essential loops. In 85% of all
cases the attractors remain to be periodic or chaotic,
suggesting that these motifs are the most likely sources of
instability.
We argue that the reason for short motifs being the main

source of limit cycle is that faster oscillators override the
slower ones. In all cases where a negative feedback loop

is being identified as the core motif for the limit cycle,
there is a positive correlation between the period of the
limit cycle and the length of the loop (Figure 3C). Shorter
motifs in general have faster frequency. In freezing links
of a network entering a limit cycle, with 0.7% chance the
network enters another limit cycle with period changed
more than 10%. More than 70% of these cases have their
period increased, implying that a longer negative feed-
back loop is unlikely to drive the limit cycle unless the
shorter core motif is disrupted.
Negative feedback loops of lengths three to five

constitute the majority of core motifs (Figures 3A and
B). Given that all the links outside the core circuits can be
frozen without affecting much of the dynamics, we treat

Figure 2. The percentage of chaotic (A) and periodic (B) trajectories with increasing fraction of inhibitory interactions
under different regulation rules (green: AND; blue: Additive; red: Strong Inhibition). (C) The total number of negative
feedback loops and (D) their average occurrence as the core motifs, with increasing fraction of inhibitory interaction.

Numbers in brackets specify the length of and the number of inhibitions in the loop, respectively. (N = 100, K = 5, Strong
Inhibition rule).
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all outside regulations as a constant “environment” that
exerts a constant regulation on each node within the core
motif. This environment can be decomposed into two
parts: a multiplicator m and a summand s. For example, if
gene A is negatively regulated by gene B in the core
motif, then

d[A]
dt

=
1

τA
sþ m⋅

Kn
A

Kn
A þ [B]n

– [A]

� �
(2)

where s and m are constants, the values of which are
determined by other frozen non-core regulations (if exist)
to A.
As shown in Figure 3D, higher m and lower s lead to

higher probability of limit cycle for short motifs
(measured by the fraction of randomly sampled parameter
sets entering limit cycle attractors). In other words, the

less influence from the environment, the higher the
probability of limit cycle will be.

Source of instability

The connection between network stability and topological
characteristics can be understood through the total
occurrence of short negative feedback motifs in the
network, and their probability to oscillate due to the
environmental parameters m and s. For example, the fact
that inhibition destabilizes network (Figure 2A and B) is
mainly contributed by the increased number of the all-
inhibition three-node and five-node negative feedback
loops as the fraction of inhibitory links increases (Figures
2C and D). Another example is the different stability of
networks with the same N and K but different transcrip-

Figure 3. (A)–(B) The length distribution of all loops (upper panels) in a network compared to that of the coremotifs (lower
panels) for AND and Additive rules (A) and Strong Inhibition rule (B). (C) The relation between the limit cycle period and the
core loop length. (D) Relation between the environmental parameters m and s, and the probability of limit cycle for short

negative feedback loops (coded by color). Due to normalization, m + s<1.
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tion regulatory rules. Their total numbers of various
motifs are identical, but the environmental parameters for
the short motifs distribute in distinct region of the m–s
plane. In the case of AND rule, s is zero butm is in general
very small (Figure 4A); for the Additive rule,m and s tend
to distribute in the lower right region, making these motifs
less likely to become the source of limit cycle (Figure 4B).
With Strong Inhibition rule, m and s can reach the left
corner of the m–s plane where the probability of limit
cycle is the highest (Figure 4C). Finally, the relation
between network connectivity and stability can be
qualitatively predicted by the trade-off between the
number of short motifs and their ability to oscillate.
When the connectivity increases, the total number of short

motifs increases (Figure 4D). However, the probability
for each loop to oscillate drops due to increased
interference from the environment (Figure 4E). In the
case of Strong Inhibition rule, the increase in number for
short motifs transcends the decrease in their limit cycle
probability, resulting in a rising trend of limit cycle and
chaos for the whole network (Figure 4F). In the case of
AND or Additive rule, the probability of limit cycle drops
too fast to be compensated by the increase of motif
number, resulting in networks in high connectivity
dominated by steady state behavior (Figure 4F). The
percentage of non-stationary trajectories (limit cycle and
chaos) predicted by short motifs agrees well with the
simulation results (Figures 1A–C and Figure 4F).

Figure 4. The distribution ofm and s for all short motifs under different rules (A) AND; (B) Additive; (C) Strong Inhibition; (D)
The number of short motifs with increasing connectivity. (E) The probability of limit cycle for short motifs with increasing connectivity

obtained from the map of Figure 3D. Dash line specifies 1/Number of short motifs. (F) The percentage of non-steady state
trajectories with increasing connectivity predicted by multiplying results in (D) and (E), compared to that obtained by simulation. (N =
100)
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DISCUSSION

In summary, we investigated the properties of attractor
landscape for random gene regulatory networks. Studies
of generic network behaviors may provide insights on the
selection forces acting on real biological networks. Two
counteracting forces shape the biological network as we
see it: evolutionary pressure selects for specific topologies
that optimize the desired biological function, while
random drift pushes the network towards a more non-
organized structure. Our results on large GRNs suggest
that gene networks are typically stable under several
transcription regulatory rules and inhibitor fractions.
Thus, in the evolution of gene networks and during the
execution of the various network functions, nature does
not have to pay much attention to keeping the network
dynamics well behaved. On the other hand, chaos and
limit cycles do occur and their occurrence increases with
the fraction of inhibitory regulations. In the E. coli
transcriptional network, there are about twice as many
activators as inhibitors [20]. The reason might be related
to the overall stability of the network. Moreover, we have
shown that in large networks the increase of connectivity
may or may not lead to instability, depending on the
regulation logic. This would suggest that biological
networks may adjust the regulation logic to achieve
desirable dynamic properties.
Another interesting result of ours is that network

dynamics is typically governed by small core motifs. It is
known that in biological oscillators, such as the cell cycle
[21] and the circadian clock [22,23], although the limit
cycle can involve a large number of genes and proteins,
the drivers of the limit cycle usually consist of a small
number of genes and proteins [24,25]. We confirmed that
our results also hold for the piecewise linear models
[26,27] (Figure S10–12). It would be interesting to further
investigate the role of small core motifs in other types of
networks [25,28].

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with
this article at DOI 10.1007/s40484-014-0026-6.
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