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Abstract— In orthopedic surgery department, multiple surg-
eries are carried out in the same operating room every day.
Each surgery may have a random duration, differs from the
scheduled time, which results in room idle time and patient
waiting time. One of the major factors affecting the idle and
waiting times is the schedule of surgeries in the operating
room. To better sequence of surgeries to reduce idle time
and waiting time, an effective performance evaluation method
is needed. Although discrete event simulation can be used
to evaluate the performance of surgery schedules, it suffers
from long simulation time, which makes difficult in scheduling
optimization. In this paper, an analytical model to evaluate the
performance of operating room schedules in orthopedic surgery
department is introduced. Using such a model, the expected
idle time and waiting time for a given surgery schedule can be
calculated accurately. Such a work provides substantial easiness
for optimization of operating room schedules and investigation
of the impact of different schedules.

Keywords: Operating room, orthopedic surgery, idle time,
waiting time, scheduling, optimization.

I. INTRODUCTION

The operating room (OR), or operating theater, is the
hospitals largest cost center, but it also generates about 42
percent of a hospital’s revenue [1]. The hospital’s income and
performance are significantly affected by the OR. However,
managing the OR is difficult due to the complexity in
surgeries, resources and high cost. It also requires a wide
range of clinical and organizational skills to address the
needs of patients, families and support systems. For each
surgery, multiple tasks need to be accomplished to ensure
all preparations, anesthesia, operating and post anesthesia
care are satisfied. Significant amounts of attention has been
paid from the hospital’s governing body and from researchers
to organize surgical care with least cost, within which OR
scheduling is one of the central issues.

Substantial efforts have been devoted to operating room
scheduling to address the different phases and aspects (see,
for instance, reviews [2]-[5]). The focuses are mainly on
improving the theaters efficiency, turnover rate, patient out-
come, and surgical department capacity. For example, pa-
per [6] uses linear programming technique to optimize the
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allocation of OR time among a group of surgeons, which
can maximize revenue or minimize costs substantially. Paper
[7] presents a stochastic optimization model and practical
heuristics to compute OR schedules that hedge against the
uncertainties in surgery durations. Paper [8] uses discrete
event simulation to study reserved surgical capacity for emer-
gency department. Using the job shop scheduling method,
paper [9] proposes a scheduling approach for elective and
add-on surgeries by formulating it as a mixed integer linear
programming problem. Aiming at open scheduling strategy,
paper [10] constructs a mathematical model assign surgical
cases to operating rooms and proposes a column-generation-
based heuristic procedure to find a solution with the best
performance. By considering patient priority, paper [11]
presents a stochastic dynamic programming model to sched-
ule elective surgery with a limited capacity.

In spite of the efforts, the surgery scheduling problem
is still of interests. Efficient algorithms to achieve optimal
utilization of operating rooms and reduced waiting time
are needed. However, this depends on accurate evaluation
of schedule performance, such as room idle time, patient
waiting time, etc. Typically, either deterministic models or
discrete event simulations are used in performance evaluation
of OR schedules. This leads to either ignore the variability
and resulting idle and waiting times, or substantial com-
putation intensity which limits its application. An effective
method to evaluate the performance of OR schedules quickly
and accurately is necessary and important. Unfortunately, to
our best knowledge, an analytical model to achieve such
a function is still not available. The main contribution of
this paper is in developing such a method. Specifically, an
aggregation method is presented to approximate the room
idle time and patient waiting time for a given surgery
sequence, defined by mean and coefficient of variations. By
comparing with simulation models using the data collected
on the hospital floor at University of Wisconsin Hospital
and Clinics (UW Health), the effectiveness of the proposed
method is justified.

The remainder of this paper is structured as follows:
Section II introduces the system and formulates the problem.
The performance evaluation method is presented in Section
III and validated in Section IV. Finally, conclusions and
future work are provided in Section V.

II. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Due to the complexity of surgeries, when multiple surg-
eries are scheduled in one room, it is not uncommon to
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observe that one surgery finishes earlier than next surgery’s
appointment time. The theater and other resources remain
idle and unutilized until the appointment time when next
surgery starts. It is also common to see one surgery finish-
ing later than next surgery’s appointment time. Therefore,
patients and resources for later appointments have to wait.

To reduce room idle time and patient waiting time,
scheduling the sequence of surgeries plays a key role. To
study such an issue, we focus on daily surgery scheduling in
one operating room. Each surgery is modeled with a random
processing duration given by a probability density function
describing the surgery type. Then the goal is to develop a
method to evaluate room idle and patient waiting times for
a given surgery sequence.

A. Assumptions

The following assumptions address the orthopedic surgery
schedules:
1) There are N surgeries, S1, S2, . . ., SN , to be scheduled

in one orthopedic operating room per day.
2) All patients arrive in-time, i.e., the patients either arrive

on time or earlier. No patients will arrive later than the
scheduled surgery time.

3) All pre-surgery operations will be finished by the sched-
uled surgery starting time. In other words, a surgery will
not be delayed due to incomplete preparation.

4) The turnover time between surgeries is included in the
surgery duration.

5) The surgeries are scheduled based on the mean surgery
time (including the turnover time).

6) The duration of each surgery is described by a Gamma
distribution with parameters αi and βi, i = 1, . . . , N .

7) If a surgery finishes earlier than the scheduled time, the
next surgery will not start until the appointment time. The
gap between two surgeries is referred to as idle time.

8) If a surgery finished later than the scheduled time, the
next surgery will start immediately. The overtime of the
previous surgery contributes to the waiting time.

9) The first surgery always starts on time. No scheduled
surgery will be cancelled or postponed to other dates.

Remark 1: Different type of surgeries may be fitted by
different probabilistic distributions. To start with, Gamma
distribution is assumed to model all types of surgeries,
as it has two parameters, which provides the freedom to
select mean and variance. In Section IV, we justify that the
system performance is mainly dependent on the mean and
coefficient of variation, in other words, it does not depend
on distribution type, and using Gamma distribution does lead
to accurate estimation of waiting time and idle time.

B. Problem Formulation

To evaluate the performance of OR scheduling, patient
waiting time and room idle time are important measurements.
Introduce Twi as the patient waiting time for the i-th surgery,
i = 2, . . . , N , i.e., from the scheduled starting time of
surgery i to its actual starting time, in case of late finishing
of surgery i−1. Let Tei denote the room idle time of surgery

i, i = 1, . . . , N − 1, i.e., from the time surgery Si finishes
to the scheduled starting time of surgery Si+1, during which
the room is empty of patient. Then the total waiting time
and idle time are the summation of its corresponding time
of each surgery.

Tw =
N∑
i=2

Twi , (1)

Te =
N−1∑
i=1

Tei . (2)

Then the problem is formulated as follows: Under assump-
tions 1)-9), develop a method to evaluate the room idle time
Te and patient waiting time Tw.

Remark 2: In addition to idle time and waiting time,
the completion time of all surgeries and its variance, are also
of interests. Let Ci represent the average time to complete
surgeries 1 to i, i = 2, . . . , N , and Vi as its variance.
Evaluating Ci and Vi will also be pursued.

The solutions to the formulated problem are introduced
next.

III. PERFORMANCE EVALUATION METHOD

The goal of this paper is to develop a method to calcu-
late the surgery completion time, variance, and the patient
waiting time and room idle time when multiple surgeries are
scheduled in one operating room. Under assumption 6), the
duration of surgery Si, i = 1, . . . , N , has parameters αi and
βi following Gamma distribution,

g(x;αi, βi) =
βαi
i

Γ(αi)
xαi−1e−βix,

where Γ(s) is the gamma function,

Γ(s) =

∫ ∞

0

ts−1e−tdt.

In addition, the mean duration, τi, equals to αi

βi
, and the

variance, Vi, equals to αi

β2
i

.
To evaluate the system performance, we start with a two-

surgery scenario, and then extend to N surgeries.

A. Two Surgeries

First we consider the case that surgery S1 finishes before
the scheduled time (i.e., mean time τ1). Such a probability,
pe1 , can be calculated as

pe1 =

∫ τ1

0

g(x)dx =
γ(α1, α1)

Γ(α1)
, (3)

where γ(s, x) is the lower incomplete gamma function,

γ(s, x) =

∫ x

0

ts−1e−tdt.

Under this condition, since the second surgery S2 will not
start until the scheduled starting time, it is equivalent to view
that S1 still “completes at time τ1.” Therefore, in this early
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finishing case, the mean duration of finishing two surgeries
(S1 and S2), Ce2 , will be

Ce2 = τ1 + τ2 =
α1

β1
+

α2

β2
.

To evaluate the variance of duration of S1 and S2, note
that S1 is viewed as a constant without variance, and the
two surgeries are consecutive. Thus, the total variance, Ve2 ,
equals to the variance of the second surgery, i.e.,

Ve2 =
α2

β2
2

.

Using Mathematica, the average room idle time can be
derived as follows:

Te1 =

∫ τ1

0

(τ1 − x)f(x)dx

=
−α1ζ(α1, β1τ1) + ζ(1 + α1, β1τ1)

β1Γ(α1)
, (4)

where ζ(s, x) is the upper incomplete gamma function,

ζ(s, x) =

∫ ∞

x

ts−1e−tdt.

Remark 3: Note that the above integral and much of the
subsequent derivation are obtained using Mathematica.

Next we consider the scenario that surgery S1 goes over
the scheduled finishing time τ1. The probability of such an
event is

pw1 =

∫ ∞

τ1

g(x)dx =
ζ(α1, α1)

Γ(α1)
. (5)

Then the mean time of surgery S1 will be equal to∫ ∞

τ1

x(g(x)/pw1)dx =
ζ(1 + α1, α1)

β1ζ(α1, α1)
.

As S1 is over time, surgery S2 will start immediately after
S1. Then the mean completion time of both surgeries S1 and
S2 in late finishing case, Cw2 , will be

Cw2 =
ζ(1 + α1, α1)

β1ζ(α1, α1)
+

α2

β2
.

The variance of surgery S1 will be equal to(∫ ∞

τ1

x2(g(x)/pw1)dx

)
−
(
ζ(1 + α1, α1)

β1ζ(α1, α1)

)2

=
−ζ2(1 + α1, α1) + ζ(α1, α1)ζ(2 + α1, α1)

β2
1ζ

2(α1, α1)
.

The variance of both surgeries in this scenario, Vw2 , will be

Vw2 =
−ζ2(1 + α1, α1) + ζ(α1, α1)ζ(2 + α1, α1)

β2
1ζ

2(α1, α1)
+

α2

β2
2

.

The average patient waiting time can also be calculated:

Tw2 =

∫ ∞

τ1

(x− τ1)f(x)dx

=
−β1τ1ζ(α1, β1τ1) + ζ(1 + α1, β1τ1)

β1Γ(α1)
. (6)

By considering both scenarios, we obtain the mean surgery
completion time C2 and variance V2 for both surgeries.

C2 = Ce2pe1 + Cw2pw1

=
ζ(1 + α1, β1τ1)− β1τ1ζ(α1, β1τ1)

β1Γ(α1)

+
α1

β1
+

α2

β2
, (7)

V2 = Ve2pe1 + Vw2pw1

=
−ζ2(1 + α1, β1τ1) + ζ(α1, β1τ1)ζ(2 + α1, β1τ1)

β2
1Γ(α1)ζ(α1, β1τ1)

+
α2

β2
2

. (8)

B. Three Surgeries

When there are more than two surgeries, direct integral
to derive the idle time and waiting time is difficult, since
the number of different scenarios will increase substantially.
Therefore, an approximation method is pursued. To do this,
we aggregate the first two surgeries into one, and assume that
this aggregated surgery still follows a Gamma distribution.
In other words, Sa2 represents the aggregated surgery of both
surgeries S1 and S2. The mean and variance of surgery Sa2

are defined by C2 and V2 obtained in the Subsection III-A.
Then parameters αa2 and βa2 of surgery Sa2 can be obtained
(see formulas on next page).

Using Sa2 and S3, the completion time of three surgeries
C3, and the variance V3, can also be evaluated.

C3 =
ζ(1 + αa2 , βa2τs2)− βa2τs2ζ(αa2 , βa2τs2)

βa2Γ(αa2)

+τs2 +
α3

β3
, (11)

V3 =
α3

β2
3

+
ζ(2 + αa2

, βa2
τs2)

β2
a2
Γ(αa2)

− ζ2(1 + αa2 , βa2τs2)

β2
a2
Γ(αa2)ζ(αa2 , βa2τs2)

. (12)

where
τs2 = τ1 + τ2 =

α1

β1
+

α2

β2
. (13)

However, C3 cannot be used to evaluate idle time and wait-
ing time directly, since they depend on many combinations of
finishing time of S1 and S2. For instance, there will be both
idle and waiting times if S1 finishes before the scheduled
starting time of S2, but S2 ends after the scheduled starting
time. Thus, we need to compare the completion time with
the scheduled finishing time.

As we know, the scheduled finishing time of surgeries S1

and S2 will be τ1 + τ2, denoted as τs2 , i.e., the scheduled
finishing time of the aggregated surgery. Then, using formu-
las (6) and (4), by replacing τ1 with τs2 , α1 with αa2 , and
β1 with βa2 , the room idle time of surgery S2 and patient
waiting time for surgery S3 can be calculated. Thus, using
αa2 and βa2 obtained from (9) and (10), respectively, the
formulas for Te2 and Tw3 are provided (on next page).

Then the total waiting time and idle time can be obtained
by summing up the waiting time of surgeries S2 and S3, and
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αa2
=

C2
2

V2
=

ζ(α1, β1τ1)[β1(α2 + β2τ1)Γ(α1) + β2(−β1τ1ζ(α1, β1τ1) + ζ(1 + α1, β1τ1))]
2

Γ(α1)[α2β2
1Γ(α1)ζ(α1, β1τ1) + β2

2(−ζ2(1 + α1, β1τ1) + ζ(α1, β1τ1)ζ(2 + α1, β1τ1))]
, (9)

βa2 =
C2

V2
=

β1β2ζ(α1, β1τ1)[β1(α2 + β2τ1)Γ(α1) + β2(−β1τ1ζ(α1, β1τ1) + ζ(1 + α1, β1τ1))]

α2β2
1Γ(α1)ζ(α1, β1τ1) + β2

2 [−ζ2(1 + α1, β1τ1) + ζ(α1, β1τ1)ζ(2 + α1, β1τ1)]
. (10)

Te2 =

∫ τs2

0

(τs2 − x)f(x)dx =

∫ τs2

0

(τs2 − x)
β
αa2
a2

Γ(αa2)
xαa2−1e−βa2xdx

=
(−αa2 + βa2τs2)Γ(αa2)− βa2τs2ζ(αa2 , βa2τs2) + ζ(1 + αa2 , βa2τs2)

βa2
Γ(αa2

)
, (14)

Tw3 =

∫ ∞

τs2

(x− τs2)f(x)dx =

∫ ∞

τs2

(x− τs2)
β
αa2
a2

Γ(αa2)
xαa2−1e−βa2xdx

=
−βa2τs2ζ(αa2 , βa2τs2) + ζ(1 + αa2 , βa2τs2)

βa2Γ(αa2)
. (15)

idle time of surgeries S1 and S2, respectively. Thus,

Tw = Tw2 + Tw3 ,

Te = Te1 + Te2 .

The final expressions of Tw and Te are obtained (see next
page).

In order to provide formulas to evaluate the performance of
four surgeries, again by aggregating surgery Sa2 and surgery
S3 into one, and assuming Gamma distribution, we obtain
the parameters αa3 and βa3 for the aggregated surgery Sa3

(see next page).

C. N Surgeries
Using the similar approach, we can extend the study to

N surgeries. Specifically, the following iteration procedure
is proposed:

• Aggregate surgeries S1 and S2 into Sa2 . Calculate its
mean surgery time C2 and variance V2, idle time Te1

and waiting time Tw2 , and obtain parameters αa2 and
βa2 .

• Aggregate surgeries Sa2 and S3 into Sa3 . Using param-
eters αa2

and βa2
to calculate C3, V3, Te2 , and Tw3

.
Obtain new parameters αa3 and βa3 .

• Repeat this process until surgery N , i.e., aggregate
surgery Sai (using parameters αai and βai from pre-
vious step) and surgery Si+1 into a new aggregated
surgery Sai+1 , with parameters αai+1 and βai+1 , till
i = N − 1. Calculate Ci+1, Vi+1, Tei and Twi+1 .

• Calculate surgery completion time CN and variance VN ,
and the overall idle time Te and waiting time Tw.

An illustration of such a procedure for a four-surgery
schedule is shown in Figure 1. A formal expression of such
a procedure is shown in (20)-(26) (on next page).

Finally, from (1) and (2), the total waiting time and idle
time can be calculated.

IV. MODEL VALIDATION
To validate the model, extensive simulation experiments

have been carried out using a commercial software SIMUL8

S1
S2 S 3 S 4

S a 2 S 3

S 4S a 3

S a 4

Fig. 1. Illustration of aggregation procedure

[12]. In all simulations, each experiment simulates 60 days
with 1000 replications. The system parameters are randomly
selected from:

N ∈ {2, 3, 4, 5},
τi ∈ {40, 80, 120}, i = 1, . . . , 5,

cvi ∈ {0.2, 0.4, 0.6, 0.8}, i = 1, . . . , 5,

where cvi denotes the coefficient of variation (CV) of surgery
time for Si. In all experiments, the confidence intervals are
within 1.5% of the performance measure.

A. Accuracy of Aggregation Procedure

First, we validate the accuracy of aggregation procedure.
Assumption 6) assumes that all events are characterized by
Gamma distribution. The analytical formulas assume that the
aggregated event is also described by Gamma. To validate the
effectiveness of such an approximation, the results obtained
in Section III will be compared with simulation results where
all surgeries follow Gamma distributions, to verify that the
aggregation approximation has sufficient accuracy.

Let T sim
w , T sim

e , and Tmod
w and Tmod

e denote the average
waiting time and idle time obtained by simulation and
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Tw =
−β1τ1ζ(α1, β1τ1) + ζ(1 + α1, β1τ1)

β1Γ(α1)
+

−βa2τs2ζ(αa2 , βa2τs2) + ζ(1 + αa2 , βa2τs2)

βa2Γ(αa2)
, (16)

Te =
−α1ζ(α1, β1τ1) + ζ(1 + α1, β1τ1)

β1Γ(α1)
+

(−αa2 + βa2τs2)Γ(αa2)− βa2τs2ζ(αa2 , βa2τs2) + ζ(1 + αa2 , βa2τs2)

βa2Γ(αa2)
.

(17)

αa3 =
ζ(αa2 , βa2τs2)[βa2(α3 + β3τs2)Γ(αa2) + β3(−βa2τs2ζ(αa2 , βa2τs2) + ζ(1 + αa2 , βa2τs2))]

2

Γ(αa2)[α3β2
a2
Γ(αa2)ζ(αa2 , βa2τs2) + β2

3(−ζ2(1 + αa2 , βa2τs2) + ζ(αa2 , βa2τs2)ζ(2 + αa2 , βa2τs2))]
, (18)

βa3 =
βa2β3ζ(αa2 , βa2τs2)[βa2(α3 + β3τs2)Γ(αa2) + β3(−βa2τs2ζ(αa2 , βa2τs2) + ζ(1 + αa2 , βa2τs2))]

α3β2
a2
Γ(αa2)ζ(αa2 , βa2τs2) + β2

3 [−ζ2(1 + αa2 , βa2τs2) + ζ(αa2 , βa2τs2)ζ(2 + αa2 , βa2τs2)]
. (19)

Procedure 1:

Tei =
(−αai + βaiτsi)Γ(αai)− βaiτsiζ(αai , βaiτsi) + ζ(1 + αai , βaiτsi)

βaiΓ(αai)
, (20)

Twi+1 =
−βai

τsiζ(αai
, βai

τsi) + ζ(1 + αai
, βai

τsi)

βaiΓ(αai)
, (21)

Ci+1 = τsi +
αi+1

βi+1
+

ζ(1 + αai , βaiτsi)− βaiτsiζ(αai , βaiτsi)

βaiΓ(αai)
, (22)

Vi+1 =
−ζ2(1 + αai , βaiτsi) + ζ(αai , βaiτsi)ζ(2 + αai , βaiτsi)

β2
ai
Γ(αai)ζ(αai , βaiτsi)

+
αi+1

β2
i+1

, (23)

i = 1, 2, . . . , N − 1,

where

τsi =

i∑
j=1

τi =

i∑
j=1

αj

βj
, (24)

αai+1 =
ζ(αai , βaiτsi)[βai(αi+1 + βi+1τsi)Γ(αai) + βi+1(−βaiτsiζ(αai , βaiτsi) + ζ(1 + αai , βaiτsi))]

2

Γ(αai)[αi+1β2
ai
Γ(αai)ζ(αai , βaiτsi) + β2

i+1(−ζ2(1 + αai , βaiτsi) + ζ(αai , βaiτsi)ζ(2 + αai , βaiτsi))]
,(25)

βai+1
=

βai
βi+1ζ(αai

, βai
τsi)[βai

(αi+1 + βi+1τsi)Γ(αai
) + βi+1(−βai

τsiζ(αai
, βi+1τsi) + ζ(1 + αai

, βai
τsi))]

αi+1β2
ai
Γ(αai)ζ(αai , βaiτsi) + β2

i+1[−ζ2(1 + αai , βaiτsi) + ζ(αai , βaiτsi)ζ(2 + αai , βaiτsi)]
.

(26)

analytical model, respectively. Introduce

δw =
|T sim

w − Tmod
w |

T sim
w

· 100%,

δe =
|T sim

e − Tmod
e |

T sim
e

· 100%.

Based on about five dozen experiments, the differences
of waiting time estimation, δw, are all within 5%, while
the average accuracy is 1.32%. The differences of idle time
estimation, δe, are less than 7%, and the average accuracy is
1.94%. An illustration example is shown in Figure 2, where
four surgeries are scheduled. The mean duration of each
surgery is selected from 40, 80, and 120 minutes. The first
surgery has CV = 0.6, while the second surgery CV = 0.4.
Figure 2 illustrates δw and δe as a function of the CV of the
third surgery. As one can see, the differences are consistently
around 1-2% for waiting time, and varies around 2-4% for
idle time.

The above results suggest that the aggregation approach
introduced here has sufficient accuracy to estimate the idle

Fig. 2. A four-surgery example

time and waiting time of surgery schedules.

B. Accuracy of Analytical Model

Next, we validate the effectiveness of analytical model by
using the data collected on the orthopedic surgery operating
rooms at University of Wisconsin Hospital and Clinics (UW
Health). The data is collected from the events in 2012. Ten
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surgical types from more than 5200 events are included in
the study and summarized in Table I.

TABLE I
10 SURGICAL TYPES

Type Number Mean STD CV

Hand upper extremity 738 70.65 50.69 0.7175
Spine 531 171.2 92.51 0.5383
Joint 944 149.44 47.97 0.3210

Sports medicine 1202 107.76 59.47 0.5519
Foot & ankle 73 165.99 60.67 0.3655

General/plastics 257 138.14 107.23 0.7762
General/bariatric 946 123.35 57.03 0.4623
General/hernia 122 155.65 118.05 0.7584

Urology 218 106.85 74.14 0.6939
Spine neuro 238 186.45 122.24 0.6556

As one can see, the surgery time varies substantially with
surgical types, and the variation of surgical time in each type
also varies with CV between 0.32 to 0.78. For each surgery
type, the collected data will be fitted into a distribution using
the Stat Fit package in SIMUL8. The resulting distribution
types include: Gamma, Weibull, Log-normal, Triangular,
Beta, Pearson V, and Pearson VI, etc. In each experiment,
we randomly select number of surgeries, and randomly
select the surgical type from Table I. The fitted distribution
for the selected surgery type will be used in simulation
model. The mean and standard deviation are provided to the
analytical model. Then δw and δe are evaluated using the
same approach as in Subsection IV-A.

Based on about five dozens experiments we obtain that
the differences of waiting time estimation, δw, are all within
6%, while the average accuracy is 3.40%. The differences
of idle time estimation, δe, are within 9%, and the average
accuracy is 5.34%. Such results indicate that the developed
model has acceptable accuracy in estimating patient waiting
time and room idle time for a given surgery schedule. In
addition, since only Gama distribution is assumed in the
analytical model, while more than half dozen different distri-
bution types have been used in fitting the simulation model,
we hypothesize that the system performance is practically
independent of distribution type, but mainly depends on the
mean and CV. In other words, the analytical model is suitable
for a general distribution of surgery times. Similar properties
have been observed in healthcare clinics ([13], [14]), as well
as in manufacturing systems ([15]).

V. CONCLUSIONS

This paper introduce an analytical model to evaluate
the performance of operating room schedules in orthopedic
surgery. The room idle time and patient waiting time can be
calculated for two-surgery schedule. Using an aggregation
approach, every two surgeries can be represented by an
aggregated surgery. Through an iterative procedure, multiple
surgery schedules can be evaluated and the idle time and
waiting time can be estimated. Using the data collected on
the hospital floor in UW Health, numerical experiments have
shown that such a method results in acceptable accuracy and

can be effectively used for performance evaluation of surgery
schedules. Such a model provides the healthcare profession-
als a quantitative tool for optimization and improvement in
operating room scheduling.

In future work, we expect to extend the work in the
following directions:

• extend the study to other types of surgeries,
• develop methods for surgery scheduling optimization,
• investigate the fundamental properties and principles in

surgery scheduling, and finally,
• apply the model in daily scheduling activities on the

hospital floor. A preliminary version of Java software
suite to implement the algorithms has been developed
and will be deployed at UW Health.
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