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Abstract— In acute care, providers need to response quickly
to patients deterioration. However, a physician’s availability
can be limited if multiple patients are declining simultaneously.
To study the multi-patient rapid response process, a complex
network model with split, merge and parallel structures is
introduced, and iteration procedures are presented to evaluate
system performance. It is shown that such procedures are
convergent and lead to accurate performance evaluation.

Keywords: Rapid response, decision time, iterations, pa-
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I. INTRODUCTION

Rapid response teams (RRTs) have been introduced in
many hospitals to quickly evaluate, triage, and treat deterio-
rating patients [1], after the release of Institute of Medicine’s
report “To Err is Human” [2]. However, there is no strong
evidence that the implementation of RRTs has achieved the
goal of reducing the frequency and severity of negative out-
comes [3]. The rapid response process involves collaborative
and integrated operations of multiple care providers, such
as nurse, RRT, intern, resident, fellow, and attending, from
different departments (e.g., floor, ICU). A systematic study
from the point of view of a rapid response system (RRS) is
necessary [4]. Developing an analytical model to provide a
quantitative perspective of RRS is desirable.

Although rapid response has been addressed extensively in
clinical studies [5], [6], [7], the investigation using a systems
engineering approach is quite limited. In papers [8], [9],
an analytical framework has been proposed to study rapid
response system with a single patient. The decision time,
i.e., the time from deterioration detection by the nurse to
a clinical treatment decision being made by the physician,
and its variabilities have been derived. The response time
performance, i.e., the probability that the decision is made
within a given time interval, has been introduced and eval-
uated. In addition, improvement efforts by identifying the
most critical response process that impedes rapid decision
making, referred to as the bottleneck, have been carried
out. Bottleneck indicators based on the data collected on
the hospital floor have been introduced. In practice, the care
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providers typically take care of multiple patients, who may
deteriorate simultaneously. Thus, their availability is limited,
which may result in waiting time and delayed decisions.
How to analyze such scenarios to provide an estimate of the
overall decision time is still unknown. This paper intends to
contribute to this end.

The main contribution of this paper is in developing an
iterative method to evaluate the performance of multi-patient
rapid response process. By taking into account the waiting
time due to limited availability of providers through recursive
procedures, the mean decision time can be estimated.

The remainder of the paper is structured as follows:
Section II describes the care delivery process in multi-
patient rapid response system and formulates the problem.
Section III introduces a two-level resource iteration method
to estimate mean decision time. Section IV discusses the
accuracy of the method. Finally, conclusions are given in
Section V. Due to page limitation, all proofs are omitted
and can be found in [10].

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider the RRS operations under a multi-layer referring
mechanism shown in Figure 1. The nurse will initiate rapid
response after detection of a patient’s declining through vital
signs. He/she may call the RRT, the intern or the resident, or
call the RRT and another provider jointly (either intern, or
resident, or fellow, or attending). If the provider can make a
decision, appropriate treatment can be carried out. Otherwise,
higher level help will be requested (e.g., intern to resident,
resident to fellow, and fellow to attending). If the attending
is informed, he/she will make a final decision. The decisions
include one of the following: ICU, step down, telemetry,
or stay, where “ICU” implies admission to intensive care
unit, “step down” represents progressive care – a level lower
than ICU, “tele” (telemetry) refers to moving from acute care
to a monitored bed (where physiologic monitor presents) –
another level lower than step down, and “stay” stands for
continuing observation. (Note that the RRT can only make
a “stay” decision.)

Define a resource set of intern, RRT, resident, fellow
and attending, denoted as X1 = {int, rrt, res, f, a}, re-
spectively. The joint group by RRT and another provider
is denoted as set X2 = {rrt&int, rrt&res, rrt&f, rrt&a}.
In addition, let td be the decision time (from declining to
final decision making) and Td as its mean.

When multiple patients are declining, the provider can
only take care of one patient each time. Thus, other patients
may need to wait. The response time of each provider follows
a general distribution. The waiting time is a function of all
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Fig. 1. Multi-patient rapid response process

patients’ declining and responses from all providers, which
cannot be estimated directly due to the complexity of the
system. The problem in this paper is formulated as follows:
Developing a method to evaluate the mean decision time.

III. PERFORMANCE EVALUATION

When there is a single patient in the system, paper [8]
presents the formula to evaluate the mean decision time Td,

Td =
∑

i∈X1∪X2

piτi, (1)

where τi, i ∈ X1 ∪X2, is the average response time of each
provider in X1 or the two joint providers in X2, and pi is
the probability that such response i, i ∈ X1 ∪X2, has been
carried out. The calculation of pi is presented in [8].

The single patient case assumes that the providers are
always available. In the multiple patients case, a provider
may not be available if there are more than one patients are
declining, so that additional waiting is possible. To study
such scenarios, we first consider an example of two patients,
then extend to general cases.
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A. A Two-Patient Example

Since when multiple patients are declining simultaneously,
the limited resource may need to be shared (e.g., both
patients need help from the RRT). Due to system complexity,
a directly evaluation of decision time is all but impossible.
Therefore, an iterative approach is pursued. Since there are
two factors contributing to the waiting time: simultaneous
patients declining and requesting for the same provider, a
two-level iteration method is introduced. As shown in Figure
2, the Level-1 iteration investigates the possibility that the
same resource is requested by more than one declining
patients at the same time and quantifies the extra waiting
time due to this. Thus, the mean decision time (including the
extra waiting time) is obtained, denoted as Tin. Using this
result, as well as the time the patient is in normal condition
Tnormal, the Level-2 iteration evaluates the probability that
more than one patients are declining and the resulting waiting
time by considering this probability.

T
d Level-1

iteration

Level-2

iteration

Tnormal

Tinp
i τ i k Tfinal

Fig. 2. Illustration of two-level iteration process

Specifically, in Level-1 iteration, using the single patient
model, we obtain the mean decision time under complete
availability of providers, Td, and each provider’s probability
to be requested for help, pi, i ∈ X1 ∪X2. Consider patient
k, k = 1, 2, and resource r, r ∈ X1 ∪ X2. Let τ (j)k,r denote
the mean decision time which includes patient k’s waiting
time for resource r during the j-th iteration, j = 1, 2, . . ..
Introduce p

(j)
k,r to denote the probability that patient k is

occupying resource r when there is another request for the
same resource during the j-th iteration. At the beginning of
the iteration, let all τ

(0)
k,r equal to Td and p

(0)
k,r equal to 0.

For patient 1, the waiting will happen if he/she requests help
from intern while patient 2 is being attended by the intern.
This probability can be expressed as p

(0)
2,int. In addition, the

average time that the intern provides rapid response can be
expressed by pintτint + prrt&intτrrt&int. This is due to the
intern’s role in both single provider (int) and joint providers
(rrt&int) cases. Therefore, we update the mean decision
time by including patient 1’s waiting for intern, which is
τ
(1)
1,int, as follows:

τ
(1)
1,int = Td + p

(0)
2,int(pintτint + prrt&intτrrt&int).

Using this τ
(1)
1,int, we next update p

(1)
1,int, the probability that

patient 1 is occupying the intern when there is another
request for the resource. Again request for intern can happen
in two cases: the single provider and joint providers. For the
first case, pintτint/τ

(1)
1,int reflects the percentage of time the

intern is occupied. Multiplying it by pint, the probability
the intern is working with another patient, we obtain the
desired probability. Similarly, for the latter case, we obtain

p2rrt&intτrrt&int/τ
(1)
1,int. Therefore, we have,

p
(1)
1,int =

p2intτint + p2rrt&intτrrt&int

τ
(1)
1,int

.

Then, using p
(1)
1,int, the mean decision time contributed by

patient 2’s waiting for the intern, τ (1)2,int, and the probability
that patient 2 is occupying intern when the intern is requested
by another patient, p(1)2,int, are updated.

τ
(1)
2,int = Td + p

(1)
1,int(pintτint + prrt&intτrrt&int),

p
(1)
2,int =

p2intτint + p2rrt&intτrrt&int

τ
(1)
2,int

.

This finishes the update related to the intern.
Next, we consider another resource, the resident, with sim-

ilar updating process from patient 1 to patient 2. Specifically,
for patient 1:

τ
(1)
1,res = Td + p

(0)
2,res(presτres + prrt&resτrrt&res),

p
(1)
1,res =

p2resτres + p2rrt&resτrrt&res

τ
(1)
1,res

.

For patient 2:

τ
(1)
2,res = Td + p

(1)
1,res(presτres + prrt&resτrrt&res),

p
(1)
2,res =

p2resτres + p2rrt&resτrrt&res

τ
(1)
2,res

.

Note that the current update of p(1)1,res is used to obtain τ
(1)
2,res.

Then we continue to update all the rest of resources as
follows to complete the first iteration. For RRT: from patients
1 to 2, we have

τ
(1)
1,rrt = Td + p

(0)
2,rrt(prrtτrrt + prrt&intτrrt&int

+ prrt&resτrrt&res + prrt&fτrrt&f + prrt&aτrrt&a),

p
(1)
1,rrt = (p2rrtτrrt + p2rrt&intτ

2
rrt&int + p2rrt&resτrrt&res

+ p2rrt&fτrrt&f + p2rrt&aτrrt&a)/τ
(1)
1,rrt,

τ
(1)
2,rrt = Td + p

(1)
1,rrt(prrtτrrt + prrt&intτrrt&int

+ prrt&resτrrt&res + prrt&fτrrt&f + prrt&aτrrt&a),

p
(1)
2,rrt = (p2rrtτrrt + p2rrt&intτ

2
rrt&int + p2rrt&resτrrt&res

+ p2rrt&fτrrt&f + p2rrt&aτrrt&a)/τ
(1)
2,rrt,

For fellow, from patients 1 to 2, we have

τ
(1)
1,f = Td + p

(0)
2,f(pfτf + prrt&fτrrt&f ),

p
(1)
1,f =

p2fτf + p2rrt&fτrrt&f

τ
(1)
1,f

,

τ
(1)
2,f = Td + p

(1)
1,f(pfτf + prrt&fτrrt&f ),

p
(1)
2,f =

p2fτf + p2rrt&fτrrt&f

τ
(1)
2,f

.
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Finally, for attending, addressing patients 1 to 2, we have

τ
(1)
1,a = Td + p

(0)
2,a(paτa + prrt&aτrrt&a),

p
(1)
1,a =

p2aτa + p2rrt&aτrrt&a

τ
(1)
1,a

,

τ
(1)
2,a = Td + p

(1)
1,a(paτa + prrt&aτrrt&a),

p
(1)
2,a =

p2aτa + p2rrt&aτrrt&a

τ
(1)
2,a

.

After finishing the first iteration, the above updated vari-
ables are used for subsequent iterations and the process is
repeated until it converges. More specifically, the following
criteria is used for convergence check: Let δ = 10−5, if

|τ
(j+1)
i,r − τ

(j)
i,r | ≤ δ, |p

(j+1)
i,r − p

(j)
i,r | ≤ δ,

i = 1, 2, r ∈ X1,

then we claim the procedure is convergent, and we denote

lim
j→∞

τ
(j)
i,r = τi,r, lim

j→∞

p
(j)
i,r = pi,r, i = 1, 2.

Moreover, all τi,r, i = 1, 2, should be identical and all
pi,r, i = 1, 2, will be the same, since we do not distinguish
the patients. Therefore, upon convergence, we obtain the
mean decision time (including waiting time) Tr and provider
utilization probability Pr

τ1,r = τ2,r := Tr, p1,r = p2,r := Pr.

Then the output of Level-1 iteration, Tin, can be obtained,
which is the updated mean decision time by including the
extra waiting time for all resources.

Tin = Td +Σr,r∈X1
PrTr. (2)

Using the Tin from Level-1 iteration, we start the Level-2
iteration. Let g

(l)
k , k = 1, 2, l = 1, 2, . . ., denote the time

portion the patient is in declining status in iteration j, and
µ
(l)
k , k = 1, 2, l = 1, 2, . . ., characterize the newly updated

mean decision time in iteration j after considering the time
proportion that patient k is in declining status. To start the
iteration, assume all g(0)k equal to 0 and µ

(0)
k to Tin. In the

first iteration, for patient 1, the waiting will only occur if
patient 1 is declining, while patient 2 is also declining, which
can be expressed as g

(0)
1 g

(0)
2 . Therefore we first obtain the

updated µ
(1)
1 as follows.

µ
(1)
1 = Tin(1 + g

(0)
1 g

(0)
2 ).

In addition, the time portion patient 1 is in declining status
is updated as

g
(1)
1 =

µ
(1)
1

µ
(1)
1 + Tnormal

.

Applying the updated g
(1)
1 and moving on to patient 2 with

the same logic, we obtained the new µ
(1)
2 and g

(1)
2 below:

µ
(1)
2 = Tin(1 + g

(0)
2 g

(1)
1 ),

g
(1)
2 =

µ
(1)
2

µ
(1)
2 + Tnormal

.

This finishes the first iteration. Using the results of g
(1)
i

and µ
(1)
i , we continue this process by considering patients 1

and 2 again to update g
(l)
i and µ

(l)
i , and repeat the process

until the procedure converges. The convergence criteria is
met when the following conditions hold:

|µ
(j+1)
i − µ

(l)
i | ≤ δ, |g

(j+1)
i − g

(l)
i | ≤ δ, i = 1, 2,

again δ = 10−5. If the procedure converges, we obtain

lim
l→∞

µ
(l)
i = µi, lim

l→∞

g
(l)
i = gi, i = 1, 2.

Same as in Level-1 iteration, all µi, i = 1, 2, should be the
same. Therefore, let Tfinal denote the final mean decision
time, we have

µ1 = µ2 = Tfinal. (3)

The above iterations address all the issues related to
resource sharing, which contribute to the addition of extra
waiting time. It can be proved that in both Level-1 and Level-
2 iterations, the procedures are convergent.

B. Generalized Procedure

For the general case with n patients in the system, the
iteration procedure can be formally described as Procedure 1.
Due to the excessive length of the procedure, it is presented
in the Appendix. As explained in Subsection III-A, such
a procedure converges in the two-patient example. When
the system has more than two patients, Level-2 iteration
converges for any value of n.

Proposition 1: Level-2 iteration of Procedure 1 is con-
vergent. The following limits exist:

lim
j→∞

µ
(l)
i = µi, lim

j→∞

g
(l)
i = gi, i = 1, . . . , n. (4)

However, the convergence of Level-1 iteration can only be
proved for the n = 2 case.

Proposition 2: When n = 2, Level-1 iteration of Pro-
cedure 1 is convergent. The following limits exist:

lim
j→∞

τ
(j)
i,r = τi,r , lim

j→∞

p
(j)
i,r = pi,r, i = 1, 2, r ∈ X1.

(5)
To investigate the convergence in the general case, ex-

tensive numerical investigation using randomly generated
parameters has been carried out and the results show that
the procedure always converges with a unique solution. An
illustration of convergence of τi,res in Level-1 iteration is
shown in Figure 3. The convergence of other variables is
similar. In addition, Figure 4 illustrates the convergence of
gi in Level-2 iteration.

As one can see, in both cases, the procedure converges
within 3 iterations. In all the examples we tested, the
convergence is always guaranteed, within 3-5 iterations.

IV. ACCURACY AND APPLICABILITY

The accuracy of Procedure 1 has been examined by com-
paring with the simulation results for dozens examples. In
all experiments, the response time of each provider follows a
uniform distribution between 20 and 40 minutes. All routing
probabilities are uniformed selected from 0 to 1. The time
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distribution of patient in normal status is assumed to be
exponential. The simulation time and number of replications
are selected to ensure that the confidence intervals are within
1% of the mean decision time. Let T sim,i

final and T iter,i
final denote

the mean decision time obtained by simulation and by
iteration method for experiment i. Then the relative error
between T sim,i

final and T iter,i
final is defined as ǫ,

ǫi =
|T sim,i

final − T iter,i
final |

T sim,i
final

· 100%.

The mean of ǫi, denoted as ǭ, defines the average relative
error. It is shown that ǭ is less than 2%. The error may
come from the heuristic updates of the probabilities in the
iterations. Since the error is small, the iteration procedure
can provide an accurate estimation of decision time.

In the above studies, exponential distribution is assumed
for the time duration when a patient is in normal status.
In practice, such an assumption may not hold. Thus, in-
vestigating the impact of non-exponential distribution of a
patient’s normal time is of importance. To do this, gamma
and lognormal distributions are used due to the fact that
they both have two parameters and can place the CV with
freedom. Since in rapid response process, the more time
elapses, the more likely the patient will be at the risk of
deterioration, which lead to smaller coefficient of variation
(CV). Therefore, we focus on the cases where CV is less
than 1.

Specifically, five data points, CV = 0.25, 0.5, 0.75, as well
as CV = 0 and CV = 1 are considered. Lognormal distribu-
tion is assumed first. We hypothesize that the variability has
little effect on the mean decision time. A dozen instances are
created and the largest possible relative error is recorded. Let
Ti,j denote the mean decision time obtained from simulation
for experiment j for the i-th CV value, where i = 1, 2, 3, 4, 5
correspond to CV = 0, 0.25, 0.5, 0.75, 1, respectively. Then

δj defines the difference between the largest and smallest
decision time in experiment j.

δj =
maxi Ti,j −mini Ti,j

mini Ti,j

· 100%.

By calculating the average of δj , denoted as δ̄, the impact of
non-exponential normal time can be studied. It is shown that
δ̄ is less than 0.5%. Similar results are obtained by assuming
gamma distribution. Thus, the hypothesis is justified. The
proposed iterative method can provide an accurate estimate
of mean decision time in multi-patient scenario.

V. CONCLUSIONS

In this paper, a rapid response system with multiple pa-
tients is studied. A recursive method is introduced to estimate
the mean decision time for deteriorating patients. The method
is based on two-level iterations to calculate the additional
waiting time due to limited availability of care providers. It
is shown that the iterative procedures are convergent, and
the accuracy is high. Therefore, this approach can provide a
quantitative tool to for performance evaluation.

The future work can be directed to studying the sce-
nario with more complex routing possibilities, evaluating
the variability in decision time, and developing a continuous
improvement method through identification the most critical
constraints (i.e., bottlenecks) in the system.

APPENDIX: ITERATION PROCEDURE

Procedure 1: (1) Level-1 iteration
Step 1.1: Initialization: Calculate pi, i ∈ X = X1 ∪X2,

and Td from [8]. Let j = 0. Set τ (j)k,i and p
(j)
k,i equal to 0.

Step 1.2: Update τ
(j)
k,i and p

(j)
k,i: For patient 1,

τ
(j+1)
1,int = Td +Σn

i=2p
(j)
i,int(pintτint + prrt&intτrrt&int),

p
(j+1)
1,int = (p2intτint + p2rrt&intτrrt&int)

/

τ
(j+1)
1,int ,

τ
(j+1)
1,res = Td +Σn

i=2p
(j)
i,res(presτres + prrt&resτrrt&res),

p
(j+1)
1,res = (p2resτres + p2rrt&resτrrt&res)

/

τ
(j+1)
1,res ,

τ
(j+1)
1,rrt = Td +Σn

i=2p
(j)
i,rrt(prrtτrrt + prrt&intτrrt&int

+ prrt&resτrrt&res + prrt&fτrrt&f

+ prrt&aτrrt&a),

p
(j+1)
1,rrt = (p2rrtτrrt + p2rrt&intτ

2
rrt&int + p2rrt&resτrrt&res

+ p2rrt&fτrrt&f + p2rrt&aτrrt&a)
/

τ
(j+1)
1,rrt ,

τ
(j+1)
1,f = Td +Σn

i=2p
(j)
i,f (pfτf + prrt&fτrrt&f),

p
(j+1)
1,f = (p2fτf + p2rrt&fτrrt&f)

/

τ
(j+1)
1,f ,

τ
(j+1)
1,a = Td +Σn

i=2p
(j)
i,a(paτa + prrt&aτrrt&a),

p
(j+1)
1,a = (p2aτa + p2rrt&aτrrt&a)

/

τ
(j+1)
1,a .

For patient k = 2, . . . , n− 1,

τ
(j+1)
k,int = Td + (Σk−1

i=1 p
(j+1)
i,int +Σn

i=k+1p
(j)
i,int)

· (pintτint + prrt&intτrrt&int),

p
(j+1)
k,int = (p2intτint + p2rrt&intτrrt&int)

/

τ
(j+1)
k,int ,
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τ
(j+1)
k,res = Td + (Σk−1

i=1 p
(j+1)
i,res +Σn

i=k+1p
(j)
i,res)

· (presτres + prrt&resτrrt&res),

p
(j+1)
k,res = (p2resτres + p2rrt&resτrrt&res)

/

τ
(j+1)
k,res ,

τ
(j+1)
k,rrt = Td + (Σk−1

i=1 p
(j+1)
i,rrt +Σn

i=k+1p
(j)
i,rrt)

· (prrtτrrt + prrt&intτrrt&int + prrt&resτrrt&res

+ prrt&fτrrt&f + prrt&aτrrt&a),

p
(j+1)
k,rrt = (p2rrtτrrt + p2rrt&intτ

2
rrt&int + p2rrt&resτrrt&res

+ p2rrt&fτrrt&f + p2rrt&aτrrt&a)/τ
(j+1)
k,rrt ,

τ
(j+1)
k,f = Td + (Σk−1

i=1 p
(j+1)
i,f +Σn

i=k+1p
(j)
i,f )

· (pfτf + prrt&fτrrt&f),

p
(j+1)
k,f = (p2f τf + p2rrt&fτrrt&f )

/

τ
(j+1)
k,f ,

τ
(j+1)
k,a = Td + (Σk−1

i=1 p
(j+1)
i,a +Σn

i=k+1p
(j)
i,a)

· (paτa + prrt&aτrrt&a),

p
(j+1)
k,a = (p2aτa + p2rrt&aτrrt&a)

/

τ
(j+1)
k,a .

For patient k = n,

τ
(j+1)
k,int = Td +Σn−1

i=1 p
(j+1)
i,int (pintτint

+ prrt&intτrrt&int),

p
(j+1)
k,int =

p2intτint + p2rrt&intτrrt&int

τ
(j+1)
k,r

,

τ
(j+1)
k,res = Td +Σn−1

i=1 p
(j+1)
i,res (presτres

+ prrt&resτrrt&res),

p
(j+1)
k,res = (p2resτres + p2rrt&resτrrt&res)

/

τ
(j+1)
k,res ,

τ
(j+1)
k,rrt = Td +Σn−1

i=1 p
(j+1)
i,rrt (prrtτrrt

+ prrt&intτrrt&int + prrt&resτrrt&res

+ prrt&fτrrt&f + prrt&aτrrt&a),

p
(j+1)
k,r = (p2rrtτrrt + p2rrt&intτ

2
rrt&int

+ p2rrt&resτrrt&res + p2rrt&fτrrt&f

+ p2rrt&aτrrt&a)
/

τ
(j+1)
k,rrt ,

τ
(j+1)
k,f = Td +Σn−1

i=1 p
(j+1)
i,f (pf τf + prrt&fτrrt&f ),

p
(j+1)
k,f = (p2fτf + p2rrt&fτrrt&f )

/

τ
(j+1)
k,f ,

τ
(j+1)
k,a = Td +Σn−1

i=1 p
(j+1)
i,a (paτa + prrt&aτrrt&a),

p
(j+1)
k,a = (p2aτa + p2rrt&aτrrt&a)

/

τ
(j+1)
k,a .

Step 1.3: Iteration: Let j = j + 1. Go back to Step 1.2
until all the stopping criteria is met. For a given δ = 10−5,
we terminate the Level-1 iteration until:

|τ
(j+1)
i,r − τ

(j)
i,r | ≤ δ, |p

(j+1)
i,r − p

(j)
i,r | ≤ δ, i = 1, 2, . . . , n.

Step 1.4: Termination: When the above terminating con-
ditions are met, let

τi,r = Tr, pi,r = Pr, i = 1, . . . , n,

Tin = Td +Σr,r∈X1
PrTr.

(2) Level-2 iteration

Step 2.1: Initialization: Let l = 0. Set g(l)1 = 0 and µ
(l)
1 =

Tin.
Step 2.2: Update g

(l)
k and µ

(l)
k : For patient 1,

µ
(l+1)
1 = Tin(1 + g

(l)
1 Σn

i=2g
(l)
i ),

g
(l+1)
1 =

µ
(l+1)
1

µ
(l+1)
1 + Tnormal

.

For patient k = 2, . . . , n− 1,

µ
(l+1)
k = Tin(1 + g

(l)
k (Σk−1

i=1 g
(l+1)
i +Σn

i=k+1g
(l)
i )),

g
(l+1)
k =

µ
(l+1)
k

µ
(l+1)
k + Tnormal

.

For patient k = n,

µ
(l+1)
k = Tin(1 + g

(l)
k Σn−1

i=1 g
(l+1)
i ),

g
(l+1)
k =

µ
(l+1)
k

µ
(l+1)
k + Tnormal

.

Step 2.3: Iteration: Let l = l + 1. Go back to Step 2.2
until all the stopping criteria is met.

|µ
(l+1)
i − µ

(l)
i | ≤ δ, |g

(l+1)
i − g

(l)
i | ≤ δ, i = 1, 2, . . . , n.

Step 2.4: Termination: When the stopping condition is
met, we have

µ
(l+1)
i = µi, µi = Tfinal, i = 1, . . . , n.
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