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Abstract—Thoracic diseases are serious health problems that
plague a significant amount of people. Chest X-ray is currently
one of the most popular methods to diagnose thoracic diseases
and plays an important role in the healthcare workflow. With the
success of deep learning in computer vision, a growing number
of deep neural network architectures were applied to chest X-ray
image classification. However, most of the previous deep neural
network classifiers were based on deterministic architectures
which are usually noise-sensitive and are likely to overfit the
training data. In this paper, to make a deep architecture more
robust to noise and to reduce overfitting, we propose using deep
generative classifiers to automatically diagnose thorax diseases
from the chest X-ray images. Unlike the traditional deterministic
classifier, a deep generative classifier learns a distribution for each
input in a middle layer of the deep neural network. A sampling
layer then draws a random sample from the distribution and
input it to the following layer for classification. The classifier
is generative because the class label is generated from samples
of a related distribution. Through training the model with a
certain amount of randomness, the deep generative classifiers
are expected to be robust to noise and can reduce overfitting
and then achieve good performances. We implemented our deep
generative classifiers based on some well-known deterministic
neural network architectures and tested our models on the chest
X-ray14 dataset. The results demonstrated the superiority of deep
generative classifiers over the corresponding deep deterministic
classifiers.

Index Terms—chest X-ray, computer-aided diagnosis, deep
learning, generative model, classification.

I. INTRODUCTION

Thoracic diseases encompass a variety of serious illnesses

with high prevalence. Detecting the thoracic diseases early

and correctly can help clinicians to improve patient treatment

effectively. Due to its affordable price and quick turnaround,

Chest X-ray (CXR) is currently one of the most popular radio-

logical examinations for thoracic diseases diagnosis. Currently,

reading CXR and giving an accurate diagnosis rely on expert

knowledge and medical experience of radiologists. With the

This work was supported in part by NIH Grant 1R21LM012618.

increasing amount of CXR images, to handle the heavy and

tedious workload of reading the CXR images with subtle

texture changes, even the most experienced expert may be

prone to make mistakes.

Developing an automated system to understand medical

images and to diagnose diseases has attracted wide research

interests for decades [1]–[3]. However, traditional statistical

learning methods, such as Bayesian classifier [4], [5], SVM

[6]–[8] and KNN [9]–[11] etc., are not suitable in directly

handling the medical images in the high-dimensional pixel-

level features. They usually require onerous highly customized

feature engineering before classification, thus, they cannot

generalize well and is labor intensive. With the success of

deep learning in computer vision, it is natural to apply deep

learning models to assist in disease diagnosis based on medical

images. Actually, deep learning based systems benefited many

biomedical applications recently [12]–[15].

Deep neural networks usually require large-scale datasets

for training. Recently, Wang et al. [16] released the datasets

ChestX-ray8 and later ChestX-ray14 which is considered one

of the largest public chest X-ray dataset (details in Sec-

tion IV-A). There are 14 thoracic diseases in ChestX-ray14,

i.e., Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass,

Nodule, Pneumonia, Pneumothorax, Consolidation, Edema,

Emphysema, Fibrosis, Pleural Thickening, and Hernia. In this

paper, we focus on this dataset to train a deep generative

classifier to diagnose the 14 diseases.

In this paper, we propose using deep generative classifiers

to automatically diagnose thorax diseases from CXR images.

A Deep Generative Classifier (DGC) contains an encoder net-

work and a classifier network. The encoder network encodes

each input CXR image to a low-dimensional distribution of

latent features. The classifier network classifies a sample using

features drawn from the latent low-dimensional distribution

and outputs probabilities of class label assignment. Our main

idea is to use the random sampling connection between the
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encoder network and the classifier network rather than a

deterministic connection which is adopted in most previous

frameworks, e.g. AlexNet [17], ResNet [18], VGGNet [19]

and DenseNet [20]. Intuitively, by using the random sampling

connection, the model would be more robust to noise and

can reduce overfitting. Given a CXR image, our model will

output a list of probabilities corresponding to a list of thorax

diseases, and a low-dimensional distributional representation

of this image as a by-product which can be used for other

classification or clustering tasks.

II. RELATED WORK

A. Deep Learning for CXR Image Analysis

Since Wang et al. [16] released the datasets ChestX-ray14,

there has been an increasing amount of research on CXR

analysis using deep neural networks. Wang et al. [16] also

evaluated the performance of four classic deep learning archi-

tectures (i.e., AlexNet [17], VGGNet [19], GoogLeNet [21]

and ResNet [18]) to diagnose 14 thoracic diseases from CXR

images. To explore the correlation among the 14 diseases, Yao

et al. [22] used a Long-short Term Memory (LSTM) [23] to

repeatedly decode the feature vector from a DenseNet [20] and

produced one disease prediction at each step. Kumar et al. [24]

explored suitable loss functions to train a convolutional neural

network (CNN) from scratch and presented a boosted cascaded

CNN for multi-label CXR classification. Rajpurkar et al. [25]

achieved good multi-label classification results by fine-tuning a

pre-trained DenseNet121 [20]. Li et al. [26] used a pre-trained

ResNet to extract features and divided them into patches which

are passed through a fully convolutional network (FCN) [27]

to obtain a disease probability map.

Previous deep learning architectures all had a deterministic

mapping between encoded features and CXR classification. In

this paper, we propose using deep generative classifiers for

classifying thoracic disease with CXR images. By introducing

a generative process, the learned DGC model should be more

robust to noise and reduce the overfitting issue.

B. Variational Autoencoder

The deep generative classifiers have similar traits with Vari-

ational Auto-Encoder (VAE) [28]. In VAE, a high-dimensional

sample is encoded to a low-dimensional feature distribution, a

sample from this distribution is decoded to the original high-

dimensional sample. To generate new samples better, VAE

needs to constrain the low-dimensional distribution to a certain

known distribution. VAE was usually used to reduce the data

dimension or to generate new samples, but was rarely used for

supervised classification directly. In this paper, we leverage

VAE to design a generative classification model where the

class label was generated from the latent low-dimensional

distribution.

III. MODELS

Our purpose is to judge whether one or more thoracic

diseases are presented in a CXR image, it can be modeled

as a multiple binary classification problem. We integrate the

losses of the multiple objectives for multiple labels, and tackle

this problem using deep generative classifiers.

A. Architecture

A DGC receives a batch of CXR image as input and

computes a list of probabilities for each disease. In the frame-

work, each input image is encoded to a latent low-dimensional

distribution by the encoder network, the classifier network

classifies the samples based on features drawn from the latent

low-dimensional distribution to generate a probabilistic output.

Fig. 1 illustrates the detailed framework of DGC. Given a

CXR image input X , the computation flows through a series

of sub-modules, including the encoder, the transition layer, the

sampling layer, and the classifier. Next, we explain the sub-

modules in detail.

1) Encoders: As shown in Fig. 1, the encoder in our

network is leveraged from a part of a pre-trained model

on ImageNet [29], [30], e.g. AlexNet [17], VGGNet [19],

ResNet [18] and DenseNet [20]. For the pre-trained mod-

els, we discard the fully-connected layers and classification

layers, and keep the feature layers to extract feature maps

for CXR images. Through the encoder, an original image X
(224×224×3) is encoded to C feature maps with size S×S,

represented by En(X; Φe) where Φe is the set of trainable

parameters of the encoder.

2) Transition Layer: The transition layer is to transform

the output feature maps of the encoder to a flat feature vector

that has a uniform dimension for different images. Due to the

variety of the output feature maps of the encoder we adopt, we

use a convolution layer with a certain number (D) of filters to

get D feature maps, and then adopt batch normalization [31]

right after the convolution layer to ease the training process.

Finally, a max pooling layer [32] with kernel size equal to

the feature map size is applied to reduce each feature map to

1× 1×D. The 1× 1×D feature map is then squeezed to a

D-dimensional feature vector, represented by

μ = Trans(En(X; Φe); Φt) (1)

where Φt is the set of trainable parameters of the transition

layer.

3) Sampling Layer: Instead of using the output of the

transition layer directly as features, we treat it as the mean

of a latent distribution. We let this sampling layer samples

from this latent distribution to produce a feature vector. In our

design, the features of a CXR image adopt a latent distribution

whose parameters are computed from the upstream networks

or jointly learned with the network parameters by Stochastic

Gradient Descent (SGD) [33]. In our architecture, we treat the

latent distribution as Gaussian distributions where the mean is

computed from the upstream network, i.e., the output of the

transition layer, and the covariance matrix is diagonal with

the diagonal elements learned with the network parameters.

Thus, for a D-dimensional latent Gaussian distribution, the

sampling layer has a total of D parameters, with each of which

corresponds to the standard deviation of each dimension. The

output of sampling layer is a feature vector sampled from the
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Fig. 1: The framework of deep generative classifiers.

latent distribution. The sampling layer is crucial to make the

model generative rather than deterministic. The sampling layer

can be represented by

z ∼ N(μ, σ) (2)

where μ is the output of the transition layer and σ is the

trainable parameter of the sampling layer.

4) Classifier: Since we use a low-dimensional representa-

tion as the feature vector of an input CXR image, we need a

classifier to discriminate if a disease is presented. For the 14

thoracic diseases, there are 14 probabilist outputs considered

as a 14-dimensional vector. In our architecture, we use a

fully-connected layer with 14 score outputs that are then

transformed by a sigmoid function to probabilistic outputs.

The classifier is represented by

p = f(z; Φc) (3)

where z is the output of the sampling layer and Φc is the

parameters of the classifier.

B. Training Strategy

1) Loss Function: To train our network, we must define

a loss function for the multiple outputs corresponding to the

14 diseases. The true label of each image is considered a 14-

dimensional vector y = [y1, · · · , yi, · · · , yC ], yi ∈ {0, 1}, C =
14 where yi represents whether the corresponding disease is

presented, i.e., 1 for presence and 0 for absence. An all-

zero vector represents ”No Findings” in the 14 diseases. We

compute the cross entropy loss li for disease i.
For a mini-batch with n samples, the corresponding targets

are n C-dimensional (0,1)-vectors which can be considered as

a (0,1)-matrix with shape n×C which we call target matrix.

Since there usually are only a few pathologies present in a

CRX image, the target matrix should be a sparse matrix where

there are many more ‘0’s than ‘1’s. To balance the influence

of ‘0’s and ‘1’s on the loss, we weight the losses for different

classes. In the mini-batch, we design the weights as (4), where

|P | and |N | are, respectively, the number of ‘1’s and ‘0’s in

the target matrix of the mini-batch. Thus, we define the loss

function for a CRX image as (5)

wi =

{ |P |+|N |
|P | , yi = 1;

|P |+|N |
|N | , yi = 0

(4)

L(p, y) =
14∑
i=1

wili

= −|P |+ |N |
|P |

∑
yi=1

ln pi − |P |+ |N |
|N |

∑
yi=0

ln(1− pi)

(5)

2) Reparameterization Trick: Since the sampling operation

is not differentiable, we use the reparameterization trick [28].

In our architecture, the latent distribution is Gaussian (as-

sumed N(μ, σ2)). Due to random sampling, the derivative

of a sample z from this distribution with respect to μ and

σ cannot be directly obtained. To learn the parameters with

SGD, we construct a deterministic relation between z and μ, σ
by introducing an auxiliary variable ε, ε ∼ N(0, 1). Thus,

sampling from N(μ, σ2) is equal to sampling ε from N(0, 1)
and then computing the sample by

z = μ+ εσ, ε ∼ N(0, 1) (6)
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TABLE I: Number of images and patients in the ChestX-ray14

dataset

Entire Set Train-val Set2 Test Set
Diseases #imgs3 #pts4 #imgs #pts #imgs #pts

Atelectasis 11535 4974 8280 4182 3255 792
Cardiomegaly 2772 1565 1707 1228 1065 337
Consolidation 4667 2150 2852 1617 1815 533
Edema 2303 1073 1378 747 925 326
Effusion 13307 4273 8659 3502 4648 771
Emphysema 2516 1046 1423 762 1093 284
Fibrosis 1686 1260 1251 1003 435 257
Hernia 227 134 141 102 86 32
Infiltration 19870 8031 13782 7111 6088 920
Mass 5746 2550 4034 2115 1712 435
Nodule 6323 3390 4708 2855 1615 535
PT1 3385 2006 2242 1559 1143 447
Pneumonia 1353 955 876 697 477 258
Pneumothorax 5298 1484 2637 1080 2661 404
Normal 60412 16405 50500 14892 9912 1513

Summary 112120 30805 86524 28008 25596 2797

1PT — Pleural Thickening; 2Train-val set — Training-validation set;
3#imgs — the number of CXR images; 4#pts — the number of patients.

Combining (1), (2), (6), (3), we can compute the output of

the model by (7). Thus, through the reparameterization trick,

the network can be trained by SGD [33] or Adam [34].

p = f(Trans(En(X; Φe); Φt) + εσ; Φc) (7)

IV. EXPERIMENTS

A. ChestX-ray14 Dataset

We evaluate and validate the DGC model using the ChestX-

ray14 dataset1 [16]. The ChestX-ray14 dataset consists of

112,120 frontal-view chest X-ray images of 30,805 unique

patients. There are 14 thoracic disease labels included in

these images (i.e., Atelectasis, Cardiomegaly, Effusion, Infil-

tration, Mass, Nodule, Pneumonia, Pneumothorax, Consolida-

tion, Edema, Emphysema, Fibrosis, Pleural Thickening and

Hernia). The labeled ground truth is obtained through Nat-

ural Language Processing (NLP) on the patients’ diagnostic

reports, the labeling accuracy is estimated to be > 90% [16].

Out of the 112,120 CXR images, 51,708 contains one or more

pathologies. The remaining 60,412 images are considered

normal. In our experiments, we split the dataset into training-

validation set and test set on the patient level using the publicly

available data split list1. All studies from the same patient will

only appear in either training-validation set or testing set. The

detailed information about the number of images and patients

in training-validation set and test set is shown in Table I.

The training-validation set is further randomly split into a

training set and a validation set, 7/8 as the training set and 1/8

as the validation set. The training set is used to train the model

and the validation set is used to select a model according to

the performance.

1https://nihcc.app.box.com/v/ChestXray-NIHCC

B. Preprocessing

Since the ImageNet pre-trained models only accept 3-

channel images with size 224 × 224, while the images in

ChestX-ray14 dataset are 1024 × 1024 grayscale, we con-

vert the grayscale images to 3-channel RGB images, down-

scale the original resolution to 256 × 256 and then crop

the image to 224 × 224 at the center. We normalized the

images by mean ([0.485, 0.456, 0.406]) and standard devi-

ation ([0.229, 0.224, 0.225]) according to the images from

ImageNet. We do not apply any data augmentation techniques.

C. Experimental setting

Our experimental setting includes the following aspects. We

also made our source code publicly available at https://github.

com/mocherson/deep-generative-classifiers.

1) Encoder: In our experiments, we tried 6 pretrained

models as the encoder in our architecture, including AlexNet

[17], VGGNet16 [19], ResNet50 [18] and DenseNet121 [20],

DenseNet161 [20], DenseNet201 [20]. As described in Section

III-A1, we discarded the high-level fully-connected layers and

classification layers of the pretrained models and only used the

feature layers as the encoder. As shown in Fig. 1, different

encoders have different inner structure and have different

parameters.

2) Baselines: The specific part of our architecture is the

sampling layer which improves the model robustness to noise.

Thus, we remove the sampling layer in the architecture and

consider the remaining parts as the baselines, i.e., the output

of the transition layer is directly input to the classifier in

baselines.

3) Hyperparameters:

• Initialization: the encoder was initialized with a pre-

trained model. In the transition layer, the convolution

layer was initialized with kaiming uniform initialization

[35], the batch normalization layer was initialized with

weights drawn from the uniform distribution U(0, 1)
and bias as zero. To ensure the positivity of σ in the

sampling layer, we computed σ from σ2 = ev where

v was initialized with values drawn from the uniform

distribution U(0, 1). In the classifier, the parameters of

the fully-connected layer were initialized with kaiming

uniform initialization [35].

• Latent dimension: we set the latent dimension to 1024,

i.e., each image was encoded to 1024-dimensional feature

vector adopting Gaussian distribution.

• Batch size: the batch size was 16, i.e., the model updated

parameters per 16 images.

• Optimizer: we trained the model by Adam optimizer [34]

with parameters lr = 10−5, β = (0.9, 0.999), eps =
10−8, weight decay = 0

• Terminating condition: we terminated the training pro-

cedure when it repeated 10 epochs. In each epoch, we

tested the model on the validation set and save the model

with the best performance.
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TABLE II: comparison of AUC scores between DGCs and the corresponding baselines on ChestX-ray14 dataset. The better

results based on the same encoder are bolded. The best results among all the models are colored red.

Diseases AN G-AN RN50 G-RN50 DN201 G-DN201 DN121 G-DN121 DN161 G-DN161 VN16 G-VN16

Atelectasis 0.7327 0.7359 0.7407 0.7418 0.7426 0.7415 0.7391 0.7378 0.7433 0.7421 0.7488 0.7495
Cardiomegaly 0.8681 0.8699 0.8553 0.8623 0.8541 0.8606 0.8483 0.8517 0.8662 0.8653 0.8700 0.8687
Effusion 0.7874 0.7896 0.7984 0.7991 0.7987 0.7997 0.7982 0.7976 0.8026 0.8052 0.8075 0.8096
Infiltration 0.6725 0.6771 0.6798 0.6773 0.6756 0.6790 0.6775 0.6792 0.6751 0.6773 0.6894 0.6869
Mass 0.7340 0.7374 0.7480 0.7502 0.7567 0.7614 0.7495 0.7538 0.7628 0.7652 0.7756 0.7820
Nodule 0.6778 0.6795 0.6962 0.6934 0.7107 0.7118 0.7032 0.7029 0.7142 0.7188 0.7248 0.7255
Pneumonia 0.6632 0.6744 0.6877 0.6868 0.6861 0.6917 0.6878 0.6858 0.6939 0.7020 0.6943 0.6954
Pneumothorax 0.8149 0.8195 0.8364 0.8405 0.8371 0.8396 0.8356 0.8405 0.8437 0.8497 0.8441 0.8451
Consolidation 0.7088 0.7105 0.7112 0.7136 0.7129 0.7177 0.7124 0.7167 0.7174 0.7190 0.7259 0.7283
Edema 0.8280 0.8311 0.8273 0.8311 0.8294 0.8302 0.8287 0.8280 0.8355 0.8368 0.8363 0.8340
Emphysema 0.7991 0.8059 0.8659 0.8724 0.8704 0.8668 0.8579 0.8590 0.8793 0.8823 0.8707 0.8699
Fibrosis 0.7956 0.7977 0.7939 0.7885 0.7982 0.8036 0.7873 0.7905 0.7972 0.8103 0.7979 0.7978
PT∗ 0.7356 0.7373 0.7379 0.7424 0.7424 0.7432 0.7465 0.7457 0.7451 0.7510 0.7554 0.7581
Hernia 0.8485 0.8498 0.8879 0.8816 0.8974 0.9113 0.8951 0.8898 0.9097 0.9015 0.8837 0.8776

Average 0.7619 0.7654 0.7762 0.7772 0.7794 0.7827 0.7762 0.7771 0.7847 0.7876 0.7875 0.7877
∗PT — Pleural Thickening; AN — AlexNet; VN16 — VGGNet16; RN50 — ResNet50; DN121 — DenseNet121; DN161 — DenseNet161; DN201
— DenseNet201; G-AN — DGC-AlexNet; G-VN16 — DGC-VGGNet16; G-RN50 — DGC-ResNet50; G-DN121 — DGC-DenseNet121; G-DN161 —
DGC-DenseNet161; G-DN201 — DGC-DenseNet201.

4) Evaluation: Since our model outputs the probability for

each disease, it is natural to plot a Receiver Operating Charac-

teristic curve (ROC) for each disease. In our experiments, we

calculated the Area Under ROC (AUC) for each disease, and

evaluated the classification performance by the average AUC

of the 14 diseases.

D. Classification Results and Analysis

In each of the 10 epochs of training, we evaluated the model

on the validation set, and selected the model that achieved

the highest classification performance to test on the test set.

We repeated the training and classification procedure 5 times

and reported the average results. The classification results for

each model and the corresponding baselines are given in Table

II. From Table II, overall, DGCs have higher classification

performance than the corresponding baselines. The results,

together with the fact that the only difference between DGC

and its baselines is the sampling layer as described in Section

IV-C2, suggest that adding a sampling layer can improve the

classification performance of a deterministic classifier.

From Table II, as for the average AUC of the 14 diseases,

AlexNet encoder has the worst performance and VGGNet16

encoder have the best performance, DGC can improve the most

when the encoder is AlexNet (AUC from 0.7619 to 0.7654),

and improve the least when the encoder is VGG16 (AUC from

0.7875 to 0.7877). Additionally, DGC-AlexNet can consis-

tently outperform AlexNet for all the 14 diseases. For “Mass”,

“Pneumothorax” and “Consolidation”, the DGC classifiers can

consistently outperform the deterministic classifiers for all the

encoders.

Horizontal comparison shows that different classification

models achieve different classification performances even for

the same disease. In most cases, classifiers based on VG-

GNet16 can outperform other types of classifiers. Out of

the 14 diseases, 8 diseases achieve the best performance on

VGGNet16 encoder, 5 are based on DenseNet161 and only

1 (“Hernia”) achieves the best performance on DenseNet201

encoder. From Table II, we can also see that only 2 diseases

(“Cardiomegaly” and “Infiltration”) can achieve their best

classification results on deterministic classifier (VGGNet16),

all of the other diseases achieve their best performance with

DGC models.

Vertical comparison shows that the same classification

model can achieve different classification performance for the

14 diseases. The most easily identified disease is “Hernia”

(AUC=0.9113) and the least easily identified disease is “In-

filtration” (AUC=0.6894). From Table II, the diseases that

are difficult to identify include “Infiltration”, “Pneumonia”,

“Nodule”, “Consolidation” and “Atelectasis” (AUC<0.75); the

easily identified diseases include “Hernia”, “Emphysema” and

“Cardiomegaly” (AUC>0.85).

V. CONCLUSION

In this paper, we proposed using deep generative classifiers

to diagnose thoracic diseases with chest X-ray images. The

deep generative classifiers contained an encoder and a clas-

sifier. The encoder encoded the input CXR image to a low-

dimensional distribution, the classifier classified using features

drawn from this distribution. Different from the deterministic

classifiers, in the training process, generative classifiers intro-

duce Gaussian noise and learn the variance in the training

process. Through training the model with a certain amount of

noise, the learned model was expected to be more robust to

noise and to reduce overfitting. In this paper, we implemented

the DGC architecture by adding a sampling layer between

the encoder and the classifier. We used the reparameterization

trick to train the DGC model through SGD. Our experimental

results on ChestX-ray14 dataset demonstrated the effectiveness

of the DGC models.

The proposed DGC has similar traits with variational au-

toencoders (VAE). VAE is considered unsupervised, because it

is trained without labels, its target is to reconstruct the original

Authorized licensed use limited to: Peking University. Downloaded on March 10,2022 at 06:26:53 UTC from IEEE Xplore.  Restrictions apply. 



1214

input. However, if there is a label corresponding to an image

and the target is to predict the label for new images, we can

solve the supervised classification problem using an adapted

VAE and reconstructing the labels. This is the key idea of

DGC. The difference between DGC and a deep deterministic

classifier (e.g., AlexNet, VGGNet) is similar to the difference

between VAE and a general autoencoder [36].

In our architecture, we used a complex model to identify

the 14 diseases, and learned the model by a sparsity-weighted

cross entropy loss, while the weights for different diseases

are the same, i.e., we equally regarded all the 14 diseases

and learned a generic latent low-dimensional distribution for

different diseases. This may somewhat influence the classifi-

cation results of a certain disease. If only a certain disease

is considered, one should train a specific model based on the

loss corresponding to this disease. We will experiment with

this setting in the future work. In addition, we did not explore

the pathology localization problem using DGC, which will

also be a part of our future work.
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