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Abstract In orthopedic surgery department, multiple surgeries are carried out in the

same operating room (OR) every day. Each surgery may have a random duration,

which results in room idle time and patient waiting time. One of the major factors

affecting the idle and waiting times is the schedule of surgeries in the OR. To better

sequence multiple surgeries to reduce idle and waiting time, an effective perfor-

mance evaluation method is needed. Although discrete event simulation can be used

to evaluate the performance of surgery schedules, the long simulation time makes

scheduling optimization more computationally intensive. In this paper, an analytical

model to evaluate the performance of OR schedules in orthopedic surgery depart-

ment is introduced. First, closed formulas to evaluate the case of two surgeries are

developed and used as a building block in subsequent studies. Then, an iteration
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procedure is presented by aggregating every two surgeries into one using the two-

surgery formula, and continuing to approach the next one, until all surgeries are

aggregated into one. Using such a model, the expected idle time and waiting time

for a given surgery schedule can be calculated quickly and accurately. Such a work

provides an efficient performance evaluation tool that can be used for optimization

of OR schedules and investigation of the impacts of different schedules.

Keywords Operating room � Orthopedic surgery � Idle time � Waiting time �
Scheduling � Aggregation

1 Introduction

The operating room (OR), or operating theater, is the largest cost center in a

hospital, but it also generates about 42 % of a hospital’s revenue (Health Care

Financial Management Association 2003). A hospital’s income and performance are

significantly affected by the effectiveness of OR. However, managing the OR is

difficult due to the complexity in surgeries, the limited resources, and various needs

and expectations from patients, families, and support systems. For each surgery,

multiple departments are required to work together to ensure processes such as tool

preparation, anesthesia, operations, and post anesthesia being carried properly.

Therefore, significant amount of attentions have been paid from the hospital’s

governing body and from researchers to organize surgical care with least cost. OR

scheduling is one of the central issues.

Orthopedic surgery deals with conditions involving the musculoskeletal system.

The surgery is practiced to restore the function of bones, joints, tendons, ligaments,

nerves, or skin as a result of injury or disease. Compared to other surgeries in

general, many orthopedic surgeries, for example, total knee replacement, have

standardized treatment protocols. Thus, orthopedic surgeries typically have more

standardized processes with fewer complications and less variations. Based on a

study of 10 surgery types from 5269 events collected at University of Wisconsin

Hospital and Clinics (UW Health), it is found that the variability of orthopedic

surgery time is statistically significantly smaller than that of the non-orthopedic

ones. This enables the possibility of accurate prediction of average surgery

completion time.

As one knows, an optimal surgery schedule depends on accurate evaluation of the

schedule performance, such as room idle time, patient waiting time (or tardiness),

and average completion time. Typically, either deterministic models or discrete

event simulations are used in performance evaluation of OR schedules. However,

the variability and resulting idle and waiting times are ignored in deterministic

models, and simulations suffer from substantial computation intensity. Moreover, in

addition to mean time, variability also plays an important role. An effective method

to evaluate the mean and variability performance of OR schedules quickly and

accurately is necessary and important, and it also contributes significantly to helping

solve the OR schedule optimization problem. Unfortunately, to our best knowledge,

an analytical model addressing the idle and waiting times as well as surgery
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completion time and its variance is still not available. The main contribution of this

paper is in developing such a method. Specifically, an aggregation method is

presented to approximate the mean surgery completion time, the associated

variance, the patient waiting time, and the room idle time for a given surgery

sequence. To evaluate the effectiveness of the proposed method, a case study using

the data collected on the hospital floor at UW Health is carried out. A software suite

is developed to implement the algorithms and used in a pilot study at UW Health.

The remainder of this paper is structured as follows: The related literature is

reviewed in Sect. 2. Section 3 introduces the system and formulates the problem.

The performance evaluation method is presented in Sect. 4 and validated in Sect. 5.

In addition, Sect. 6 provides an illustration of the software implementing the results

obtained in this paper. Finally, conclusions and future work are summarized in Sect.

7. All proofs are provided in the ‘‘Appendix’’.

2 Literature review

Substantial efforts have been devoted to scheduling in healthcare delivery systems

(see, for instance, reviews by Cayirli et al. 2006; Wright et al. 2006; Gupta and Denton

2008; Cardoen et al. 2010; Erdogan and Denton 2010; Guerriero and Guido 2011;

May et al. 2011 and papers by Robinson and Chen 2003; Muthuraman and Lawley

2008; Chakraborty et al. 2010; Liu et al. 2010; Mancilla and Storer 2012; Zacharias

and Pinedo 2014). In particular, OR scheduling has been one of the central issues. The

focus is mainly on improving the theater’s efficiency, turnover rate, patient outcome,

and surgical department capacity. For example, to clarify the different concepts from

physicians, nursing researchers, administrators and management scientists, Blake and

Carter (1997) describe a conceptual framework for surgical process scheduling. It

shows that even if the operational aspects of advance and allocation scheduling are

well understood, resolving scheduling issues at strategic and administrative levels is

needed and the techniques to integrate OR scheduling with other hospital operations

are required. Cardoen et al. (2010) provide a review of OR capacity planning and

scheduling research and summarize the research trends and key areas to be addressed

in future work. Gupta and Denton (2008) introduce appointment scheduling of

selective surgeries and discuss the complicated factors, such as arrivals, services, and

patient and provider preferences. Erdogan and Denton (2010) present an overview of

the most important parts in surgery delivery system affecting surgery scheduling. A

taxonomy of the literature based on the type of operations research methods used is

provided and open challenges are discussed. Finally, a structured literature review is

given in Guerriero and Guido (2011) on how operations research techniques can be

applied to the surgical planning and scheduling processes, with a focus on

mathematical (optimization and simulation) models and solution approaches. In

addition, the literature of OR management decision making on daily surgeries is

reviewed in Dexter et al. (2004). It also discusses decisions to reduce OR over-

utilization and patient waiting time.

From the methodology point of view, mathematical programming is typically

used to study OR scheduling. In most of the studies, deterministic surgical time is
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assumed. For instance, Blake and Donald (2002) introduce a case study of using an

integer-programming model and a post-solution heuristic to allocate OR time to five

surgical divisions at Toronto’s Mount Sinai Hospital. Kuo et al. (2003) use linear

programming technique to optimize the allocation of OR time among a group of

surgeons to maximize revenue or minimize costs. Using the job shop scheduling

method, referred to as multi-mode blocking job shop, a scheduling approach is

proposed in Pham and Klinkert (2008) for elective and add-on surgeries by

formulating it as a mixed integer linear programming problem.

To accommodate the randomness or uncertainty in surgical operations, stochastic

optimization methods are often used. Denton et al. (2007) present a stochastic

optimization model and practical heuristics to determine OR schedules that hedge

against the uncertainties in surgery durations. Lamiri et al. (2008) describe a

stochastic model for OR planning with both elective and emergency surgeries. The

elective cases are assigned to different periods to minimize the sum of related costs

and overtime cost, and a stochastic programming model is proposed to combine

Monte Carlo simulation with mixed integer programming for optimization. Zhang

et al. (2014) introduce a multistage stochastic programming model to dynamically

assign a given set of surgeries to multiple identical operating rooms with planned

surgeon arrival times. By considering patient priority, Min and Yih (2010) present a

stochastic dynamic programming model to schedule elective surgery with a limited

capacity. However, such methods usually are suitable for small problems with

specific assumptions. Computation efforts increase substantially when the number

of surgeries is increasing.

To evaluate the performance of surgical schedules, discrete event simulations are

often utilized. Wullink et al. (2007) use discrete event simulation to study reserved

surgical capacity for emergency department. It is found that the room utilization and

overtime can be significantly improved if there is one dedicated operating room in

all elective operating rooms for emergencies. Zhang et al. (2009) develop a mixed

integer programming model to determine a weekly OR allocation template to

minimize inpatient’s cost measured by length of stay. The solution of the analytical

model is used as an input to a simulation model that captures the randomness of the

process and non-linearities. However, as one can expect, long simulation time is a

significant limitation in such an approach.

From the performance improvement point of view, different strategies for OR

scheduling have been investigated. Dexter and Traub (2002) study elective surgery

scheduling to adjust anesthesia and nursing staffing to maximize the efficiency of

OR usage with two patient-scheduling rules: earliest or latest start time. Guinet et al.

(2003) consider the operation theatre planning in two steps. First, patients are

assigned to operating rooms. Second, each room is scheduled individually. A similar

two-step approach for OR scheduling is introduced in Jebali et al. (2006). In

addition, Oostrum et al. (2008) present a cyclic operation room schedule that

includes a master surgical schedule, a mathematical program with stochastic

constraint and a column generation approach to maximize OR utilization and level

requirements for subsequent hospital beds. Aiming at open scheduling strategy, Fei

et al. (2009) provide a mathematical model to assign surgical cases to operating

rooms and also use a column-generation-based heuristic procedure to find a solution
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with the best performance. Again, when applying the models, the above mentioned

limitations still exist. Moreover, in all the studies, variance is not investigated.

In spite of the efforts, developing efficient algorithms to achieve optimal

utilization of operating rooms and to reduce patient waiting times is still needed.

Using such algorithms to replace simulations, the computation intensity in

optimization of OR schedules can be reduced. To achieve this, an accurate

estimation of the mean surgery completion time and its variance is necessary.

Therefore, this paper introduces an analytical method to efficiently evaluate patient

waiting time and room idle time for a given surgery schedule.

3 System description and problem formulation

Due to the complexity in surgeries, when multiple surgeries are scheduled in one

room, it is not uncommon to observe that one surgery finishes earlier than next

surgery’s appointment time. The theater and other resources remain idle and

unutilized until the next surgery starts as scheduled. It is also common to see one

surgery finishing later than next surgery’s scheduled time. Therefore, patients and

resources for later appointments have to wait. If additional time is needed at the end

of the day, then overtime occurs.

To reduce room idle time and patient waiting time (or tardiness), the surgery

sequence plays a key role. To study such an issue, we focus on daily surgery

scheduling in one operating room. Each surgery type is modeled with a random

duration described by a probability density function. Then the goal is to develop a

method to evaluate completion time, as well as room idle and patient waiting times

for a given surgery sequence efficiently.

3.1 Assumptions

The following assumptions address the orthopedic surgery schedules studied in this

paper:

1. There are N surgeries, S1; S2; . . .; SN , to be scheduled in one orthopedic

operating room per day.

2. All patients arrive in time. No patients will arrive later than the scheduled

arrival time, which is typically 90 min before the scheduled surgery time.

3. All pre-surgery operations will be finished by the scheduled surgery starting

time. In other words, a surgery will not be delayed due to incomplete

preparation.

4. The surgeries are scheduled based on the mean surgery time. The turnover time

between surgeries is included in the surgery duration.

5. There are K types of surgeries. The duration of surgery type j; j ¼ 1; . . .;K, is

described by a random variable with unimodal probability density function fjðtÞ.
The mean time and standard deviation of surgery type j are defined as sj and rj,

respectively.
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6. The first surgery always starts on time. Surgery cancellation and postponement

are not considered when scheduling is made.

7. If a surgery finishes earlier than the scheduled finishing time, the next surgery

will not begin until the scheduled starting time. The gap between two surgeries

is referred to as the room idle time.

8. If a surgery finishes later than the scheduled finishing time, the next surgery will

start immediately. The overtime of the previous surgery contributes to the

patient waiting time.

Remark 1 Among 5269 surgeries carried out in UW Health in 2012, only 328

patients, i.e., 6.2 %, arrived later than the scheduled arrival time. The average late

time is 13 � 1:9 min. Therefore, the assumption of in-time patient arrival is

reasonable.

Remark 2 The goal of this paper is to present a performance evaluation method

rather than an optimization algorithm of surgery schedules. In addition, developing

the optimal and robust schedules relies on efficient and accurate schedule

evaluation. Thus, the method introduced in this paper provides a foundation for

optimization of surgery schedules with possible cancellations and delay. In the case

study we carried out, cancellation or delay is not a severe concern when schedules

are made. Therefore, at current stage, cancellation or delay is not considered in

performance evaluation. In future work, these issues will be studied.

Different types of surgeries may be fitted by various probabilistic distributions.

To start with, we assume Gamma distribution for surgery time, as Gamma

distribution has been widely used to model the time length (Coit and Jin 2000), and

it has two parameters, aj and bj, which provide the freedom to fit mean and variance.

Specifically, they can be obtained by solving the equations:

sj ¼
aj

bj

; rj ¼
ffiffiffiffiffi

aj

b2
j

s

; j ¼ 1; . . .;N; ð1Þ

which leads to

aj ¼
s2

j

r2
j

; bj ¼
sj

r2
j

; j ¼ 1; . . .;N: ð2Þ

Remark 3 Clearly, the surgery durations may not exactly follow Gamma

distributions. In Sect. 5, based on the information extracted from 5269 surgeries

at UW Health in 2012, we justify that the system performance is mainly dependent

on the mean and coefficient of variation of the surgical time, rather than the

complete distribution. In other words, it does not depend on the distribution type but

primarily depend on the mean and coefficient of variation. Then using Gamma

distribution (characterized by mean and variance), accurate estimation of waiting

time and idle time can be obtained. Such properties also exist in other healthcare

and manufacturing applications.
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3.2 Problem formulation

To evaluate the performance of OR schedules, patient waiting time and room idle

time are important measurements. Introduce Twi
as the patient waiting time for the i-

th surgery, i ¼ 2; . . .;N, i.e., from the scheduled starting time of surgery i to its

actual starting time, in case of late finishing of surgery i � 1. Let Tei
denote the

room idle time of surgery i; i ¼ 1; . . .;N � 1, i.e., from the time surgery Si finishes

to the scheduled starting time of surgery Siþ1, during which the room is empty of

patient. Then the total waiting time and idle time are the summation of the

corresponding time of each surgery.

Tw ¼
X

N

i¼2

Twi
; Te ¼

X

N�1

i¼1

Tei
: ð3Þ

In addition to mean idle time and waiting time, the mean and the variance of the

completion time of all surgeries are also of interest. Let Ci represent the average

time to complete surgeries 1 to i; i ¼ 2; . . .;N, and Vi as its variance. Evaluation of

Ci and Vi will also be pursued.

Thus, the problem is formulated as follows: Under assumptions (1)–(8), develop

a method to evaluate the room idle time Te and patient waiting time Tw, as well as

surgery completion time Ci and its variance Vi. The solutions to the formulated

problem are introduced next.

4 Performance evaluation method

The goal of this paper is to develop a method to calculate the mean completion time,

variance, the patient waiting time and room idle time when multiple surgeries are

scheduled in one operating room. Under assumption 5), the duration of surgery

Si; i ¼ 1; . . .;N, has parameters ai and bi following Gamma distribution,

gðx; ai; biÞ ¼
bai

i

CðaiÞ
xai�1e�bix; ð4Þ

where ai and bi are defined in (2) and CðsÞ is the gamma function,

CðsÞ ¼
Z 1

0

ts�1e�tdt: ð5Þ

To evaluate the system performance, we start with a two-surgery scenario, and then

extend to N surgeries.

4.1 Two surgeries

First we consider the case that surgery S1 finishes before the scheduled time (i.e.,

mean time s1). Such a probability, pe1
, can be calculated as
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pe1
¼

Z s1

0

gðxÞdx ¼ cða1; a1Þ
Cða1Þ

; ð6Þ

where cðs; xÞ is the lower incomplete gamma function,

cðs; xÞ ¼
Z x

0

ts�1e�tdt: ð7Þ

In this case, room idle time will occur. Since the first surgery S1 finishes before its

scheduled time s1, and the second surgery S2 will start at the scheduled time, it is

equivalent to view that S1 still ‘‘completes at time s1’’. Therefore, the mean com-

pletion time of two surgeries (S1 and S2) equals the scheduled surgical time. In

addition, S1 can be viewed as a ‘‘constant’’ without variance, and the two surgeries

are ‘‘consecutive’’ so that the variance of two surgeries equals to the variance of the

second one. Therefore, the mean completion time of two surgeries and its variance

can be calculated as:

Lemma 1 Under assumptions (1)–(8) with N ¼ 2, if surgery S1 finishes before the

scheduled time s1, then the mean completion time C2jearly and the variance V2jearly

can be calculated as

C2jearly ¼
a1

b1

þ a2

b2

¼ s1 þ s2; ð8Þ

V2jearly ¼
a2

b2
2

¼ r2
2: ð9Þ

Next we consider the scenario that surgery S1 goes over the scheduled finishing

time s1. The probability of such an event is

pw1
¼

Z 1

s1

gðxÞdx ¼ fða1; a1Þ
Cða1Þ

; ð10Þ

where fðs; xÞ is the upper incomplete gamma function,

fðs; xÞ ¼
Z 1

x

ts�1e�tdt: ð11Þ

Under the condition that surgery S1 finishes after its scheduled time s1, the mean

time of surgery S1 will be equal to

Z 1

s1

xgðxjx[ s1Þdx ¼ fð1 þ a1; a1Þ
b1fða1; a1Þ

: ð12Þ

Remark 4 Note that the above integral and much of the subsequent derivation are

obtained using Mathematica.
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As surgery S2 will start immediately after S1, summing up the surgical time of S2

will give the mean completion time of both surgeries. Similarly, the variance of

delayed surgery S1 can be calculated as

Z 1

s1

x2gðxjx[ s1Þdx � f2ð1 þ a1; a1Þ
b2

1f
2ða1; a1Þ

¼ fða1; a1Þfð2 þ a1; a1Þ � f2ð1 þ a1; a1Þ
b2

1f
2ða1; a1Þ

:

ð13Þ

Then the variance of both surgeries will be equal to the sum of their individual ones.

Therefore, the mean completion time and the variance of both surgeries can be

calculated as:

Lemma 2 Under assumptions (1)–(8) with N ¼ 2, if surgery S1 finishes after the

scheduled time s1, then the mean completion time C2jlate and the variance V2jlate can

be calculated as

C2jlate ¼
f 1 þ s2

1

r2
1

;
s2

1

r2
1

� �

s1

r2
1

f
s2

1

r2
1

;
s2

1

r2
1

� � þ s2; ð14Þ

V2jlate ¼
�f2 1 þ s2

1

r2
1

;
s2

1

r2
1

� �

s2
1

r4
1

f2 s2
1

r2
1

;
s2

1

r2
1

� � þ
f 2 þ s2

1

r2
1

;
s2

1

r2
1

� �

s2
1

r4
1

f
s2

1

r2
1

;
s2

1

r2
1

� � þ r2
2: ð15Þ

By considering both scenarios, the mean surgery completion time C2 and

variance V2 for both surgeries can be evaluated. In addition, the room idle time Te1

(when S1 finishes early) and patient waiting time Tw2
(when S1 finishes late) are

important measures of the efficacy of surgical schedules. These measures can be

calculated as follows:

Proposition 1 Under assumptions (1)–(8) with N ¼ 2, the mean surgery

completion time C2 and the variance V2 as well as the average room idle time

Te1
and average patient waiting time Tw2

can be calculated as

C2 ¼ s1 þ s2 þ
f 1 þ s2

1

r2
1

;
s2

1

r2
1

� �

� s2
1

r2
1

f s2
1

r2
1

;
s2

1

r2
1

� �

s1

r2
1

C
s2

1

r2
1

� � ; ð16Þ

V2 ¼
�f2 1 þ s2

1

r2
1

;
s2

1

r2
1

� �

þ f s2
1

r2
1

;
s2

1

r2
1

� �

f 2 þ s2
1

r2
1

;
s2

1

r2
1

� �

s2
1

r4
1

C
s2

1

r2
1

� �

f
s2

1

r2
1

;
s2

1

r2
1

� � þ r2
2; ð17Þ
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Te1
¼

� s2
1

r2
1

f s2
1

r2
1

;
s2

1

r2
1

� �

þ f 1 þ s2
1

r2
1

;
s2

1

r2
1

� �

s1

r1
C

s2
1

r2
1

� � ; ð18Þ

Tw2
¼

� s2
1

r2
1

f s2
1

r2
1

;
s2

1

r2
1

� �

þ f 1 þ s2
1

r2
1

;
s2

1

r2
1

� �

s2
1

r4
1

C
s2

1

r2
1

� � : ð19Þ

Proof See the ‘‘Appendix’’. h

Clearly, C2 is monotonically increasing with respect to the mean time of the

second surgery s2 and V2 is monotonically increasing with respect to the standard

deviation of the second surgery r2. However, C2 is independent of r2 and V2 is

independent of s2. In other words, variance in the second surgery does not impact

the average completion time, and the mean time of the second surgery does not

affect the variance.

To study the monotonicity with respect to the mean time of the first surgery s1,

we increase s1 under different values of standard deviation r1. An illustration is

shown in Fig. 1, where s1 is increased from 30 to 300 by 1 for different r1 values

starting from 30 to 270 with increments 60.

As one can see, C2 is monotonically increasing with respect to s1 almost linearly.

In addition, larger r1 will lead to longer C2, i.e., the completion time is

monotonically increasing with respect to the variability of the first surgery. In other

words, reducing the variation of the first surgery could decrease the total completion

time. Thus, standardized processes could help reduce the variance of surgery time,

which reduces the total completion time of two consecutive surgeries.

Similarly, V2 is monotonically increasing with respect to r2 and s1. In addition, it

is also monotonically increasing with respect to r1. As shown in Fig. 2, when r1 is
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Fig. 1 Monotonicity of C2 with
respect to s1
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increased from 30 to 300 by 1 for different values of s1 starting from 30 to 270 with

increments 60, V2 is monotonically increasing, and the growth rate is also

increasing. Thus, larger s1 always results in larger V2.

4.2 Three surgeries

When there are more than two surgeries, direct integral to derive the idle time and

waiting time is difficult, since the number of possible scenarios will increase

substantially. Therefore, an approximation method is pursued. To do this, we

aggregate the first two surgeries into one, and assume that this aggregated surgery

still follows a Gamma distribution. In other words, Sa2
represents the aggregated

surgery of both surgeries S1 and S2. The mean time and its variance of surgery Sa2

are defined by C2 and V2 obtained in the Sect. 4.1. Then parameters aa2
and ba2

of

surgery Sa2
can be obtained.

Lemma 3 Under assumptions (1)–(8) with N ¼ 3, the aggregated parameters of

the first two surgeries can be evaluated as:

aa2
¼ fða1; a1Þ b1ða2 þ b2s1ÞCða1Þ þ b2½�a1fða1; a1Þ þ fð1 þ a1; a1Þ�ð Þ2

Cða1Þ a2b
2
1Cða1Þfða1; a1Þ þ b2

2½�f2ð1 þ a1; a1Þ þ fða1; a1Þfð2 þ a1; a1Þ�
� � ;

ð20Þ

ba2
¼ b1b2fða1; a1Þ b1ða2 þ b2s1ÞCða1Þ þ b2½�a1fða1; a1Þ þ fð1 þ a1; a1Þ�ð Þ

a2b
2
1Cða1Þfða1; a1Þ þ b2

2 �f2ð1 þ a1; a1Þ þ fða1; a1Þfð2 þ a1; a1Þ
� � :

ð21Þ

Proof See the ‘‘Appendix’’. h
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Fig. 2 Monotonicity of V2 with
respect to r1

208 Z. Zeng et al.

123



Using Sa2
(with parameters aa2

and ba2
) and S3, the mean completion time of

three surgeries C3, and the variance V3, can also be evaluated.

Proposition 2 Under assumptions (1)–(8) with N ¼ 3, the mean completion time

C3 and the variance V3 of the first two surgeries can be calculated as:

C3 ¼
fð1 þ aa2

;ba2
ss2

Þ � ba2
ss2

fðaa2
; ba2

ss2
Þ

ba2
Cðaa2

Þ þ ss2
þ s3; ð22Þ

V3 ¼ r2
3 þ

fð2 þ aa2
; ba2

ss2
Þ

b2
a2
Cðaa2

Þ
�

f2ð1 þ aa2
; ba2

ss2
Þ

b2
a2
Cðaa2

Þfðaa2
; ba2

ss2
Þ
: ð23Þ

where

ss2
¼ s1 þ s2: ð24Þ

Proof See the ‘‘Appendix’’. h

However, C3 cannot be used to evaluate idle time and waiting time directly, since

they depend on many combinations of finishing times of S1 and S2. For instance,

there will be both idle and waiting times if S1 finishes before its scheduled finishing

time, but S2 ends after its scheduled finishing time. Thus, we need to compare the

completion time with the scheduled finishing time.

To derive the idle time of the second surgery and waiting time for the third

surgery, we use the two-surgery formula by replacing S1 with Sa2
.

Lemma 4 Under assumptions (1)–(8) with N ¼ 3, the average idle time of surgery

S2 and average waiting time of surgery S3 can be calculated as

Te2
¼

ðba2
ss2

� aa2
ÞCðaa2

Þ � ba2
ss2

fðaa2
; ba2

ss2
Þ þ fð1 þ aa2

; ba2
ss2

Þ
ba2

Cðaa2
Þ ; ð25Þ

Tw3
¼

fð1 þ aa2
; ba2

ss2
Þ � ba2

ss2
fðaa2

; ba2
ss2

Þ
ba2

Cðaa2
Þ : ð26Þ

Proof See the ‘‘Appendix’’. h

Then the total waiting time and idle time can be obtained by summing up the

waiting time of surgeries S2 and S3, and by summing up the idle times of surgeries

S1 and S2, respectively (see 3). Therefore, the final expressions of Tw and Te are

obtained.

Corollary 1 Under assumptions (1)–(8) with N ¼ 3, the total average waiting and

idle times can be calculated as:
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Tw ¼
fð1 þ aa2

; ba2
ss2

Þ � ba2
ss2

fðaa2
; ba2

ss2
Þ

ba2
Cðaa2

Þ þ fð1 þ a1; b1s1Þ � b1s1fða1; b1s1Þ
b1Cða1Þ

;

ð27Þ

Te ¼
fð1 þ a1; b1s1Þ � a1fða1; b1s1Þ

b1Cða1Þ
þ
fð1 þ aa2

; ba2
ss2

Þ
ba2

Cðaa2
Þ

þ
ðba2

ss2
ÞCðaa2

� aa2
Þ � ba2

ss2
fðaa2

; ba2
ss2

Þ
ba2

Cðaa2
Þ :

ð28Þ

In order to provide formulas to evaluate the performance of four surgeries, again

by aggregating surgery Sa2
and surgery S3 into one, and assuming Gamma

distribution, we obtain the parameters aa3
and ba3

for the aggregated surgery Sa3
.

Corollary 2 Under assumptions (1)–(8) with N ¼ 3, the aggregated parameters

are:

aa3
¼ fðaa2

; ba2
ss2

Þ½ba2
ða3 þ b3ss2

ÞCðaa2
Þ þ b3ð�ba2

ss2
fðaa2

; ba2
ss2

Þ
�

þ fð1 þ aa2
; ba2

ss2
ÞÞ�2

�.

Cðaa2
Þ½a3b

2
a2
Cðaa2

Þfðaa2
; ba2

ss2
Þ

�

þ b2
3ð�f2ð1 þ aa2

; ba2
ss2

Þ þ fðaa2
; ba2

ss2
Þfð2 þ aa2

; ba2
ss2

ÞÞ�
�

;

ð29Þ

ba3
¼ ba2

b3fðaa2
; ba2

ss2
Þ½ba2

ða3 þ b3ss2
ÞCðaa2

Þ þ b3ð�ba2
ss2

fðaa2
; ba2

ss2
Þ

�

þ fð1 þ aa2
; ba2

ss2
ÞÞ�

�

.

a3b
2
a2
Cðaa2

Þfðaa2
; ba2

ss2
Þ

�

þ b2
3½�f2ð1 þ aa2

; ba2
ss2

Þ þ fðaa2
; ba2

ss2
Þfð2 þ aa2

; ba2
ss2

Þ�
�

:

ð30Þ

Similar to the 2-surgery case, the monotonicity holds in 3-surgery scenario as

well. As one can see, C3 is obtained through ss2
and s3, so that C3 is monotonically

increasing with respect to s3 and ss2
. But ss2

is calculated by aggregation of s1 and

s2. It can be proved that the monotonicity holds in the aggregation by the chain rule.

Then monotonicity of C3 with respect to si; i ¼ 1; 2; 3, can be justified.

Analogously, the monotonicity of C3 with respect to ri; i ¼ 1; 2; 3, still holds as

well. Using similar arguments, it can be shown that V3 is monotonically increasing

with respect to si and ri; i ¼ 1; 2; 3.

4.3 N surgeries

Using the similar approach, we can extend the study to N surgeries. Specifically, the

following iteration procedure is proposed:

• Step 1: Aggregate surgeries S1 and S2 into Sa2
. Calculate its mean surgery time

C2 and variance V2, idle time Te1
and waiting time Tw2

, and obtain parameters

aa2
and ba2

.
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• Step 2: Aggregate surgeries Sa2
and S3 into Sa3

. Using parameters aa2
and ba2

to

calculate C3;V3; Te2
, and Tw3

. Obtain new parameters aa3
and ba3

.

• Step 3: Repeat this process until surgery N, i.e., aggregate surgery Sai
(using

parameters aai
and bai

from previous step) and surgery Siþ1 into a new

aggregated surgery Saiþ1
, with new parameters aaiþ1

and baiþ1
, till i ¼ N � 1.

Calculate Ciþ1;Viþ1; Tei
and Twiþ1

.

• Step 4: Calculate surgery completion time CN and variance VN , and the total idle

time Te and total waiting time Tw.

An illustration of such a procedure for a four-surgery schedule is shown in Fig. 3.

A formal expression of such a procedure is shown in (31)–(37).

Procedure 1 Under assumptions (1)–(8),

Tei
¼

ð�aai
þ bai

ssi
ÞCðaai

Þ � bai
ssi
fðaai

; bai
ssi
Þ þ fð1 þ aai

; bai
ssi
Þ

bai
Cðaai

Þ ; ð31Þ

Twiþ1
¼

�bai
ssi
fðaai

; bai
ssi
Þ þ fð1 þ aai

; bai
ssi
Þ

bai
Cðaai

Þ ; ð32Þ

Ciþ1 ¼ ssi
þ aiþ1

biþ1

þ
fð1 þ aai

; bai
ssi
Þ � bai

ssi
fðaai

;bai
ssi
Þ

bai
Cðaai

Þ ; ð33Þ

Viþ1 ¼
�f2ð1 þ aai

; bai
ssi
Þ þ fðaai

; bai
ssi
Þfð2 þ aai

; bai
ssi
Þ

b2
ai
Cðaai

Þfðaai
; bai

ssi
Þ

þ aiþ1

b2
iþ1

;

i ¼ 1; 2; . . .;N � 1;

ð34Þ

where

S1 S2 S 3 S 4

S a 2 S 3

S 4S a 3

S a 4

Fig. 3 Illustration of aggregation procedure
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ssi
¼

X

i

j¼1

si ¼
X

i

j¼1

aj

bj

; ð35Þ

aaiþ1
¼ fðaai

; bai
ssi
Þ½bai

ðaiþ1 þ biþ1ssi
ÞCðaai

Þ þ biþ1ð�bai
ssi
fðaai

; bai
ssi
Þ

�

þ fð1 þ aai
; bai

ssi
ÞÞ�2

�.

Cðaai
Þ½aiþ1b

2
ai
Cðaai

Þfðaai
; bai

ssi
Þ

�

þ b2
iþ1ð�f2ð1 þ aai

; bai
ssi
Þ þ fðaai

; bai
ssi
Þfð2 þ aai

; bai
ssi
ÞÞ�

�

;

ð36Þ

baiþ1
¼ bai

biþ1fðaai
; bai

ssi
Þ½bai

ðaiþ1 þ biþ1ssi
ÞCðaai

Þ
�

þ biþ1ð�bai
ssi
fðaai

; biþ1ssi
Þ þ fð1 þ aai

; bai
ssi
ÞÞ�

�

.

aiþ1b
2
ai
Cðaai

Þfðaai
; bai

ssi
Þ þ b2

iþ1½�f2ð1 þ aai
; bai

ssi
Þ

�

þ fðaai
; bai

ssi
Þfð2 þ aai

; bai
ssi
Þ�
�

:

ð37Þ

Finally, using the similar arguments in 3-surgery case, the monotonicity of CN

and VN with respect to si and ri; i ¼ 1; . . .;N, can be justified.

5 Model validation

To validate the model, extensive simulation experiments have been carried out

using a commercial software SIMUL8 (Hauge and Paige 2002). In all simulations,

each experiment simulates schedules for 60 days with 1000 replications. The system

parameters are randomly selected from:

N 2f2; 3; 4; 5g;
si 2f40; 80; 120g; i ¼ 1; . . .;N;

cvi 2f0:2; 0:4; 0:6; 0:8g; i ¼ 1; . . .;N;

where cvi denotes the coefficient of variation (CV) of surgery time for Si. In all

experiments, the 95 % confidence intervals are within 1.5 % of the performance

measures.

5.1 Accuracy of aggregation procedure

To validate the accuracy of aggregation procedure, first we assume that all surgical

times are characterized by Gamma distributions. The analytical formulas approx-

imate the aggregated surgeries also by Gamma distributions. To validate the

effectiveness of such an approximation, the results obtained in Sect. 4 are compared

with simulation results where in each experiment all surgeries follow Gamma

distributions. If the differences are small, then it verifies that the aggregation

approximation has sufficient accuracy.
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Let Tsim
w ; Tsim

e , and Tmod
w and Tmod

e denote the average waiting time and idle time

obtained by simulation and analytical model, respectively. Introduce

dw ¼ jTsim
w � Tmod

w j
Tsim

w

� 100%;

de ¼
jTsim

e � Tmod
e j

Tsim
e

� 100%:

Based on five dozen experiments, the average dw is 1.32 %, with the maximal one

within 5 %. The average de is 1.94 %, while the maximum is less than 7 %. An

illustration example is shown in Fig. 4, where four surgeries are scheduled. The

mean duration of each surgery is selected from the set of {40, 80, 120} min. The

first surgery has cv1 ¼ 0:6, while the second surgery has cv2 ¼ 0:4. In Fig. 4, dw and

de are plotted as functions of cv3. As one can see, As one can see, the dws are

consistently around 1–2 %, and des vary around 2–4 %.

Similar accuracy is observed for completion time and its variance. These results

suggest that the aggregation approach introduced here has sufficient accuracy to

estimate the performance of surgery schedules.

5.2 Accuracy of analytical model

Next, we validate the effectiveness of analytical model by using the data collected

on the orthopedic surgery operating rooms at UW Health. This will also justify the

assumption that Gamma distribution can be used to approximate the surgical time.

The data is collected from the events in 2012. Ten surgical types from more than

5200 events are included in the study and summarized in Table 1.

As one can see, the surgery time varies substantially with surgical types, and the

variation of surgical time in each type also varies with CV between 0.32 and 0.78.
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Fig. 4 A four-surgery example
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For each surgery type, the collected data will be fitted into a distribution using the

Stat Fit package in SIMUL8. The resulting distribution types include: Gamma,

Weibull, Log-normal, Triangular, Beta, Pearson V, and Pearson VI. In each

experiment, we randomly select number of surgeries, and randomly select the

surgical type from Table 1. The fitted distribution for the selected surgery type will

be used in simulation model. The mean and standard deviation are provided to the

analytical model. Then dw and de are evaluated using the same approach as in Sect.

5.1.

Based on five dozens experiments, we observe that the average difference in

waiting time is 3.40 %, and all differences are within 6 %. The average difference

in idle time is 5.34 %, and all are within 9 %. Such results indicate that the

developed model has acceptable accuracy in estimating patient waiting time and

room idle time for a given surgery schedule. In addition, since only Gama

distribution is assumed in the analytical model, while more than half dozen different

distribution types have been used in fitting the simulation model, we hypothesize

that when the CV of surgery time is small (i.e., less than 1), the system performance

is practically independent of the distribution type, but mainly depends on the mean

and CV. In other words, the analytical model is suitable for a general distribution of

surgery times. Similar properties have been observed in healthcare clinics (Reynolds

et al. 2010; Wang et al. 2014; Zhong et al. 2016a, b), as well as in manufacturing

systems (Li and Meerkov 2009).

To further investigate the accuracy with respect to number of surgeries and CVs

of surgeries, we carry out extensive simulation experiments, each with 1000

replications for 60 days. We observe that the error will accumulate as the number of

surgeries increases. However, such an increase in error is relatively slow. When the

number of surgeries is increased from 2 to 5, the errors in waiting time and idle time

are increased from 2.1 to 2.6 and 2 to 3 %, respectively. For the impact of CVs,

similar experiments are carried out, and we do not find significant differences. The

errors in waiting time and idle time are always between 1.5 to 2.7, and 1 to 2 %,

respectively, for CVs from 0.3 to 0.6.

In summary, the presented method provides an effective tool to evaluate the

performance of OR schedules in orthopedic surgery. As the calculation can be

Table 1 10 surgical types
Type Number Mean STD CV

Hand upper extremity 738 70.65 50.69 0.7175

Spine 531 171.2 92.51 0.5383

Joint 944 149.44 47.97 0.3210

Sports medicine 1202 107.76 59.47 0.5519

Foot and ankle 73 165.99 60.67 0.3655

General/plastics 257 138.14 107.23 0.7762

General/bariatric 946 123.35 57.03 0.4623

General/hernia 122 155.65 118.05 0.7584

Urology 218 106.85 74.14 0.6939

Spine neuro 238 186.45 122.24 0.6556
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carried out in a fraction of a second, it provides an effective alternative of

simulations and can help reduce the computation intensity substantially in OR

scheduling optimization.

6 Software illustration

Using the above results, a Java-based computer program has been developed. The

software enables the user to create any surgery types, input their mean and

coefficients of variation based on historical data. Then the user can select the

surgeries to be scheduled, and submit for evaluation.

For example, as shown in Fig. 5, the user selects six surgeries, HAND_UP-
PER_IN, HAND_UPPER_OUT, JOINT_IN, JOINT_OUT, FOOT_ANKLE_IN,

and FOOT_ANKLE_OUT, to schedule in one operating room.

The software can quickly evaluate different combinations and provide three best

scenarios in patient waiting time and room idle time for the scheduler to select.

Since typically only a limited number of surgeries will be scheduled in one room per

day, finding an optimal sequence can be easily achieved. Figure 6 shows five of

Fig. 5 Program illustration: selection
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Fig. 6 Program illustration:
results
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them in terms of shortest patient waiting time or room idle time. The reason to

provide multiple results rather than an optimal one is that the scheduler may have

other constraints to consider so that he/she can pick up the one satisfying his/her

specific concerns with reasonable good performance.

As one can see, by considering shortest patient waiting time, the schedule of

surgeries JOINT_OUT, HAND_UPPER_OUT, JOINT_IN, FOOT_ANKLE_OUT,

FOOT_ANKLE_IN, and HAND_UPPER_IN results in the shortest average patient

waiting time 154.66 min, and the average room idle time is 52.29 min. The next

schedule has slightly longer waiting time and idle time (155.65 and 53.28 min) by

switching FOOT_ANKLE_IN and HAND_UPPER_IN. The third schedule switches

HAND_UPPEER_OUT and JOINT_IN from the first one and obtains more waiting

time (156.39 min) but less idle time (52.17 min). If shortest room idle time is the

objective, then the schedule of FOOT_ANKLE_IN, JOINT_OUT, HAND_UP-
PER_OUT, FOOT_ANKLE_OUT, JOINT_IN, and HAND_UPPER_IN is the best

schedule, with 51.39 min idle time. But its waiting time is extended to 183.9 min.

The second choice is JOINT_IN, JOINT_OUT, HAND_UPPER_OUT, FOO-
T_ANKLE_OUT, FOOT_ANKLE_IN, and HAND_UPPER_IN. It only has mini-

mum longer waiting time (51.68 min), but much shorter waiting time (162.25 min).

Thus, the scheduler may select this one.

In addition, the software provides the freedom for the scheduler to construct his/

her own schedule and then compare the performance with the suggested ones. As

the calculation can be carried out in a fraction of a second, it provides an effective

alternative of simulations and can help reduce the computation intensity substan-

tially. Such a program presents a quantitative tool for the scheduler to sequence

orthopedic surgeries. Currently the software is used in a pilot study at UW Health.

7 Conclusions

This paper introduces an analytical model to evaluate the performance of OR

schedules in orthopedic surgery. Since the variability is small in orthopedic surgery,

and the schedule performance is practically independent of distribution type, these

enable us to use Gamma distribution to approximate surgical time. Then the room

idle time and patient waiting time can be calculated for two-surgery schedule. Using

an aggregation approach, every two surgeries can be represented by an aggregated

one. Through an iterative procedure, multiple surgery schedules can be evaluated

and the idle time and waiting time can be estimated. In addition, the completion

time and its variance can be obtained as well. Using the data collected on the

hospital floor in UW Health, numerical experiments have shown that such a method

results in acceptable accuracy and can be effectively used for performance

evaluation of surgery schedules. A preliminary version of a Java software suite to

implement the algorithms has been developed and deployed in a pilot study at UW

Health. Such a model provides the healthcare professionals a quantitative tool for

evaluation of OR schedules.

In future work, we expect to extend the work in the following directions:
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• extending the model to include surgery cancellation and delay;

• considering preoperative procedures, i.e., activities before surgery, in the model;

• generalizing the study to other types of surgeries, particularly, the surgeries that

have larger variations;

• developing methods for surgery scheduling optimization, especially with

multiple surgical rooms;

• including constraints in surgery schedules, e.g., a specific surgery needs to be

sequenced at a given time interval or follow a given order;

• investigating the fundamental properties in surgery scheduling, derive insights

and principles, and finally,

• applying the model in daily scheduling activities on the hospital floor.
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Appendix: Proofs

Proof of Proposition 1 From Lemmas 1 and 2, by conditioning both scenarios

where the first surgery S1 finishes earlier or later than the scheduled time, the

average completion time and the variance of two surgeries are calculated as:

C2 ¼ Ce2
pe1

þ Cw2
pw1

¼ fð1 þ a1; b1s1Þ � b1s1fða1; b1s1Þ
b1Cða1Þ

þ a1

b1

þ a2

b2

;

¼ a1

b1

þ a2

b2

þ fð1 þ a1; a1Þ � a1fða1; a1Þ
b1Cða1Þ

;

V2 ¼ Ve2
pe1

þ Vw2
pw1

¼ �f2ð1 þ a1; b1s1Þ þ fða1; b1s1Þfð2 þ a1; b1s1Þ
b2

1Cða1Þfða1; b1s1Þ

¼ �f2ð1 þ a1; a1Þ þ fða1; a1Þfð2 þ a1; a1Þ
b2

1Cða1Þfða1; a1Þ
þ a2

b2
2

:

The average room idle time can be derived as follows:
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Te1
¼ pe1

Z s1

0

ðs1 � xÞgðxjx\s1Þdx ¼
Z s1

0

ðs1 � xÞgðxÞdx

¼ s1 �
a1

b1

� s1fða1; b1s1Þ
Cða1Þ

þ fð1 þ a1; b1s1Þ
b1Cða1Þ

¼ �a1fða1; a1Þ þ fð1 þ a1; a1Þ
b1Cða1Þ

¼
� s2

1

r2
1

f s2
1

r2
1

;
s2

1

r2
1

� �

þ f 1 þ s2
1

r2
1

;
s2

1

r2
1

� �

s1

r1
C

s2
1

r2
1

� � :

Similarly, the average patient waiting time can also be calculated:

Tw2
¼ pw1

Z 1

s1

ðx � s1Þgðxjx[ s1Þdx ¼
Z 1

s1

ðx � s1ÞgðxÞdx

¼ �b1s1fða1; b1s1Þ þ fð1 þ a1;b1s1Þ
b1Cða1Þ

¼ �a1fða1; a1Þ þ fð1 þ a1; a1Þ
b1Cða1Þ

¼
� s2

1

r2
1

f s2
1

r2
1

;
s2

1

r1

� �

þ f 1 þ s2
1

r2
1

;
s2

1

r1

� �

s1

r1
C

s2
1

r2
1

� � :

h

Proof of Lemma 3 From (2), the aggregated parameter aa2
should be determined by

the ratio of mean square and variance of the first two surgeries. Thus,

aa2
¼ C2

2

V2

¼
h

fða1; b1s1Þ½b1ða2 þ b2s1ÞCða1Þ þ b2ð�b1s1fða1; b1s1Þ

þ fð1 þ a1; b1s1ÞÞ�2
i.h

Cða1Þ½a2b
2
1Cða1Þfða1; b1s1Þ þ b2

2ð�f2ð1 þ a1; b1s1Þ

þ fða1; b1s1Þfð2 þ a1;b1s1ÞÞ�
i

¼ fða1; a1Þ½b1ða2 þ b2s1ÞCða1Þ þ b2ð�a1fða1; a1Þ þ fð1 þ a1; a1ÞÞ�2

Cða1Þ½a2b
2
1Cða1Þfða1; a1Þ þ b2

2ð�f2ð1 þ a1; a1Þ þ fða1; a1Þfð2 þ a1; a1ÞÞ�
:

Again from (2), the aggregated parameter ba2
also depends on the ratio between the

mean and then variance. Therefore, we obtain
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ba2
¼ C2

V2

¼
h

b1b2fða1; b1s1Þ½b1ða2 þ b2s1ÞCða1Þ þ b2ð�b1s1fða1; b1s1Þ

þ fð1 þ a1; b1s1ÞÞ�
i.h

a2b
2
1Cða1Þfða1; b1s1Þ þ b2

2½�f2ð1 þ a1; b1s1Þ

þ fða1; b1s1Þfð2 þ a1;b1s1Þ�
i

¼ b1b2fða1; a1Þ½b1ða2 þ b2s1ÞCða1Þ þ b2ð�a1fða1; a1Þ þ fð1 þ a1; a1ÞÞ�
a2b

2
1Cða1Þfða1; a1Þ þ b2

2½�f2ð1 þ a1; a1Þ þ fða1; a1Þfð2 þ a1; a1Þ�
:

h

Proof of Proposition 2 The scheduled finishing time of surgeries S1 and S2 will be

s1 þ s2, i.e., the scheduled finishing time of the aggregated surgery is

ss2
¼ s1 þ s2 ¼ a1

b1

þ a2

b2

:

Then, aa2
and ba2

, the parameters of the aggregated surgery Sa2
, can be obtained

from Lemma 3. Using Proposition 1, by replacing s1 with ss2
; a1 with aa2

, and b1

with ba2
, and replacing a2 with a3; b2 with b3, the completion time C2 and the

variance V3 can be obtained. h

Proof of Lemma 4 By replacing s1 with ss2
; a1 with aa2

; b1 with ba2
, the room idle

time of surgery S2 and the patient waiting time for surgery S3 can be calculated.

First, calculate the probability that the aggregated surgery Sa2
has probabilities pea2

and pwa2
to be earlier or later than the aggregated scheduled time ss2

, respectively.

pea2
¼

Z ss2

0

gðxÞdx; pwa2
¼

Z 1

ss2

gðxÞdx:

Then, using aa2
and ba2

, we obtain the average idle time

Te2
¼ pea2

Z ss2

0

ðss2
� xÞgðxjx\ss2

Þdx ¼
Z ss2

0

ðss2
� xÞgðxÞdx

¼
Z ss2

0

ðss2
� xÞ b

aa2
a2

Cðaa2
Þ xaa2

�1e�ba2
xdx

¼
h

� b
�1þaa2
a2 s

aa2
a2 ðba2

sa2
Þ�aa2 � ½ð�aa2
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Þ

� ba2
sa2

fðaa2
; ba2
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; ba2
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Þ�
i.

Cðaa2
Þ

¼
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þ ba2
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ÞCðaa2
Þ � ba2

ss2
fðaa2

; ba2
ss2

Þ þ fð1 þ aa2
; ba2
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Þ

ba2
Cðaa2

Þ ;

and the average waiting time
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aa2
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¼
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ss2
Þ

ba2
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h
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