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Abstract

Background: The development of acute kidney injury (AKI) during an intensive care unit (ICU) admission is
associated with increased morbidity and mortality.

Methods: Our objective was to develop and validate a data driven multivariable clinical predictive model for early
detection of AKI among a large cohort of adult critical care patients. We utilized data form the Medical Information
Mart for Intensive Care III (MIMIC-III) for all patients who had a creatinine measured for 3 days following ICU admission
and excluded patients with pre-existing condition of Chronic Kidney Disease and Acute Kidney Injury on admission.
Data extracted included patient age, gender, ethnicity, creatinine, other vital signs and lab values during the first day of
ICU admission, whether the patient was mechanically ventilated during the first day of ICU admission, and the hourly rate
of urine output during the first day of ICU admission.

Results: Utilizing the demographics, the clinical data and the laboratory test measurements from Day 1 of ICU admission,
we accurately predicted max serum creatinine level during Day 2 and Day 3 with a root mean square error of 0.224mg/dL.
We demonstrated that using machine learning models (multivariate logistic regression, random forest and artificial neural
networks) with demographics and physiologic features can predict AKI onset as defined by the current clinical guideline
with a competitive AUC (mean AUC 0.783 by our all-feature, logistic-regression model), while previous models aimed at
more specific patient cohorts.

Conclusions: Experimental results suggest that our model has the potential to assist clinicians in identifying patients at
greater risk of new onset of AKI in critical care setting. Prospective trials with independent model training and external
validation cohorts are needed to further evaluate the clinical utility of this approach and potentially instituting
interventions to decrease the likelihood of developing AKI.
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Background
Acute kidney injury (AKI) is commonly seen in adults in
the intensive care unit (ICU). AKI is one of the major
diagnoses among ICU patients and a leading factor asso-
ciated with a prolonged hospital stay and with subse-
quent morbidity or early mortality post discharge [1–4].
Acute renal failure is a complex disorder that presents
itself in a variety of settings with clinical manifestations
ranging from a minimal elevation in serum creatinine to
anuric renal failure [5]. Unfortunately, the main bio-
marker of AKI, serum creatinine (SCr), is a late marker
of injury, which delays diagnosis and treatment [6].
Previous studies highlight the importance of early rec-

ognition of AKI, as well as the association of AKI with
increased mortality in hospitalized patients. As elec-
tronic health records (EHRs) become more prevalent,
the increasing availability of comprehensive clinical data-
bases provides the possibility of developing predictive
models using data collected from thousands of patient
encounters [5]. Efficacy of interventions often depends
on the interplay between early identification of deterior-
ation, the timing of interventions, and choice of inter-
ventions (e.g. selection of appropriate fluid resuscitation
strategy, use of vasopressors, and administration of
renoprotective agents). Multiple patient and healthcare
delivery related risk factors have been shown as predic-
tors of AKI in specific patient cohorts [7, 8]. However,
correlations between these diverse set of risk factors
across heterogeneous patient cohorts are much less
understood, but critical for producing effective diagnostic
and treatment guidelines of AKI [2, 3], Such guidelines
often need a panel of demographic, clinical physiologic,
and radiologic features in order to stratify patient cohorts
for targeted treatment.
Currently, there is no mutually accepted definition of

acute kidney dysfunction. Varying terms, such as acute
renal failure, renal insufficiency, kidney injury, and renal
impairment, and multiple definitions (e.g. percent or abso-
lute increments of creatinine, or decrements of urine out-
put) have been used previously [9]. The term acute kidney
injury has gained momentum as the best nomenclature to
replace acute renal failure because the spectrum of AKI is
broad and includes varying degrees of severity.
We used the definition of AKI as described in the Kid-

ney Disease Improving Global Outcomes (KDIGO) [10],
in order to standardize the published diagnostic criteria.
The diagnostic criteria are defined as an acute increase
in the absolute level of serum creatinine of more than
0.3 mg/dl or 50% higher change in serum creatinine
(SCr) from baseline within a 48-h period or decreased
glomerular filtration rate (GFR) to less than 0.5 ml/kg/
hour for more than six hours [9, 10]. These criteria were
based on accumulating evidence that even small alter-
ations in SCr are associated with dire consequences.

Many factors including nephrotoxic medications, in-
sufficient effective circulating fluid volume, and intrinsic
renal disease can cause or contribute to AKI [11, 12].
AKI can be diagnosed using any of several sets of
diagnostic and classification criteria [9, 11, 13]. These
diagnostic criteria are all based, in large part, on the
commonly measured serum/plasma biomarker creatin-
ine, whereby defined increases in creatinine occurring
within a specific period of time (e.g. 24, 48 or 168 h) will
be diagnostic of AKI. Thus, an accurate creatinine
forecast, as we plan to develop in this study, should in
turn enable prediction of AKI risk. In this study, we
focus on predicting AKI using first-day measurements of
a multivariate panel of physiologic variables, in order to
elucidate early, subclinical deterioration of patient’s
physiologic baselines that are predictive of AKI.

Related work
Numerous previously published studies describe AKI
prediction models using EHR data [14–24]. Most models
had modest performance with area under the receiver
operating curves (AUC) approximating 0.75. However,
many studies focus on specific patient groups such as
cardiac surgery patients, septic shock patients, and eld-
erly patients, or focus on the validation of novel bio-
markers. Less work has been performed for general
intensive care populations despite the fact that ICU pa-
tients also have high risk of AKI. Many previous studies
also have small patient population due to specific focus.
In addition, there is still a gap between existing studies
and the need to identify high-risk AKI patients as early
as possible. The approaches and goals of this study differ
from previously published reports in that it aims to ad-
dress these questions by utilizing a large clinical data-
base and building a predictive model that enables early
AKI detection. Many prior AKI prediction models, while
nonetheless clinically useful in many settings, i) rely on
various static scoring algorithms, often including a lim-
ited set of features in part to facilitate human (offline)
computation; ii) incorporate non-routine biomarkers
(e.g. NGAL) in predictions; and/or iii) do not model
temporal progression of clinical, laboratory and other
predictive information, which has been shown to be ef-
fective for clinical predictive modeling [25]. As a result,
many previously developed models are not optimally
suited for clinical decision making that forecasts AKI in
a general patient population. For example, a predictive
model that incorporates a limited set of predictors and,
in particular, a limited array of clinical interventions as
predictors, could not identify the impact that changes in
clinical care might have on AKI risk. Likewise, models
that rely heavily on biomarkers that are not routinely
tested would be unable to accurately screen for AKI risk
in a general patient population. Our approach, in
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contrast, involves the careful modeling of a wide array of
predictor data including clinical treatments and the tem-
poral aggregation of predictor data. Including a wide
array of predictors may permit the models to provide
predictions that are more patient-specific and suitable
for clinical scenario testing. In addition, our approach
focuses on the early prediction of AKI on patients who
do not meet AKI criteria on admission to the ICU, thus
targeting a population that could benefit from early pre-
ventive strategies that can prevent the development of
AKI or minimize its clinical impact. This is important,
given that prior studies utilizing automated AKI detec-
tion (as opposed to prediction) show limited effective-
ness of therapeutic interventions in patients already
meeting AKI criteria [26]. We expect that the types of
models we develop and validate in the context of this
study will have wide-ranging clinical applications.
Our study builds on top of previous studies by inte-

grating the previously identified risk factors for AKI in
ICU patients described in the literature including
hemodynamic instability, hypoxemia, anemia, inflamma-
tion, coagulopathy, liver failure, acidosis, renal/metabolic
derangement, and demographics/admission characteris-
tics. In the current study, we investigated the incidence
of AKI and the risk factors associated with its develop-
ment in an ICU population. Our objective was to de-
velop a prediction model capable of discriminating adult
patients at high risk of developing new AKI early in their
admission to the ICU.

Methods
Dataset
This study was a retrospective analysis of critical care pa-
tients presenting to the ICU and captured in the Medical
Information Mart for Intensive Care III (MIMIC-III).
MIMIC-III captures de-identified health information for
more than 46,000 patients admitted to the critical care units
at Beth Israel Medical Center between 2001 and 2012.
We developed SQL scripts in order to query the

MIMIC-III database for all patients who had a creatinine
measured at 72 h following ICU admission [27]. We re-
stricted our search to patients 18 years of age or older, and
we excluded patients with the pre-existing condition of
Chronic Kidney Disease (CKD), who have an estimated
GFR (eGFR, MDRD) < 60mL/min/1.73m2 [28, 29]. Data
extracted included patient age, gender, ethnicity, 72-h cre-
atinine, vital signs and lab values during the first day of
ICU admission, whether the patient was mechanically
ventilated during the first day of ICU admission, and
the hourly rate of urine output during the first day of
ICU admission.
A total of 23,950 patients met the inclusion criteria for

this study. Table 1 presents the predictor variables used
in this study, along with their statistical characteristics

such as mean and standard deviation. For predictor vari-
ables, we excluded those patients who have variables
with values that are outside the measurable range (e.g.,

Table 1 Univariate Results for Predictors of Interest, N = 23,950

Variable Mean SD

Gender- N, %

Female 9755 40.73%

Male 14,195 59.27%

Age (yr) 60.89 16.09

Ethnicity

African-American 1668 6.96%

White 17,261 72.07%

Hispanic 845 3.53%

Other 4176 17.44%

Creatinine Max during Day 2 and Day 3 (mg/dL) 0.84 0.31

Heart Rate Maximum (bpm) 105.40 19.86

Heart Rate Mean (bpm) 86.97 15.15

Systolic BP Minimum (mmHg) 92.51 16.79

Systolic BP Mean (mmHg) 118.87 15.71

Diastolic BP Minimum (mmHg) 45.31 11.06

Diastolic BP Mean (mmHg) 61.98 10.24

Temperature Maximum (Celsius) 37.60 0.75

SpO2 Minimum (%) 92.23 6.71

SpO2 Mean (%) 97.41 1.85

Glucose Level Maximum (mg/dL) 173.36 74.94

Bicarbonate Level Minimum (mg/dL) 23.87 4.34

Creatinine Level Minimum (mg/dL) 0.74 0.21

Creatinine Level Maximum (mg/dL) 0.80 0.22

Hemoglobin Level Minimum (g/dL) 10.33 2.08

Platelet Count Minimum (K/μL) 210.24 114.82

Potassium Level Maximum (mg/dL) 4.39 0.79

Partial Thromboplastin Time Minimum (s) 32.55 11.72

Partial Thromboplastin Time Maximum (s) 40.22 23.55

International Normalized Ratio Minimum 1.34 0.46

International Normalized Ratio Maximum 1.48 0.70

Prothrombin Time Minimum (s) 14.66 3.61

Prothrombin Time Maximum (s) 15.63 4.95

Blood Urea Nitrogen Level Maximum (mg/dL) 16.87 8.58

White Blood Cell Count Maximum (K/μL) 12.78 9.02

Calcium Level Minimum (mg/dL) 8.08 0.76

Mechanical Ventilation- N, %

No (0) 11,677 48.76%

Yes (1) 12,273 51.24%

Average Urine Output (mL) 2202.68 1395.37

Estimated Glomerular Filtration Rate (eGFR) 110.20 52.49

SD denotes standard deviation
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Glucose value being 999,999). The majority of the pa-
tient cohort was male (59.27%), white (72.07%) and the
mean age was 60.89 years.

Statistical analysis
Statistical analysis was performed using R Studio and
Python [30, 31]. We ran univariate statistics for patient
demographics and the predictors of interest. Univariate
linear regression was performed using the maximum
creatinine value during Day 2 and Day 3 as the outcome
to assess the unadjusted relationship between the pre-
dictor of interest and the continuous outcome. Univari-
ate logistic regression was performed using AKI versus
no AKI as the outcome. According to KDIGO [10], AKI
is defined as either of the following two conditions being
met: 1) greater than or equal to 50% increase from the
baseline creatinine value to the current creatinine value
and 2) greater than or equal to 0.3 mg/dL change in cre-
atinine from the baseline creatinine to the current cre-
atinine value. The pre-ICU baseline creatinine value was
defined according to the KDIGO definition by age, race/
ethnicity, and gender [10]. We excluded anyone who
had AKI on admission (Day 1) because we were inter-
ested in predicting new AKI while in the ICU. For AKI
status on admission, we compared Day 1 maximum cre-
atinine value (as current creatinine) with pre-ICU base-
line. After excluding patients AKI on admission, we then
determined the patients’ new AKI status by comparing
Day 2 and Day 3 maximum creatinine (as current cre-
atinine) with Day 1 minimum creatinine level.
Our dataset, like most clinical and laboratory datasets

obtained in clinical practice, contained missing values,
which represent tests not performed in our particular
analysis. For example, the variables having a large pro-
portion of missing values include minimum albumin
level (74.1%), maximum bilirubin level (67.2%), max-
imum lactate level (55.8%), maximum c-reactive protein
level (99.0%), maximum asparate aminotransferase level
(66.8%), maximum pH level (36.6%), and minimum base
excess level (64.8%).
Thus, our analysis relies on a two-staged procedure. In

the first stage of this procedure, we removed the vari-
ables with missing values greater than 20% and we filled
in the values for predictors (e.g. labs not performed or
recorded) using Multivariate Imputation by Chained
Equations (MICE) for those variables with less than 20%
missing values. MICE estimates a conditional model for
each variable to be imputed, with the other variables as
possible predictors [32]. The term chained equation
comes from the adoption of a Gibbs sampler, which is
an iterative Markov Chain Monte Carlo (MCMC) algo-
rithm for obtaining a sequence of observations that are
approximated from a joint probability distribution. As
MICE closely track the conditional interdependencies

among variables, we expect MICE to produce more ac-
curate imputation. Then, in the second stage, we use the
measured and imputed values for these predictors plus
age and gender to predict maximum creatinine results
during Day 2 and Day 3. In this second stage, we pre-
dicted both numerical results for creatinine (linear re-
gression) and whether creatinine increase would be
classified as AKI (logistic regression). Although no cre-
atinine results were actually missing from our dataset
per the inclusion criteria, we assessed model perform-
ance and creatinine predictability by masking creatinine
results from a test fold during five-fold cross validation
and then compared predicted creatinine results to the
masked (measured) values. The masked-measured values
were treated as the “ground truth” in assessing model
performance. The imputation stage was required be-
cause the prediction algorithms used in the second stage
of our procedure could not directly accommodate miss-
ing data in predictors.
Many lab tests have results that closely follow a

log-normal distribution. In linear regression analysis,
minimizing the root-mean-square error is equivalent to
the maximum likelihood estimation only under the as-
sumption that the target variable adopts a normal distri-
bution. Thus, we transformed creatinine values using a
natural log transformation y = ln (x), where y is the
transformed creatinine value and x is the original cre-
atinine value. The reportable range of creatinine is
greater than or equal to 0.1, which guarantees that the
log transformation will not produce minus infinity. We
inverted this transformation on predicted values of log
creatinine (predictions as described below) to calculate
predicted values of creatinine in untransformed units.
When performing multivariable linear and logistic re-

gression, all variables with unadjusted relationships with
a p-value of greater than or equal to 0.05 were excluded
from the initial model. Backward selection was used to
develop models with all predictors significantly associ-
ated with the outcome at a p-value less than or equal to
0.05. One variable, with the highest p-value, was re-
moved from the multivariable model at a time until all
remaining variables were significantly associated with
the outcome. For linear regression, regression coeffi-
cients, 95% confidence intervals, and p-values were cal-
culated. For logistic regression, adjusted odds ratios, 95%
confidence intervals, and p-values were calculated. A
five-fold cross-validation was used to assess the perform-
ance of using the selected set or the entire set of
variables to predict AKI related outcomes. For linear re-
gression, the root mean square error values were calcu-
lated for all 10 runs of the cross-validation and averaged
for both the final model developed with backward selec-
tion and the model with all predictors included. For
logistic regression, the receiver operating characteristic
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(ROC) curves were developed for the final backward se-
lection model and the model with all predictors of inter-
est. The area under the curve (AUC) values were
calculated for both models for all 10 runs and averaged
for each model type. Performance metrics (accuracy,
sensitivity, specificity, positive predictive value, and
negative predictive value) were calculated for the back-
ward selection model and model with all predictors of
interest following cross-validation. In addition to logistic
regression, we also used other machine learning models
including random forests and multilayer perceptron (a
type of artificial neural networks) to perform classifica-
tion. We used the scikit-learn implementations of these
machine learning models. For random forest classifier,
we set the number of estimators to 100 and max num-
ber of tree features to square root of the number of total
features. For the multilayer perceptron, we used the
Adam solver [33]. As the class ratio is imbalanced, we
set the class_weight parameter to “balanced” for lo-
gistic regression and random forest classifiers to down
weight the more popular class. We also explored the
imlearn package for multiple over sampling and under
sampling methods including SMOTE [34], ADASYN
[35], random under sampling, Tomek Link, and Neigh-
borhood Cleaning Rule. For our task, we found that
random under sampling to bring the positive and nega-
tive class numbers to comparable level is a simple yet
effective method.

Results
Table 2 presents the bivariate associations between the
linear outcome of interest (maximum creatinine during
Day 2 and Day 3)/logistic outcome of interest (AKI) and
the predictors. Of those included in the study, 3945
(16.5%) total patients had new AKI and 20,005 (83.5%)
did not have new AKI according to our definition. In the
unadjusted linear regression analyses, minimum diastolic
blood pressure, maximum temperature, maximum heart
rate, mean heart rate, maximum glucose level, and urine
output were not significantly associated with the con-
tinuous creatinine outcome and left out of multivariable
modeling (p > 0.05). In the unadjusted logistic analyses,
maximum temperature, minimum international normal-
ized ratio, minimum prothrombin time, maximum heart
rate, mean heart rate, maximum glucose level, and urine
output were not significantly associated with the dichot-
omous AKI outcome and left out of multivariable mod-
eling (p > 0.05).
The multivariable linear regression model results are

presented in Table 3. All predictors were significantly
associated with maximum creatinine during Day 2 and
Day 3. The multivariable logistic regression model re-
sults are presented in Table 4. All predictors were
significantly associated with AKI. Comparing the two

tables, most of the significant AKI predictors are similar
to those found in the linear regression. These predictors
are consistent with the known pathophysiology of AKI.
Males, older patients, and African-Americans have
higher incidence of AKI. Hypoxemia (low SpO2), mech-
anical ventilation, and coagulopathy (prolonged partial
thromboplastin and prothrombin times) are also known
risk factors of AKI and also might represent patients
with higher severity of illness. Patients with less anemia
(high hemoglobin) are probably less likely to have AKI
due to the increased oxygen carrying capacity and the
lower likelihood of requiring a blood transfusion, which
is a known risk factor of AKI. The “protective” effect of
high blood urea nitrogen level (and possibly high
hemoglobin) probably represents patients with intravas-
cular hypovolemia who are less likely to be diagnosed
with AKI after the dilutional effect of fluid resuscitation.
The elevated potassium and calcium levels likely repre-
sent early electrolyte disturbances in the setting of in-
jured kidneys likely to meet AKI definition in the
subsequent days. Finally, the elevated creatinine level,
while not meeting AKI criteria in these patients given
the exclusion criteria of the study, likely represents an
early elevation indicative of injured kidneys in which the
creatinine level hasn’t peaked yet. Note that the high
bicarbonate level, which was not selected in the linear
regression, but achieved a small significance level in the
logistic regression, likely represents a surrogate of less
acidosis, which is associated with higher severity of
illness and is a risk factor of AKI.
Due to the nature of random fold split in

cross-validation, we ran both cross-validated linear regres-
sion and logistic regression 10 times with different ran-
dom seeds to account for performance variability. Table 5
presents the regression results from the cross-validation
for linear regression. Table 6 presents the classification re-
sults from the cross-validation using logistic regression,
random forests, and multilayer perceptron. For linear re-
gression, the backward selection model had the same root
mean square error value than the model with all variables
(0.224 vs. 0.224mg/dL, respectively). In MIMIC-III data-
set, the serum creatinine level is reported to 0.1 mg/dL,
with a range 10mg/dL. Thus, the root mean square error
should be considered low both in absolute value and in
percentage over range (2.2%). Although the RMSE is close
to the 0.3mg/dL change in the KDIGO AKI criteria, our
logistic regression model designed to predict AKI categor-
ical status achieved competitive performance. For logistic
regression, the backward selection model had a lower area
under the curve than the model with all variables (0.780
vs. 0.783, respectively). For random forests, the backward
selection model had a lower area under the curve than the
model with all variables (0.772 vs. 0.779, respectively),
both lower than logistic regression. Multilayer perceptron
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gives the best performance with the backward selection
model all variables models having AUCs of 0.792 and 0.796
respectively. Given that most previous models had modest
AUCs around 0.75 (see Related Work section), our model
gives a better performance than previous models when
using all-variable models. In addition, our results generalize
to much larger general adult critical care patient cohort.
Table 7 presents the performance metrics for the logistic re-
gression models. Across all machine learning algorithms
and both backward selected and all-variable models, recall

(sensitivity: 0.660–0.698) is favored over precision (positive
predictive value: 0.337–0.357). This conforms to the clinical
need in that given the relative low prevalence and high
stake of AKI, one wants to catch as many AKI cases
as possible and is willing to bear with false alarms.
Next, we more closely investigated the extent to which

serum creatinine can be predicted. We examined scatter
plots denoting the relationship between measured and pre-
dicted creatinine values, as shown in Fig. 1. Both models
generated similar prediction plots. Note that predictions

Table 2 Bivariate associations between linear outcome (maximum creatinine during Day 2 and Day 3) and binary outcome (AKI)
and Predictors

Variable Linear Regression Logistic Regression

Coeff P-Value 95% CI OR P-Value 95% CI

Gender

(M: 1,F: 0) 0.2135 < 0.001 [0.206,0.221] 1.23 < 0.001 [1.144,1.318]

Age (yr) 0.0019 < 0.001 [0.002,0.002] 1.02 < 0.001 [1.016,1.020]

Ethnicity

African-American ref ref ref ref ref ref

Caucasian −0.0706 < 0.001 [−0.086,-0.055] 1.12 0.106 [0.976,1.294]

Hispanic −0.1026 < 0.001 [− 0.128,-0.077] 0.73 0.014 [0.566,0.938]

Other −0.0585 < 0.001 [− 0.076,-0.041] 1.33 < 0.001 [1.136,1.552]

Systolic BP Min (mmHg) −0.0011 < 0.001 [−0.001,-0.001] 0.98 < 0.001 [0.976,0.980]

Systolic BP Mean (mmHg) −0.0005 < 0.001 [−0.001,0.000] 0.98 < 0.001 [0.982,0.987]

Diastolic BP Min (mmHg) −0.0003 0.067 [− 0.001,0.000] 0.98 < 0.001 [0.980,0.986]

Diastolic BP Mean (mmHg) −0.0009 < 0.001 [−0.001,0.001] 0.98 < 0.001 [0.971,0.978]

Temperature Max (Celsius) −0.0035 0.190 [−0.009,0.002] 1.04 0.089 [0.994,1.089]

SpO2 Min (%) −0.0014 < 0.001 [−0.002,-0.001] 0.99 < 0.001 [0.983,0.991]

SpO2 Mean (%) −0.0028 0.010 [−0.005,-0.001] 1.08 < 0.001 [1.055,1.098]

Bicarbonate Level Min (mg/dL) −0.0049 < 0.001 [−0.006,-0.004] 0.94 < 0.001 [0.934,0.949]

Creatinine Level Minimum (mg/dL) 0.9479 < 0.001 [0.933,0.963] – – –

Creatinine Level Max (mg/dL) 0.9340 < 0.001 [0.921,0.947] 3.20 < 0.001 [2.743, 3.737]

Hemoglobin Level Min (g/dL) −0.0048 < 0.001 [− 0.007,-0.003] 0.77 < 0.001 [0.759,0.787]

Platelet Count Min (K/μL) − 0.0004 < 0.001 [− 0.000,0.000] 1.00 < 0.001 [0.996,0.997]

Potassium Level Max (mg/dL) 0.0837 < 0.001 [0.079,0.089] 1.90 < 0.001 [1.824,1.984]

Partial Thromboplastin Time Min (s) 0.0020 < 0.001 [0.002,0.002] 1.01 < 0.001 [1.010,1.015]

Partial Thromboplastin Time Max (s) 0.0012 < 0.001 [0.001,0.001] 1.01 < 0.001 [1.008,1.010]

International Normalized Ratio Min 0.0213 < 0.001 [0.013,0.030] 1.04 0.266 [0.970,1.118]

International Normalized Ratio Max 0.0274 < 0.001 [0.022,0.033] 1.21 < 0.001 [1.158,1.260]

Prothrombin Time Min (s) 0.0032 < 0.001 [0.002,0.004] 1.01 0.194 [0.997,1.015]

Prothrombin Time Max (s) 0.0042 < 0.001 [0.003,0.005] 1.03 < 0.001 [1.021,1.033]

Blood Urea Nitrogen Level Max (mg/dL) 0.0088 < 0.001 [0.008,0.009] 1.01 < 0.001 [1.009,1.017]

White Blood Cell Count Max (K/μL) 0.0008 < 0.001 [0.000,0.001] 1.01 < 0.001 [1.010,1.018]

Calcium Level Min (mg/dL) 0.0245 < 0.001 [0.019,0.030] 0.72 < 0.001 [0.685,0.749]

Mechanical Ventilation (Yes 1/No 0) - N, % 0.0618 < 0.001 [0.054,0.070] 3.04 < 0.001 [2.816,3.275]

Estimated Glomerular Filtration Rate (eGFR) −0.0025 < 0.001 [−0.003,-0.002] 1.00 < 0.001 [1.004,1.005]

CI denotes confidence interval, OR denotes odds ratio, Coeff denotes linear regression coefficient. The regression coefficient and odds ratio are unadjusted
regression coefficient and odds ratio respectively
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Table 3 Multivariable linear regression results following backward selection

Variable Adjusted Regression
Coefficient

P-Value 95%
Confidence Interval

Gender

(M: 1,F: 0) 0.026 < 0.001 [0.019,0.034]

Age 0.020 < 0.001 [0.016,0.023]

SpO2 Mean −0.013 < 0.001 [− 0.016,-0.009]

Bicarbonate Level Minimum −0.005 0.005 [−0.008,-0.001]

Creatinine Level Minimum 0.364 < 0.001 [0.326,0.403]

Creatinine Level Maximum 0.137 < 0.001 [0.130,0.144]

Hemoglobin Level Minimum −0.024 < 0.001 [− 0.027,-0.021]

Platelet Count Minimum −0.018 < 0.001 [− 0.021,-0.015]

Potassium Level Maximum 0.021 < 0.001 [0.018,0.025]

Partial Thromboplastin Time Minimum 0.016 < 0.001 [0.013,0.019]

International Normalized Ratio Minimum −0.025 < 0.001 [− 0.035,-0.015]

International Normalized Ratio Maximum 0.016 < 0.001 [0.011,0.020]

Blood Urea Nitrogen Level Maximum −0.014 < 0.001 [−0.017,-0.011]

Calcium Level Minimum 0.014 < 0.001 [0.011,0.017]

Mechanical Ventilation 0.018 < 0.001 [0.015,0.021]

Estimated Glomerular Filtration Rate 0.009 < 0.001 [0.004,0.013]

Table 4 Multivariable logistic regression results following backward selection

Variable Adjusted Odds Ratio P-Value 95% Confidence Interval

Gender

(M: 1,F: 0) 0.59 < 0.001 [0.553,0.647]

Age 1.56 < 0.001 [1.494,1.635]

Ethnicity

African-American ref ref ref

Caucasian 1.47 < 0.001 [1.248,1.721]

Hispanic 1.12 0.414 [0.850,1.484]

Other 1.65 < 0.001 [1.382,1.970]

Systolic BP Minimum 0.94 0.003 [0.897,0.977]

SpO2 Mean 0.89 < 0.001 [0.852,0.925]

Bicarbonate Level Minimum 0.90 < 0.001 [0.858,0.938]

Creatinine Level Maximum 2.68 < 0.001 [2.501,2.862]

Hemoglobin Level Minimum 0.74 < 0.001 [0.711, 0.776]

Platelet Count Minimum 0.80 < 0.001 [0.767,0.839]

Potassium Level Maximum 1.28 < 0.001 [1.236,1.334]

Partial Thromboplastin Time Minimum 1.12 < 0.001 [1.078,1.158]

International Normalized Ratio Maximum 1.06 < 0.001 [1.025,1.099]

Blood Urea Nitrogen Level Maximum 0.89 < 0.001 [0.857,0.933]

Calcium Level Minimum 1.08 < 0.001 [1.034,1.130]

Mechanical Ventilation 1.45 < 0.001 [1.386,1.519]

Estimated Glomerular Filtration Rate 2.93 < 0.001 [2.734,3.140]
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were most accurate toward the middle of the dynamic
range of measured creatinine results, presumably due to
“regression toward the mean.” Some of the numerical
prediction error may thus be attributed to measured
creatinine values toward the high end of the range with
predicted values of creatinine that are considerably
lower, but that are still within the reference range. Fur-
thermore, the regression algorithms in general train to
minimize error throughout the dynamic range, thus
explaining the behavior in the plots. Figure 2 further
plots the ROC curves (overlay of all 10 runs) for classi-
fying AKI binary outcome with the logistic regression,
random forest, and multilayer perceptron models using
variables from backward selection and all variables. For
logistic regression, the two models exhibited different
classification performance, which is evident from simi-
lar AUCs and ROC curves. The backward selection
model gives an averaged AUC of 0.780 comparable to
previous systems and is insensitive to different cross
validation random splits. The all-feature model gives a
higher averaged AUC of 0.783. The fact that both the
linear regression and the logistic regression backward
selection models are not sensitive to cross validation
splits likely suggests the robustness of the model and
the predictability of both the numeric serum creatinine
level and the binary AKI classification. Thus we chose
the backward selection model when evaluating the
individual factor association with the serum creatinine
value and new AKI status as a conservative, but reliable
way to derive clinical insights. On the other hand, the
higher AUCs from all-feature model suggest the effect-
iveness and potential of an entirely data-driven ap-
proach over a more parsimonious model. The fact that
all-feature model subjects to more randomness in the

data likely calls for a more effective feature selection
method that takes statistical stability into consideration.

Discussion
In our two-stage analysis, we have used MICE imputation
to fill in missing values for each variable. This approach
imputes missing values by the MICE algorithm [32, 36].
Theoretically, this method is only unbiased under the as-
sumption that the data is missing-at-random. Real clinical
practice surely violates this assumption since clinicians
usually order tests given some expectations about the
likely results. Nonetheless, our previous study shows that
imputation bias due to not missing-at-random may have
only minimal impact on patient outcome prediction [37].
In practice, it may be used as an effective way and baseline
for comparing other multiple imputation methods due to
its simple implementation [38]. We are also aware of the
limitations of imputation for clinical data, as missingness
may represent no indication for having the test performed.
To this end, we will also investigate missingness patterns
as predictors in future studies.
We recognize a number of additional limitations of

our initial study. Our models were primarily based on
demographic, vital signs, and laboratory data but did not
factor in comorbid diagnoses. This is similar to other
predictive scores of severely ill patients such as the
MELD [39] and APACHE II [40] scoring systems, which
are also based on well-defined structured laboratory or
vital signs data. In the ICU setting, patients often suffer
from multiple acute upon chronic conditions where the
acute immediate condition may play a more important
role than prior chronic conditions, hence the relatively
larger impact of current laboratory tests or vital signs.
However, future work will include comorbid diagnoses

Table 5 Linear regression results from the cross-validation

Root Mean Square Error Values

Mean Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Linear Backward Selection Model 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224 0.224

Linear All Variables Model 0.224 0.224 0.224 0.223 0.224 0.224 0.224 0.223 0.224 0.224 0.224

Table 6 Machine learning results from the cross-validation

Area Under the Curve Values

Mean Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

LR Backward Selection Model 0.780 0.780 0.780 0.779 0.780 0.780 0.780 0.780 0.780 0.780 0.780

LR All Variables Model 0.783 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.783

RF Backward Selection Model 0.772 0.772 0.774 0.775 0.772 0.773 0.773 0.773 0.775 0.773 0.772

RF All Variables Model 0.779 0.779 0.779 0.780 0.779 0.780 0.778 0.777 0.780 0.779 0.779

MLP Backward Selection Model 0.792 0.794 0.794 0.791 0.792 0.793 0.794 0.792 0.793 0.794 0.792

MLP All Variables Model 0.796 0.796 0.798 0.796 0.795 0.796 0.796 0.794 0.795 0.796 0.796
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as factors in multivariate regression analyses. Conditions
which affect the kidneys, such as diabetes, may be dis-
proportionate in their effect, and will need to be
accounted for in future work.
In this study, we also focused on predicting AKI using

first-day measurements of a multivariate panel of physio-
logic variables but not medications and procedures, in
order to elucidate early, subclinical deterioration of pa-
tients’ physiologic baselines that are predictive of AKI.
We also focused on establishing the baseline of using
physiologic variables to predict AKI with large cohort
size but did not consider dynamic prediction window.
The Kidney Disease Improving Global Outcomes
(KDIGO) clinical practice guidelines examines serum
creatinine change within 48 h [13]. We will examine in
future studies the AKI prediction with physiologic and
medication data and with dynamic prediction windows
(e.g., using patient data up to Day n to predict AKI in

Day n + 1 and Day n + 2). We also plan to explore the
temporal changes of the model predictors to improve
the prediction model performance.
In the backward linear and logistic regression models,

predictors included did vary. Included in linear regres-
sion and not in logistic regression were the following
variables: creatinine level minimum and international
normalized ratio minimum. Ethnicity and systolic blood
pressure minimum were the only variables included in
logistic regression that was not included in linear regres-
sion. As it is uncommon for the linear regression model
to use more predictors than the logistic regression
model due to more detailed outcome prediction (nu-
meric vs. binary label) by the former, we will use clinical
content experts to suggest a pared down list of predic-
tors or natural clinically relevant cutoff scores for
variables, to see if these will improve model performance
and relevance. When selecting the predictors, in addition

Table 7 Other average performance metrics from the cross-validation

Accuracy Sensitivity Specificity Positive Predictive Value Negative Predictive Value

LR Backward Selection Model 0.724 0.697 0.730 0.337 0.924

LR All Variables Model 0.729 0.698 0.736 0.342 0.925

RF Backward Selection Model 0.739 0.660 0.754 0.346 0.918

RF All Variables Model 0.742 0.673 0.756 0.352 0.921

MLP Backward Selection Model 0.744 0.684 0.756 0.356 0.924

MLP All Variables Model 0.743 0.694 0.753 0.357 0.926

Fig. 1 Scatter plots comparing the measured and predicted creatinine values using linear regression models with a) backward selection variable
model and b) all variables model after cross-validation. Note that the axes are on a logarithmic scale or plot log transformed data
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to using the p-values as the sole criteria, we plan to inte-
grate other factors such as effect size as additional criteria
during predictor selection in the future.

Conclusions
We demonstrated the feasibility of developing a model
for early prediction of AKI in the first 72 h following

Fig. 2 ROC curves for logistic regression, random forest, and multilayer perceptron models using a) backward selection model and b) all-feature
model using cross-validation. We repeat the 5-fold cross validation 10 times, each time using stratified 5-fold split with different random
initializations. We use different colors for ROC curves from different cross validations. Note that for both for both the all-variable and backward
selection models, the model performance is insensitive to stratified 5-fold splits with different random initializations. Thus, the ROC curves are
almost identical to each other
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ICU admission in an adult patient population in critical
care setting. Through cross-validation on linear regres-
sion and multiple machine learning models, we showed
that comprehensive demographics and physiologic fea-
tures can accurately predict max serum creatinine level
during Day 2 and Day 3 with a root mean square error
of 0.224 mg/dL. The same demographics and physiologic
features can also predict new AKI onset as defined by
the current clinical guideline with a competitive AUC
(mean AUC 0.783 by our all-feature model), while previ-
ous models aimed at more specific patient cohorts. Our
work suggests that prospective trials with independent
model training and validation cohorts are needed to fur-
ther evaluate the clinical utility of this approach for
identifying at risk patients early in their hospital course
and potentially instituting interventions to decrease the
likelihood of developing AKI.
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