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Abstract

This study presents an approach for mining structured information from clinical narratives in 

Electronic Health Records (EHRs), by using Rich Text Formatted (RTF) records. RTF is adopted 

by many medical information management systems. There is rich structural information in these 

files which can be extracted and interpreted, yet such information is largely ignored. Analysts who 

focus on structured EHR data often do not treat EHR narratives as structured; NLP researchers 

often start from plain text instead of RTF files, casting structured data as narratives. We investigate 

multiple types of EHR narratives in the Enterprise Data Warehouse from a multisite large 

healthcare chain consisting of both the academic medical center and community hospitals. We 

focus on the RTF constructs related to tables and sections that are not available in plain text EHR 

narratives. We show how to parse these RTF constructs, analyze their prevalence and 

characteristics in the context of multiple types of EHR narratives. Our case study demonstrates the 

additional utility, of the features derived from RTF constructs, over plaintext oriented NLP.
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Introduction

Nationwide adoption of Electronic Health Records (EHRs) has given rise to a large amount 

of digital health data, which can be used for secondary analysis [1]. The data within these 

records are expected to improve efficiency and overall healthcare. In addition to structured 

data, a large amount of clinically relevant data remains present in an unstructured free-text 

format. These narratives are largely variable between institutions and even healthcare 

professionals within them making it difficult for data extraction. In order to optimize 
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research to improve quality or clinical needs, a systematic representation of EHRs for both 

structured and unstructured data is necessary. For instance, computational phenotyping has 

been used to mine or predict both clinically and scientifically significant phenotypes from 

structured EHR data, unstructured clinical narratives, and their combinations [2]. 

Computational phenotyping calls for efficient approaches to mine a large volume of clinical 

narratives for structured information on patient pathophysiology. To this end, natural 

language processing (NLP) is widely utilized as an effective tool for turning unstructured 

narratives into structured information [3].

Applications of language processing methods to clinical data in many projects have achieved 

reasonable success in analyzing various types of biomedical data, including clinical 

narratives [4, 5]. However, when it comes to EHRs, there is a gap between what data can 

support and what the method asks for. NLP generally assumes plain text as inputs, but 

clinical narratives in EHR often possess rich-text format (RTF) such as tables, different 

fonts, and font sizes. The majority of studies ignore the informative RTF information in 

EHR narratives. To our knowledge, there are very few, if any, studies that process RTF EHR 

narratives and utilize the formatting for additional information. When evaluating numerous 

clinical note repositories for shared task challenges (e.g., challenges from BioNLP [6-8], 

i2b2 [9, 10], SemEval [11, 12], and BioCreative [13]), there are few RTF EHR narratives.

The task of processing RTF documents is relatively straightforward though non-trivial. 

Despite the existence of standard packages to parse RTF or convert it to other formats such 

as HTML, research in the field of biomedical NLP largely ignore RTF and still use plain-text 

as their raw input. Typical NLP processes include sentence breaking, word tokenization, 

part-of-speech tagging, constituency or dependency parsing, named entity detection, 

semantic role labeling, and event frame extraction, etc. These processes largely ignore the 

formatting information. As a result, EHR databases (e.g., Enterprise Data Warehouse) for 

medical institutions often additionally store the plain text format of EHR narratives in 

addition to their RTF counterparts, or simply store in plain text format instead of RTF. 

Furthermore, information loss can sometimes occur during the conversion of RTF to plain-

text formats.

Interestingly, researchers who focus on studying structured data do not treat EHR narratives 

as structured and often rely on NLP to extract structured pieces out of EHR narratives from 

plain text. Many studies utilize generic medical NLP systems such as MedLEE [14], 

MetaMap [15], cTakes [16], or GATE [17]. Other studies take advantage of special purpose 

NLP systems such as MedEx [18] for medication detection or TEES [19] for medication 

event frame extraction. Finally, many authors developed their NLP components or even 

systems to serve specific data mining tasks such as computational phenotyping [20-27].

Our study addresses the gap between structured EHR and clinical NLP research regarding 

the usage of rich-text formatted EHR narratives. In the current study, we demonstrate how to 

extract the structured pieces (e.g., tables and section headings) from RTF EHR narratives 

and investigate the prevalence of such structures in EHR narratives. Our objective is to 

expose the need to start from rich-text formatted EHR narratives, making it suitable for NLP 

or structured EHR research, and demonstrate that this can be done without much hassle. We 
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also perform a case study to show the efficacy of mined structured information in improving 

computational phenotyping tasks.

Methods

A. Dataset

We constructed multiple rich-text formatted corpora consisting of different types of EHR 

narratives, by querying Northwestern Medicine Enterprise Data Warehouse (NMEDW). The 

NMEDW is a joint initiative between the Northwestern University Feinberg School of 

Medicine and Northwestern Memorial HealthCare [28]. The NMEDW is a multi-center data 

repository with heterogeneous types of data. We constructed multiple patient corpora over a 

specific period from breast cancer patients. In this study, the progress notes were queried, 

which are records of events during a patient’s office visit or hospitalization that can be used 

to communicate opinions, findings, and plans between healthcare professionals. A well-

documented progress note is complete, accurate, and concise for the care delivered, 

including diagnosis and treatments [29]. We extracted progress notes that were dated 

between 07/01/2015 and 10/01/2015. In order to test performance evaluation, we extracted 

progress notes for breast cancer patients from a previous study [30] matching their plain text 

counterparts as a use case.

B. RTF processing

Many word processors support the reading and writing of rich-text format (RTF) files, as 

well as many of the medical information management systems. In this study, we found and 

identified the important RTF structural information from medical narratives, namely tables 

and section headings. A medical history table may contain several columns with headings 

stressed in bold, underlines, or inserted as the first line of the table. These tables often 

summarize important clinical information such as prescriptions, allergies, or medical 

histories. The format of RTF text is defined by groups, control-words, and delimiters. 

Groups are enclosed in braces, and control-words start with backslash (\) characters. For 

example, a 2-by-2 table and the corresponding RTF code is shown in Figure 1.

As illustrated in Figure 1, the codes are within closed braces with control-words in the first 

line indicating the format and encoding used in this group. Each row in the table begins with 

a “\trowd” tag, and ends with a “\row” tag. Thus, lines 2-7 define the first row, and lines 

8-13 defines the second row. The “\cellx###” tag declares the position of the right side of a 

cell, and the “\cell” tag denotes the end of a cell. The above code generates a 2-by-2 table, 

with cell widths equal to 1000. Searching for the “\trowd” tag in RTF files allow for table 

discovery. In addition to “\trowd” tags, many tables in medical notes are also defined by tab-

delimited-tables, i.e., cells in a table row are separated by tab characters. To identify these 

tab characters, RTF uses the “\tab” tag.

Section headings in medical notes often describe the topic of that section. The information 

within a section is usually cohesive and can easily be interpreted by both NLP programs and 

manual curation. As a result, the Common Data Model of Observational Medical Outcomes 

Partnership specifies that sections be stored as annotations to facilitate portable 
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computational phenotyping (https://github.com/OHDSI/CommonDataModel) [accessed on 

March 20, 2019]. Section headings tend to share some characteristics such as bold or 

underlined formatting font. The headings may or may not occupy a whole line, and may or 

may not be capitalized or be followed by a colon. Heading levels are often indicated by 

indentation. In summary, section headings provide important information, and the RTF 

format allows us to apply specific searching criteria to accurately and efficiently identify 

section headings and their levels.

However, the syntax of RTF is relatively more obscure and lacks powerful software 

packages for data parsing compared to more popular formats such as HTML, XML, and 

LaTex. On the other hand, HTML is a much more commonly used format with many 

existing tools for parsing and extraction of structured information, such as Python’s 

BeautifulSoup package (https://www.crummy.com/software/BeautifulSoup/bs4/doc/) 

[accessed on March 20, 2019]. To address this, we convert RTF to HTML using LibreOffice 

prior to parsing any data and then analyze the structures using python’s BeautifulSoup web 

scraping package. For regular tables, we searched for the HTML <table> tag, and 

summarized the rows by counting the row tag <tr>. For tab-delimited-tables, we matched 

them using the regular expression “\S+ *\t *\S+”, i.e. two non-space characters separated by 

a tab and zero or more spaces characters. The section headings in the documents are usually 

stressed in bold (HTML tag of <b>) or with an underline (HTML tag of <u>). The stressed 

phrase should occupy a whole line.

Results

A. Parsing the tables

In our study, we extracted and used 158,948 breast cancer progress notes. Given that column 

names are often listed in the first row of a table, we also extracted the cells in the first rows 

to summarize the topic of the tables. The distribution of the number of tables, and the most 

common first rows of these tables are summarized in Figure 2. A Histogram indicating table 

frequency is shown on the upper panel of the figures. Note that the y-axis is in log-scale; the 

number of tables in a medical note approximately follows an exponential distribution – the 

probability decreases by a factor of 10 for roughly every 10 additional tables. The most 

common first rows are summarized on the lower panel of the figures. Adjacent cells are 

separated by a comma.

In breast cancer progress notes, the most common first row contains a single cell with the 

most common terms being “Allergies” and “Past Medical History” making up 16.3% and 

16.2%, of the notes, respectively. The 16.3% of the medical notes have an Allergies table. In 

addition to these terms, we also identified terms involving lab results, vital information, 

complaints, current prescriptions, illness history, medication list, and physical exam 

information (Figure 2). It is evident that the related tables belong to the pre-formatted 

template.
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B. Parsing the section headings

Section headings often contain critical information that can be used to identify key features. 

We searched the section headings in progress notes of patients with breast cancer from the 

NMEDW. Among the 158,948 breast cancer progress notes, we found 46.6% files have first 

level headings, and we found 2.4% files have higher level headings. Histograms of the 

number of first-level section headings (section headings with the smallest indentation) in the 

notes are summarized in Figure 3. The number of headings in a note generally follows an 

exponential distribution. The lower panel of the figures shows the most common first-level 

section headings.

In the breast cancer progress notes, we found the most common heading to be “Allergies” 

similarly to the most common first row found in these notes. Interestingly, we also find 

headings involving Physical Exams, Lab Results, and Medication Lists, which are also the 

most common first rows of tables in these notes (Figure 3). These results suggest that section 

headings are important too. In addition, the structure of a progress note can be better 

understood by combining data from tables and section headings. Note that the vital signs 

(which is the first row of a table) are also deemed as the section headings because they are 

usually emphasized in bold with occupying a whole line.

B. Case study on breast cancer phenotyping

The structured data extracted from the medical notes can be used as features in machine 

learning models to improve their performances. As a case study, we added the structure 

information extracted to identify breast cancer patients with contralateral events. The 

problem was investigated in our previous study [30], with a cohort of 1063 patients who 

were diagnosed with breast cancer. In the cohort, 33 patients were identified with 

contralateral events (the case group). We previously identified the breast cancer contralateral 

events from the cohort using progress notes and counts of pathology reports. In our previous 

study, the progress notes were treated as plain text; structured information was ignored. This 

previous study was used as a baseline because it utilized an 8-step relatively sophisticated 

NLP system, and applied extensive feature engineering (e.g., filtered powerset method) to 

build the classification model. Thus, our previous system provides competitive plain-text 

oriented NLP baselines. In this case study, we pulled out the corresponding RTF versions of 

the same progress notes for the 1063 patients. We extracted the past medical history, past 

surgical history, and lab test results from the tables in the progress notes, and included them 

as features in the classification model. For lab test results, we used the reference ranges 

presented in the test result tables to determine whether the measured results are higher or 

lower than the ranges. We chose common features that occured in at least 10 patients’ 

progress notes, resulting in 37 medical history entries, 33 surgical history entries, and 10 

abnormal lab test features. The most common medical/surgical history entries, and abnormal 

lab tests are summarized in Table 1.

We encoded the structured features as whether a patient had a condition in the past medical/

surgical history, and whether a lab test is below or above the reference range. We adopted 

the same train-test split (7:3) and the same evaluation metric (AUC) as in our previous study 

[30]. We used logistic regression (LR) model, and 5-fold cross-validation to tune the 
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regularization factor of LR, and obtained an AUC of 0.89 on the held-out test set. By 

building an ensemble model that averages the predicted probabilities from the structured-

feature model and the NLP-feature model, an AUC of 0.92 was obtained. The model 

performance was compared with previous results in Table 2. Using much fewer structured 

features, we can achieve a comparable classification performance using unstructured 

MetaMap CUI features (83 vs. 1285). Combining the two models further improves the 

classification performance. Note that the pathology report count is essentially a type of 

structured feature though not derived from RTF tables [30]. For a fair comparison, the top 3 

models in Table 2 (including the 3rd model that was reported as the best model in our 

previous study [30]) all use the pathology report count. In this case study, including the 

structured features improved the performance from 0.89 to 0.92. The overall results suggest 

that structured features extracted from RTF tables can be effective features in computational 

phenotyping tasks, and may work even better when combined with unstructured features 

extracted by NLP.

Discussion

This study is a preliminary work that tries to introduce the informatics community to the 

rich-text formatted EHR narratives, and it comes with limitations. First and foremost, we 

note that different institutions may have different clinical documentation systems, templates, 

and styles, especially across different healthcare chains on a national scale. Although our 

study uses multi-site data (a mixture of academic medical center and community hospitals) 

from regional healthcare chains, we expect challenges may arise when generalizing our 

study on a national scale. In addition, different healthcare chains may use different EHR 

systems, with possible variations in the prevalence of the rich-text structures. Thus, we plan 

to expand our study in the future to include more types of EHR narratives, from different 

EHR systems, and systematically study their variations to better inform the data mining 

practice over EHR. We will also study the potential impact of rich-text format on improving 

the interoperability in health information exchange and portable computational phenotyping, 

as it brings more regularity to the otherwise “free” text.

Conclusions

Electronic Health Records (EHR) narratives are not equivalent to plain text but contain 

important structural information. One common medical note file format for archived EHR 

narratives is rich text format (RTF). We have utilized the low-level syntax tags in RTF files 

to mine the structured information of multiple types of EHR narratives. We ran our parsing 

systems across RTF clinical narratives from multiple community hospitals and an academic 

medical center, and successfully extracted tables and section headings from them. The tables 

contain patient allergies, medical histories, lab test results, prescriptions, vital signs, and 

even follow-up appointment information. A long EHR narrative may be divided into several 

sections, with each section containing cohesive information of a perspective and context of a 

patient’s pathophysiologic profile. Properly recognizing the tables and sections is useful to 

extract structured information from EHR, and prevents unnecessary input chunks of text to 

NLP systems. In addition, targeted NLP algorithms can be further applied to individual 

sections to extract information more precisely. Our case study on breast cancer phenotyping 
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shows that tasks such as computational phenotyping can benefit from properly extracted 

structural information (e.g., tables) and more accurate NLP, thanks to the usage of RTF 

structural information – a hidden and often ignored trove in EHR.
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Figure 1: 
A 2-by-2 table and the corresponding RTF code. (a) A 2-by-2 table defined by the RTF code 

(b) RTF code snippet that defines a 2-by-2 table.
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Figure 2: 
Histogram of the number of tables and the most common first rows in breast cancer progress 

notes. The “Ratio” column is the count of the first rows over the total number of notes of this 

type.
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Figure 3: 
Histogram of the number of first-level section headings, and the most common first-level 

headings in the breast cancer progress notes. Note that the y-axis is in log-scale. The “Ratio” 

column is the count of the heading over the total number of notes of this type.
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