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Abstract
Accurately identifying distant recurrences in breast cancer from the electronic health
records (EHR) is important for both clinical care and secondary analysis. Although
multiple applications have been developed for computational phenotyping in breast
cancer, distant recurrence identification still relies heavily on manual chart review. In
this study, we aim to develop a model that identifies distant recurrences in breast cancer
using clinical narratives and structured data from EHR. We applied MetaMap to extract
features from clinical narratives and also retrieved structured clinical data from EHR.
Using these features, we trained a support vector machine model to identify distant
recurrences in breast cancer patients. We trained the model using 1396 double-
annotated subjects and validated the model using 599 double-annotated subjects. In
addition, we validated the model on a set of 4904 single-annotated subjects as a
generalization test. In the held-out test and generalization test, we obtained F-measure
scores of 0.78 and 0.74, area under curve (AUC) scores of 0.95 and 0.93, respectively.
To explore the representation learning utility of deep neural networks, we designed
multiple convolutional neural networks and multilayer neural networks to identify
distant recurrences. Using the same test set and generalizability test set, we obtained
F-measure scores of 0.79 ± 0.02 and 0.74 ± 0.004, AUC scores of 0.95 ± 0.002 and
0.95 ± 0.01, respectively. Our model can accurately and efficiently identify distant
recurrences in breast cancer by combining features extracted from unstructured clinical
narratives and structured clinical data.
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1 Introduction

Distant recurrences are defined as metastasis of the primary breast tumor to lymph nodes
or organs beyond the loco-regional pathological field. Nodes located within the loco-
regional field include ipsilateral axillary, ipsilateral internal mammary, supraclavicular,
and intramammary lymph nodes [1]. Distant lymph nodes beyond the loco-regional
field include cervical, contralateral axillary, and contralateral internal mammary lymph
nodes. The most common sites of metastasis to organs are the bone, brain, lung, and
liver [1]. It is important to distinguish between local and distant recurrences for several
reasons: the categorization informs treatment decision-making and directs studies ana-
lyzing outcomes of local versus distant recurrences. Most importantly, the 10-year
survival rates are much lower for distant recurrences as compared to local recurrences
(56% after an isolated local recurrence as opposed to 9% after distant metastasis) [2].
The delineation can be an important prognostic marker for mortality.

The emerging cancer prognosis research has directed efforts towards identifying
distant recurrence events accurately and efficiently. The National Program of Cancer
Registries (NPCR) was launched to capture cancer patient information and one of its
major tasks is to capture disease prognosis status for each cancer patient. However,
many tumor registries fail to accurately identify cancer distant recurrences due to the
significant human effort required for data maintenance [3, 4]. Manual chart review is
one of the traditional methods used to identify breast cancer distant recurrences.
Unfortunately, chart review is a time-consuming and costly process. It limits the
number of samples available for research and is not feasible for large cohort studies.
Furthermore, it is subject to human error in data analysis.

Computational phenotyping aims to automatically mine or predict clinically signif-
icant, or scientifically meaningful phenotypes from structured EHR data, unstructured
clinical narratives, or combination of the two. In this study, we aim to develop a model
to identify distant recurrences within a cohort of breast cancer patients. To develop the
model, we utilized data collected in Northwestern Medicine Enterprise Data Warehouse
(NMEDW), which is a joint initiative across the Northwestern University Feinberg
School of Medicine and Northwestern Memorial HealthCare [5]. The NMEDW houses
the EHR for about 6 million patients. Both structured and unstructured data are
available in the NMEDW. Structured data typically capture patients’ demographic
information, lab values, medications, diagnoses, and encounters. Although readily
available and easily accessible, studies have concluded that structured data alone are
not sufficient to accurately infer phenotypes [6, 7]. For example, ICD-9 codes are
mainly recorded for administrative purposes and are influenced by billing requirements
and avoidance of liability [8, 9]. Consequently, these codes do not always accurately
reflect a patient’s underlying physiology. Furthermore, not all patient information (such
as clinicians’ observations and insights) is well documented in structured data [10]. As
a result, using structured data alone for phenotype identification often results in low
performance [7]. The limitations associated with structured data for computational
phenotyping have encouraged the use of clinical narratives, which typically include
clinicians’ notes, observations, referring letters, specialists’ reports, discharge summa-
ries, and records of communication between doctors and patients [11]. These clinical
narratives contain rich descriptions of patients’ disease assessment, history, and treat-
ments. However, the clinical narratives are not readily accessible without the use of
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natural language processing (NLP). The abundance of information in the free text
makes NLP an indispensable tool for text mining [12–14].

Our goal is to develop a system that combines structured EHR data and unstructured
clinical narratives to accurately and efficiently identify distant recurrences in breast
cancer. Such a model can be easily replicated and requires a minimum amount of
human effort and input.

2 Related Work

Computational phenotyping has facilitated biomedical and clinical research across
many applications, including patient diagnosis categorization, novel phenotype discov-
ery, clinical trial screening, pharmacogenomics, drug-drug interaction (DDI) and ad-
verse drug event (ADE) detection, and downstream genomics studies. Different NLP
applications have also been developed to identify breast cancer local and distant
recurrences. Carrell et al. [15] proposed a method to identify breast cancer sub-
cohorts with ipsilateral, regional, and metastatic events using the concepts identified
within the free text. The binary classification model achieved an F-measure scores of
0.84 and 0.82 in the training set and test set, respectively. However, the model could not
distinguish a local recurrence from a distant recurrence. In addition, defining the
number of hits in the system to segment the documents required substantial effort.
Using morphology codes and anatomical sites from pathology reports, Strauss et al.
[16] attempted to identify local and distant recurrences. However, their approach
required that the pathology reports be well documented under a standard format. In
addition, distant recurrence information identified from pathology report might be
incomplete becasue the majority of distant recurrences in breast cancer have been
diagnosed clinically rather than pathologically [17]. Haque et al. [18] applied a hybrid
approach to identify breast cancer local and distant recurrences using a combination of
pathology reports and EHR data. They achieved a relatively high NPVof 0.995 and a
relatively low PPV of 0.65. This model also required a minimum amount of 10%
manual chart review, which is still fairly time-consuming. In addition, the model was
not able to distinguish between local, regional, or distant recurrences. NLP has also
been applied to attempt retrieving distant recurrences for other types of cancer. Lauren
et al. [19] tried to identify distant recurrences in prostate cancer from clinical notes,
radiology reports, and pathology reports. They concluded that NLP could be used to
identify metastatic prostate events more accurately than claim data.

Clinical narratives are known to have high-dimensional feature spaces, few irrele-
vant features, and sparse instance vectors [20]. These problems were found to be well
addressed by SVMs [20], which also have been recognized for their generalizability
and are widely used for computational phenotyping [21–24]. Carroll et al. [25]
implemented a SVMmodel for rheumatoid arthritis identification using a set of features
from clinical narratives using the Knowledge Map Concept Identifier (KMCI) [26].
They demonstrated that a SVM algorithm trained on these features outperformed a
deterministic algorithm.

Recently, deep learning methods have been successfully applied to clinical text
mining. Two representative deep learning models are convolutional neural networks
(CNN) [27, 28] and recurrent neural networks (RNN) [29, 30]. They achieve state of
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the art performances on a number of clinical text mining tasks. For instance, Gehrmann
et al. [31] compared convolutional neural networks to the traditional rule-based entity
extraction systems using the cTAKES and logistic regression using n-gram features.
They tested ten different phenotyping tasks using discharge summaries. The CNN
outperformed other phenotyping algorithms in the prediction of ten phenotypes, and
they concluded that NLP-based deep learning methods improved the performance of
patient phenotyping compared to other methods. Luo et al. applied both CNN and RNN
to classify the semantic relations between medical concepts in discharge summaries
from the i2b2-VA challenge data set and showed that CNN and RNN with only word
embedding features can obtain similar performances compared to state-of-the-art sys-
tems by challenge participants with heavy feature engineering [32, 33]. Wu et al. [34]
applied CNN using a set of pre-trained embeddings on clinical text for named entity
recognition. They found that their models outperformed the baseline of conditional
random fields (CRF). Jagannatha et al. [35, 36] experimented with RNN, long short-
term memory (LSTM), gated recurrent units (GRU), bidirectional LSTM, combinations
of LSTM with CRF, and CRF to extract clinical concepts from texts. They found that
all variants of RNN outperformed the CRF baseline.

A combination of structured data and narratives for phenotyping has been found to
improve model performances. DeLisle et al. [37] implemented a model to identify acute
respiratory infections. They used structured data combined with narrative reports and
demonstrated that the inclusion of free text improved the PPV score by 0.2–0.7 while
retaining sensitivities around 0.58–0.75. In a study of the identification of methotrexate-
induced liver toxicity in patients with rheumatoid arthritis, Lin et al. [38] obtained an F-
measure of 0.83 in a performance evaluation. Liao et al. [39] implemented a penalized
logistic regression as a classification algorithm to predict patients’ probabilities of
having Crohn’s disease and achieved a PPV score of 0.98. Both Lin’s and Liao’s
methods experimented with a combination of features from structured EHR- and
NLP-processed features from clinical narratives. Their studies showed that the inclusion
of NLP methods resulted in significantly improved performance.

3 Methodology

3.1 Cohort Description

Patients diagnosed with breast cancer between January 1, 2001 and December 31, 2015
were drawn from NMEDW. Patients were identified by ICD-9 codes. In total, 19,874
females were included. Within this cohort, to rule out the subjects that were not
primarily diagnosed and treated in our hospital, only cases with at least one surgical
pathology report documented in the desired time window were selected (N = 7060).
Furthermore, 161 subjects with initial stage IV breast cancer were ruled out for further
study. In total, 6899 subjects were identified and included in this study. The workflow
to generate this data set is presented in Fig. 1.

To establish a gold standard for algorithm development, each patient was assigned a
definite distant recurrence status (“yes” or “no”) according to manual chart review.
Only metastasis of the primary breast tumor to lymph nodes or organs beyond the loco-
regional pathological field were defined as distant recurrences. In total, 1995 subjects
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were annotated twice by two annotators (co-authors, medical student AR; breast
surgery fellow SE) and were included for model training and validation. The inter-
rater agreements for the two annotators were measured by Cohen’s kappa score, and the
obtained score is 0.87 [40]. The items without agreements were resolved by a discus-
sion between the two annotators. The other 4904 subjects were annotated once by
annotators (co-authors, post-doc fellow XL; Ph.D. candidate ZZ) and were used as an
independent set for model generalization test. These annotations were conducted over a
span of 15 months (completed September 2017).

The 1995 double-annotated subjects were randomly split into a cross-validation set
and a held-out test set according to a 7:3 ratio. In the cross-validation set, fivefold cross
validation was applied with the 1396 samples. Among these 1396 samples, 138 distant
recurrence events were identified; among the 599 samples in held-out test set, 55 distant
recurrences were identified. In the generalization test set, 443 distant recurrences were
identified among the 4904 samples. The cohort distribution is shown in Table 1.

3.2 Structured Clinical Data

Automated SQL codes were developed to query structured data from NMEDW. In
total, 18 structured clinical variables were retrieved or derived. The variable names and
corresponding categories or values are displayed in Table 2. Demographic data such as
the age of diagnosis, race, smoking history, alcohol usage, family cancer history, and
insurance type were queried. Smoking history is categorized as “yes,” “no,” “ex-
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Fig. 1 Workflow to identify the cohort
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smoker,” or “unknown.” Alcohol usage is categorized as “no,” “moderate,” “heavy,”
“former,” or “unknown.” Family history was self-reported all cancer histories in
extended family members. Tumor characteristics and biomarkers, such as estrogen
receptor (ER), progesterone receptor (PR), HER2, P53, nodal positivity, histology,
tumor grade, and tumor size were retrieved. Nodal positivity is a variable to indicate
whether any positive nodes were found in the axillary lymph nodes examination, and is
categorized as “positive,” “negative,” or “unknown.” The variable histology and nodal
positivity were selected, because subjects with invasive ductal breast cancer or positive
lymph nodes are more likely to develop a distant recurrence compared to those that
have ductal in situ or negative lymph nodes [41]. IDC is invasive ductal carcinoma,
DCIS is ductal carcinoma in situ, ILC is invasive lobular carcinoma, and network
category is the network of patient’s insurance plan. Primary surgery type is categorized
as “Breast conservation surgery,” “mastectomy,” “no,” or “unknown.”

Table 1 Cohort distribution in the training and generalization set

Total Distant recurrence Percentage (%) Overall percentage (%)

Double-annotated set 1995 193 9.87% 9.22%

Cross-validation set 1396 138 9.89%

Held-out test set 599 55 9.19%

Single-annotated set 4904 443 9.03%

Table 2 The name and corresponding categories (values) of the 18 retrieved structured clinical variables

Variable name Category

Age of diagnosis Continuous

Race White, Black, Asian, other

Smoking history Yes, no, ex-smoker, unknown

Alcohol usage No, moderate, heavy, former, Unknown

Family cancer history Yes, no, unknown

Insurance type Network category

Estrogen receptor Positive, negative, unknown

Progesterone receptor Positive, negative, unknown

HER2 Positive, negative, unknown

P53 Positive, negative, unknown

Nodal positivity Positive, negative, or unknown

Histology IDC, DCIS, ILC, unknown

Grade Grade1, grade2, grade3, unknown

Size 0–2 cm, 2 cm–5 cm, > 5 cm, unknown

Surgery type Mastectomy, breast conservation surgery, unknown

Deceased Yes, no

Targeted therapy Yes, no

Radiation Yes, no
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Additional clinical variables were derived to help identify distant recurrences. Vari-
ables of deceased, targeted therapy, and radiation were developed. The deceased
variable is a binary variable to indicate whether a patient was deceased before the age
of 75. Intuitively, patients with distant recurrences might have a shorter survival length
compared to the women who do not have distant recurrences. After a discussion with a
domain expert (co-author SK), we chose the age of 75 as the cutoff. Another variable
“targeted therapy” is a binary variable created to indicate whether the patient has taken
any of the following drugs: “Afinitor,” “Everolimus,” “Bevacizumab,” “Avastin,”
“Ibrance,” or “Palbociclib.” These drugs are prescriptions for patients with distant
recurrences. An additional variable “radiation” is a binary variable indicating whether
the subject has received radiation treatment at the site of metastases, such as brain, lung,
or bone. This variable was derived from the intuition that patients receiving radiation at a
site different from the primary tumor are at a higher chance of having distant
recurrences.

3.3 Clinical Narratives

We queried the NMEDW for clinical narratives generated before May 2016 (the start
time of manual chart review) or the date when the patient was censored. All inpatient
and outpatient notes were retrieved without any provider type restriction. The retrieved
clinical narratives include progress notes, pathology reports, telephone encounter notes,
assessment and plan notes, problem overview notes, treatment summary notes, radiol-
ogy notes, lab notes, procedural notes, and nursing notes. Only notes generated after the
diagnosis of breast cancer were retrieved. We only included the notes having at least
one mention of “breast.” After retrieving the narratives, we first preprocessed the
corpus by removing duplicate copies, tokenizing sentences, and removing non-
English symbols. Following these preprocessing steps, we annotated the medical
concepts in the sentences using MetaMap, an NLP application to map the biomedical
text to the UMLS Metathesaurus [42]. The surrounding semantic context was deter-
mined. CUIs that were tagged as negated by NegEx [43] were excluded (NegEx is a
negation tool configured in MetaMap). If multiple CUIs were mapped, the one with
maximumMMI score (a score ranked byMetaMap) was retained. In order to complete-
ly and accurately exclude negations or unrelated contextual cues, such as a differential
diagnosis event, sentences with negative contextual features (e.g., “no,” “rule out,”
“deny,” “unremarkable”) and uncertain contextual features (e.g., “risk,” “concern,”
“worry,” “evaluation”) were also removed. This customized list of contextual features
was obtained from the development corpus.

3.4 Feature Generation

To focus our NLP efforts, we identified a set of target distant recurrence concepts with
the help of sample notes. We reviewed a development corpus of ten randomly selected
samples’ notes with distant recurrences and extracted partial sentences that were related
to a breast cancer distant recurrence. These extracted partial sentences appear in
Table S1. The initial set contains 20 partial sentences. These partial sentences were
tagged by MetaMap, and the CUIs corresponding to each concept was obtained. The
customized dictionary contains 83 CUIs (Table S2). After data preprocessing and
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concept mapping, only CUIs with highest MMI score that also fall within the custom-
ized dictionary were used as features for model training. CUIs with MMI score smaller
than one were filtered and excluded. Following this feature selection, there were 83
narrative-based features remaining for inclusion in the machine learning algorithm. In
addition to the obtained CUI features, the 18 structured clinical variables described
above were used as additional features.

3.5 Prediction Model and Evaluation

We used support vector machine (SVM) to develop an algorithm to predict whether
patients had distant recurrences. SVMs have been widely used for computational
phenotyping [21, 22]. We applied linear kernel type for the SVM models. In our
experiments, we trained four baseline classifiers on different feature types: a full set
of medical concepts tagged by MetaMap [42], a filtered set of medical concepts tagged
by MetaMap, only the structured clinical data, and a standard bag of words from
clinical narratives. TfIDFVectorizer class in scikit-learn [44] was used to convert the
raw documents to a matrix of TF-IDF features to assemble a bag of words. In the full
MetaMap and bag of words, chi-square test was applied to select features before
training the model to remove the common words that exist in clinical narratives. Only
top 5% features were retained for modeling.

In the model evaluation, we chose precision, recall, macro F-measure, and area
under curve (AUC) score as measurement matrix. Cross-validation performance de-
pends on the randomly shuffled split of the training data set into multiple folds. In order
to obtain robust performance statistics, each fivefold cross validation is replicated 20
times using shuffled stratified splits initialized with different random seeds.

3.6 Deep Learning Models

We also explored several deep learning models for distant recurrences prediction. As
shown in Fig. 2. We used three deep learning models: (1) a Multi-Layer Perceptron
(MLP) with structured clinical features and CUIs one-hot vectors as input. (2) A
convolutional neural network (CNN) with clinical text, structured clinical features,
and CUIs one-hot vectors. CNN is a widely used deep learning model which has been
successfully applied in many text classification tasks. In this study, we used CNN to
learn clinical narrative features automatically. We used all types of notes and 200
dimensional word2vec word embeddings learned from MIMIC-III clinical text as the
input of the convolutional layer. (3) A CNN with CUIs embeddings and structured
clinical features. We also treated CUIs sequences as words in clinical narrative text and
used CNN to learn text features. We tried to add paddings between CUIs in different
sentences. We used pre-trained CUIs embeddings made by De Vine et al. [45] as the
input entity representations of CNN. In the three figures, w0, w1, w2,..., wn are words
and e0, e1, e2,..., en are CUIs in a record. A one-dimensional convolution layer was built
on the input word embeddings or entity embeddings. We used max pooling to select the
most important feature with the highest value in the convolutional feature map. We then
concatenated the max pooling results of word embeddings or CUIs embeddings with
structured clinical features and/or CUIs one-hot vectors. The concatenated hidden
features were fed into a fully connected layer, then a dropout and ReLU activation
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layer. Finally, a fully connected layer is fed to a softmax output layer, whose output is
the probability distribution over labels.

We implemented our deep learning models using TensorFlow [46], a popular deep
learning platform. We set the following parameters for our model: the number of
convolution filters, 32; the convolution kernel size, 4; the dimension of hidden layer
in the fully connected layer, 64; dropout keep probability, 0.8; learning rate, 0.001;
batch size, 64; the number of learning epochs, 30. We also tried other settings of these
parameters but did not find much difference. We used softmax cross entropy loss as the
loss function and Adam algorithm [47] as the optimizer.

4 Experiment Results

As demonstrated in Table 3, clinical data with a significant difference between the
distant recurrence group and the non-recurrence group in the double-annotated training
set are presented. Compared to the non-recurrence patients, women with distant
recurrences had a higher percentage of nodal positivity and higher grade of tumor,
were more likely to be diagnosed with invasive ductal carcinomas, had more radiation
performed at the metastasis site, had received more targeted therapies, and were more
likely to die before the age of 75.

Linear kernel was applied for the SVM model (default parameters in the Python
package “sklearn.svm” were used [44]). The performance of our proposed model
significantly outperformed the other four baselines in the cross-validation test; the P
value for Student’s t test was 0.0004 comparing our proposed model with the second-
ranked model of filtered MetaMap.

We trained an SVMmodel on the training set (1396 samples) and then predicted labels
on the held-out test set (599 samples). Comparing the predicted labels/probabilities and the
annotated labels, the obtained precision, recall, F1-measure score, and AUC scores are
presented in Table 4. The F1-measure score and AUC score obtained in our proposed

(a) MLP (b) Clinical features + CUIs +word CNN (c) Clinical features + CUIs CNN

Fig. 2 Deep learning architectures for distant recurrences prediction. a Multi-layer perceptron with clinical
features and CUIs. b Convolutional neural network with clinical text, structured clinical features, and CUIs
one-hot vectors. c Convolutional neural network with CUIs embeddings and structured clinical features
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model were 0.78 and 0.95, respectively. The model with NLP-features, namely Filtered
MetaMap, also had a notable performance with AUC of 0.93. The performance in our
proposed model outperformed all the baseline models. The performance was improved
when we combined the EHR data and clinical narratives as features.

In addition to our training and validation analyses, we applied our fitted model to
predict labels on the generalization set, which contained 4904 single-annotated sam-
ples. In this generalization test, we obtained a precision of 0.76, a recall of 0.72, a F-
measure of 0.74, and an AUC score of 0.93, which had a similar performance as the
held-out test.

From the fitted SVM model using the 1396 samples in the training set, we retrieved
the coefficient scores for each feature. The top 15 ranked coefficient scores and their
corresponding variable names appear in Table 5. Three of the clinical variables
(radiation, deceased, and targeted therapy) were highly ranked on the list. These three
variables were treatment or outcome variables. The rest of the top-ranked features were
concepts obtained from clinical narratives. Most of the CUIs were either related to

Table 3 Descriptive summaries of 1995 subjects’ clinical data. The significance test is performed between the
distant recurrence group and the non-recurrence group. Only data with P values less than 0.05 are presented.
DR stands for distant recurrence. The mean and standard deviation are calculated for continuous variables.
Numbers and percentages are presented for categorical variables. P values were obtained using Student’s t test
for continuous variables and chi-squared test for categorical variables

Double-annotated set N = 1995 DR N = 193 No DR N = 1802 P value

Nodal positivity (%) 544 (27.3%) 103 (53.4%) 441 (24.5%) 1.4E-14

Histology (%) 2.6E-06

IDC 1530 (76.7%) 174 (90.2%) 1356 (75.2%)

DCIS 279 (14.0%) 3 (1.6%) 276 (15.3%)

ILC 155 (7.8%) 15 (7.8%) 140 (7.8%)

Grade (%) 2.1E-10

Grade 1 458 (23.0%) 16 (8.3%) 442 (24.5%)

Grade 2 851 (42.7%) 73 (37.8%) 778 (43.2%)

Grade 3 665 (33.3%) 101 (52.3%) 564 (31.3%)

Deceased (%) 157 (7.9%) 98 (50.8%) 59 (3.3%) < 2.2E-16

Radiation (%) 67 (3.4%) 52 (26.9%) 15 (0.8%) < 2.2E-16

Targeted therapy (%) 60 (3.0%) 44 (22.8%) 16 (0.9%) < 2.2E-16

Table 4 The number of features (in parenthesis) and the precision, recall, F1-score, and AUC scores obtained
in the external test using the test set (599 samples)

Model Precision Recall F1-score AUC

Filtered MetaMap + clinical data (101) 0.82 0.75 0.78 0.95

Full MetaMap (1537) 0.53 0.51 0.50 0.56

Filtered MetaMap (83) 0.72 0.62 0.67 0.93

Clinical data (18) 0.68 0.47 0.56 0.87

Bag of words (4959) 0.45 0.50 0.48 0.55
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metastases events or related to the metastatic sites that breast cancer could spread to.
The term “IXEMPRA” is a prescription medicine used for locally advanced breast
cancer or breast cancer with distant recurrences.

Table 6 presents the distant recurrence prediction performance of deep learning
models. Building a MLP on structured clinical features and filtered CUIs one-hot
vectors results the best performance, with a precision of 0.81 ± 0.05, a recall of 0.78
± 0.04, and an F1-measure score of 0.79 ± 0.02 on the 599 test set. Applying this model
on the generalizability test set of 4904 samples, results in a precision of 0.77 ± 0.02, a
recall of 0.70 ± 0.02, an F1-measure score of 0.74 ± 0.004, and an AUC of 0.95 ± 0.01,
which again shows the effectiveness of filtered CUIs. We can also note that MLP has
better predictive capabilities compared to SVM and building a MLP on structured
clinical features and filtered CUIs one-hot vectors results in the best performance
(p < 0.05 using Student’s t test).

5 Discussion

In this study, we combined 83 features from unstructured clinical narratives and 18
features from structured clinical data to identify distant recurrences in breast cancer.

Table 5 Top 15 variables with their corresponding coefficients

CUI Name Coefficient Partial sentences

C0153678 Secondary malignant
neoplasm of pleura

1.00 Cancer metastatic to pleura metastatic cancer to pleura

Radiation Clinical variable 0.90

Deceased Clinical variable 0.90

Targeted
therapy

Clinical variable 0.84

C0153690 Secondary malignant
neoplasm of bone

0.76 Metastases to bone, bone metastases

C1967552 IXEMPRA 0.71 ixempra

C0278488 Carcinoma breast stage
IV

0.70 Metastatic breast cancer, breast cancer stage iv,
metastatic breast carcinoma

C0494165 Secondary malignant
neoplasm of liver

0.62 Liver metastases, liver metastatic disease, metastatic
disease liver, metastases to the liver, liver metastases

C0220650 Metastatic malignant
neoplasm to brain

0.59 Brain metastases

C1266909 Entire bony skeleton 0.39 Bone

C2939420 Metastatic neoplasm 0.27 Metastatic disease

C0036525 Metastatic to 0.25 Metastatic

C0027627 Neoplasm metastasis 0.25 Metastatic disease

C0346993 Secondary malignant
neoplasm of female
breast

0.23 Metastatic breast cancer to the

C1522484 Metastatic qualifier 0.22 Metastatic
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Clinical narratives were extracted from progress notes, pathology reports, telephone
encounter notes, assessment and plan notes, problem overview notes, treatment sum-
mary notes, radiology notes, lab notes, procedural notes, and nursing notes generated
after diagnosis of primary breast cancer. The clinical narratives were tagged by NLP
application MetaMap to generate UMLS concepts. After filtering out concepts that
were not in the customized dictionary, the remaining concepts were combined with the
structured clinical data to train an SVM and deep dearning models for distant recur-
rence identification. We were able to identify structured clinical variables that could
stratify the groups of women with and without distant recurrences. Using the SVM
model, we obtained F-measure scores of 0.78 and 0.74, AUC scores of 0.95 and 0.93,
in the test and generalizability test set, respectively. Using the deap learning model, we
obtained F-measure scores of 0.79 ± 0.02 and 0.74 ± 0.004, AUC scores of 0.95 ±
0.002 and 0.95 ± 0.01, respectively. These results seem to suggest that convolutional
neural networks and multilayer perceptron can further improve classification perfor-
mance, though bearing with heavier machinery and less interpretability to some degree.
Both the SVM and deep learning models achieved the best performance using filtered

Table 6 Distant recurrences prediction performances of deep learning models. We run all models ten times
and report the mean plus/minus standard deviation

Model Precision Recall F1-score AUC

MLP + structured clinical features 0.6596 ± 0.0320 0.4626 ± 0.0465 0.5430 ± 0.0367 0.9250 ± 0.0071

MLP + filtered CUIs one hot 0.7526 ± 0.0263 0.7091 ± 0.0393 0.7326 ± 0.0173 0.9278 ± 0.0040

MLP + structured clinical feature +
filtered CUIs one hot

0.8147 ± 0.0514 0.7782 ± 0.0418 0.7942 ± 0.0234 0.9489 ± 0.0023

CNN + filtered CUIs one-hot em-
beddings (no padding) + struc-
tured clinical features

0.6529 ± 0.0316 0.3782 ± 0.0839 0.4703 ± 0.0741 0.9112 ± 0.0134

CNN + filtered CUIs one-hot em-
beddings (padding) + structured
clinical features

0.6332 ± 0.0561 0.4109 ± 0.0733 0.4925 ± 0.0535 0.9107 ± 0.0093

CNN + filtered CUIs dense
embeddings (no padding) +
structured clinical features

0.5939 ± 0.0509 0.3491 ± 0.0657 0.4356 ± 0.0496 0.8998 ± 0.0167

CNN + filtered CUIs dense
embeddings (padding) + struc-
tured clinical features

0.6010 ± 0.0685 0.3327 ± 0.0630 0.4234 ± 0.0489 0.8849 ± 0.0167

CNN + filtered CUIs one-hot em-
beddings (no padding)

0.0341 ± 0.0705 0.0091 ± 0.0129 0.0140 ± 0.0191 0.4710 ± 0.0265

CNN + filtered CUIs one-hot em-
beddings (padding)

0.1005 ± 0.0705 0.0291 ± 0.0195 0.0443 ± 0.0291 0.5389 ± 0.0281

CNN + filtered CUIs dense
embeddings (no padding)

0.0488 ± 0.0461 0.0236 ± 0.0258 0.0296 ± 0.0293 0.5258 ± 0.0244

CNN + filtered CUIs dense
embeddings (padding)

0.1121 ± 0.0757 0.0327 ± 0.0254 0.0499 ± 0.0376 0.5231 ± 0.0257

Word CNN 0.7125 ± 0.0515 0.3909 ± 0.0801 0.5007 ± 0.0757 0.8953 ± 0.0145

Word CNN + filtered CUIs one-hot
+ structured clinical features

0.7862 ± 0.0180 0.6764 ± 0.0711 0.7255 ± 0.0455 0.9404 ± 0.0052
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MetaMap + clinical data as features. In the filtered CUIs, only the concepts that were
associated with distant recurrence were retained. In a preliminary analysis, we have
found that some of the clinical data features were significantly associated with distant
recurrences. Since these features were independently associated with distant recurrence,
when using SVM model with a linear kernel, we obtained comparable results with the
deep learning models.

During the feature coefficient study in SVM model, we found that the features
“secondary malignant neoplasm of pleura, radiation, deceased, targeted therapy, and
secondary malignant neoplasm of bone” were the top-ranked features. Intuitively,
women with distant recurrences have a higher chance of receiving radiation at the
metastatic site and of receiving targeted therapy compared to those without distant
recurrences. They are also more likely to have a lower survival rate. The most common
sites of metastasis to organs were the bone, brain, lung, and liver [1]. In our study, we
found the mentions of metastatic to bone, liver, and brain were also top ranked. The
terms “metastatic” and “breast cancer” were also more likely to appear in the clinical
notes of patients with distant recurrences.

In this study, modeling CUI sequences in the CNN model did not improve the
model’s performance. Indicating that including word orders in the text as features is not
helpful. This is likely due to clinical narrative text contains noises. Excessively busy
residents and senior clinicians might create notes by simply copying and pasting
previous encounter notes, while making only minor updates for the most recent
appointment. This results in a high similarity between notes, even though they contain
different important information. The same applies to the full set of MetaMap concepts,
which is similar to the bag of words. In the model using only filtered words, where only
highly associated words were retained, we have obtained better results.

For the baseline models of full MetaMap and bag of words, we have applied chi-
square test to select features before training the model. Only the top 5% features were
retained for full MetaMap and bag of words modeling. This test might have the
potential for overfitting in cross validations (AUC = 0.78, SD = 0.04 for full MetaMap,
AUC = 0.82, SD = 0.024 for bag of words). Indeed, we saw a lower performance in the
held-out test for full MetaMap and bag of words in the SVM model. To adjust this
problem, we tested different thresholds for the chi-square test selection. However, we
found 5% ended with the best results.

Identifying breast cancer distant recurrence in clinical data sets is important for
clinical research and practice. Annotation of distant recurrence is difficult using
standard EHR phenotyping approaches and is commonly beyond the scope of manual
annotation efforts by cancer registries. A model using natural language processing,
EHR data, and machine learning to identify distant recurrences in breast cancer patients
allows more accurate data mining and significantly less time-consuming manual chart
review. We expect that by minimally adapting the positive concept set, this study has
the potential to be replicated at other institutions with a moderately sized training data
set. In this study, we generated features using sentences extracted from the clinical
narratives combined with structured data. The training and testing data sets were cross
annotated in the process, which offered a solid ground truth for the study. Replicating
this model requires minimal outside effort. We offered the customized dictionary in this
study, so a user can retrieve the required notes and clinical structured data in order to
replicate this study. After the rigorous manual chart review and feature retrieval, our
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data set has offered a gold-standard data set with rich, validated information for further
breast cancer research.

When replicating this study at another institution, there is a chance that one will not
be able to find the structured clinical data in their databases. If this is the case, some of
the structured data can be found from other resources. Variables of “histology” and
“lymph node status” can be extracted from pathology reports using a rule-based system.
For example, expressions of “total lymph nodes,” “total lymph nodes number positive,”
“axillary lymph nodes examined,” “axillary lymph nodes examined number of positive
versus total” can be used to extract lymph node status from pathology report at our
institution. Survival information can be found in the administrative billing system.

6 Future Work

The NLP pipeline cannot characterize the context of features. Clinical narratives
contain patients’ concerns, clinicians’ assumptions, and patients’ past medical histories.
Clinicians also record diagnoses that are ruled out or symptoms that patients denied.
Our next aim will be that such conditions, mentions, and feature relations will be
extracted to better distinguish differential diagnoses. Generalized relation and event
extraction, rather than binary relation classification, will be conducted. To this end,
graph methods are a promising class of algorithms and should be actively investigated
[48, 49].

In this study, we have chosen SVM model with linear kernel for interpretation
convenience. On the other hand, we experimented with multiple convolutional neural
networks and multilayer perceptrons and found that they may result in better perfor-
mance. In the future, we will test our data with more machine learning models in order
to identify the sweet spot between better performance and more interpretability.

We will also aim to address the heterogeneity problem in clinical narratives. It is a
common problem in clinical narratives due to the variance in physicians’ expertise and
behaviors [50]. Features derived from clinical narratives included in this study were
extracted from notes generated by clinicians with different specialties and professional
levels of expertise. As a result, some content was not relevant to the breast cancer
distant recurrence event, even though we had limited the notes to include the mention
of “breast.” For example, a liver cancer metastasis to the breast from a primary liver
tumor would be difficult to identify. We will need to resolve the heterogeneity in
clinical narratives.

7 Conclusions

We developed multiple machine learning models by combining structured clinical data
and unstructured clinical narratives in order to identify distant recurrence events in
breast cancer. Our model choices include SVM with linear kernels that are easy to
interpret, as well as convolutional neural networks and multilayer perceptrons that are
more accurate. We demonstrated the high accuracy and efficiency of our models, using
cross validation, held-out test evaluation, and a further generalization set evaluation.
Our proposed models allow for more accurate and efficient identification of distant
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recurrences than single modality models using either clinical narratives or structured
clinical data. Thus, our models offer a significantly less time-consuming and practical
alternative to manual chart review. This is particularly relevant in an era when
evidence-based medicine receives growing attention and there is more emphasis on
computational phenotyping and data-driven discovery. This model would also be
valuable and applicable to research in other medical fields beyond breast cancer.
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