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A B S T R A C T

Objectives: Extracting genetic information from a full range of sequencing data is important for understanding
disease. We propose a novel method to effectively explore the landscape of genetic mutations and aggregate
them to predict cancer type.
Design: We applied non-smooth non-negative matrix factorization (nsNMF) and support vector machine (SVM)
to utilize the full range of sequencing data, aiming to better aggregate genetic mutations and improve their
power to predict disease type. More specifically, we introduce a novel classifier to distinguish cancer types using
somatic mutations obtained from whole-exome sequencing data. Mutations were identified from multiple can-
cers and scored using SIFT, PP2, and CADD, and collapsed at the individual gene level. nsNMF was then applied
to reduce dimensionality and obtain coefficient and basis matrices. A feature matrix was derived from the
obtained matrices to train a classifier for cancer type classification with the SVM model.
Results: We have demonstrated that the classifier was able to distinguish four cancer types with reasonable
accuracy. In five-fold cross-validations using mutation counts as features, the average prediction accuracy was
80% (SEM=0.1%), significantly outperforming baselines and outperforming models using mutation scores as
features.
Conclusion: Using the factor matrices derived from the nsNMF, we identified multiple genes and pathways that
are significantly associated with each cancer type. This study presents a generic and complete pipeline to study
the associations between somatic mutations and cancers. The proposed method can be adapted to other studies
for disease status classification and pathway discovery.

1. Background and significance

Personalized medicine is becoming increasingly popular in cancer
where genetic profiles of tumors can be used to guide clinical decisions
such as treatment options and preventive measures [1]. The develop-
ment of massively parallel, high throughput DNA sequencing tech-
nology has enabled the cataloging of somatic mutations in cancer,
making genomic data increasingly accessible. Understanding the asso-
ciation between genetics and disease is important for understanding the
underlying pathophysiology. In cancer, many molecular and genomic
studies have identified somatic mutations within genes associated with
cancer initiation, progression, and treatment responses [2–4].

The majority of sequencing studies have focused on the

identification of individual driver genes [5]. However, driver mutations
are often highly heterogeneous between cancer genomes, even within
the same type of cancer [6]. Furthermore, studies have observed cancer
to be highly complex, often resulting from multiple interacting muta-
tions and related pathways [7,8]. While many methods attempt to ad-
dress the complex mutational heterogeneity in cancer, it still remains a
challenge due to limited study-power and lack of complete knowledge
regarding gene and pathway interaction [9–13]. Despite the fact that
mutations in many genes have been identified in cancer, it is not yet
understood how these genes cumulatively interact in the development
and progression of cancer. It has been a challenge to study these mu-
tations and their interactions together due to large-scale complexity.

It is important to consider methods that can encompass the full
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scope of genes. When genes and mutations are studied together, novel
biological interactions and pathways can be identified to further pro-
vide biological and clinical insights. Many groups have previously uti-
lized feature selection methods for removing irrelevant and redundant
information to deal with complexity problems. Vector Quantization
(VQ) [14] and Principle Component Analysis (PCA) [15] have been
widely used for feature selection. More recently, attention has been
drawn to non-negative matrix factorization (NMF). In a face recognition
study, Lee et al. suggested NMF could outperform VQ and PCA for
feature recognition [16]. In addition, the non-negative constraint of
NMF is important because non-negativity is more realistic, easier to
interpret, and prevalent in real world applications. In particular, NMF
has been applied to disease subtype studies using gene expression data
[17,18] and sequencing data [19–21]. With the aim to uncover the
genetic complexity behind cancer development, and to identify muta-
tions that directly affect processes involved with oncogenesis, we pro-
pose a framework utilizing NMF.

In our proposed framework, NMF was applied to discover latent
factors from somatic mutations. The discovered latent factors were used
to train an SVM model for cancer type classification. The NMF-SVM
combination was rigorously evaluated and compared to different
baselines. Association studies were performed between the factor ma-
trices derived from NMF and cancer type using penalized logistical
regressions. Major factors associated with each cancer type were in-
vestigated, and significant genes were identified for investigation in
pathway discovery analysis. In addition to this proposed framework
serving as a disease type classifier, it can also be utilized to elucidate
novel biological interactions and pathways for disease. The details of
the study are reported below.

2. Material and methods

2.1. Mutation profiles

As a pilot study, four prevalent cancers were retrieved from The
Cancer Genome Atlas (TCGA), including Glioblastoma Multiforme
(GBM), Breast invasive carcinoma (BRCA), Lung Squamous Cell
Carcinoma (LUSC), and Prostate Adenocarcinoma (PRAD). Somatic
mutations were identified from 2431 tumors (Table 1). SnpEFF [22]
and ANNOVAR [23] were used to annotate 24,588 missense mutations
and 57,319 nonsense mutations in the study cohort. Each mutation was
functionally scored for being potentially deleterious using SIFT [25],
PolyPhen2 (PP2) [26], and CADD [24] scores. In genes containing
multiple mutations, SIFT, PP2, and CADD scores, as well as mutational
frequency were collapsed and studied as a single variable separately,
known as gene burden [24]. Predicted pathogenicity scores (SIFT, PP2,
and CADD) were calculated for each mutation within a gene and col-
lapsed as a sum to calculate the gene burden for a specific gene.
Namely, gene burden represents a gene’s total predictive pathogenicity
based on mutation data. Thus, gene burden was used to represent the
damage level of a gene from multiple perspectives. A workflow is il-
lustrated to show the methods used in this study (Fig. 1).

2.2. Gene pre-selection

Prior to modeling, we evaluated whether a subset of representative
genes could be derived without information lost to achieve a more
balanced sample feature ratio and reduce noise. The collapsed score in
each gene was used as an input variable while the cancer type was used
as the output variable. Multinomial logistic regression was fit, and a P-
value that yields the null hypothesis of corresponding coefficient being
zero was used as an indicator for the pre-selection. The selection cri-
terion for this initial screening was set with a P-value less than or equal
to a cutoff. In order to reduce noise and to prevent model overfitting,
we tested the model using multiple cutoff thresholds of 0.05, 0.1, 0.2,
0.5, and 1. We compared the results derived from each threshold and
selected the most reasonable cutoff based on prediction accuracy and
number of features.

2.3. Applying NMF to discover latent factors of somantic mutations

Genes passing the selection threshold were used as inputs for the
NMF study. Assume there were N subjects and M selected genes. The
data were represented by a matrix AScore of size ×M N . The columns of
AScore represents the collapsed score of the M genes in the N subjects.
The matrix AScore was then decomposed using NMF. The purpose of this
study was to find a set of intrinsic patterns that are likely to distinguish
cancer types. To perform NMF, the matrix AScore was factored into two
low-rank matrices W and H . Mathematically, AScore is approximated by
A WH.Score Matrix AScore is the approximate linear combinations of the
column vectors in matrixW and the coefficients supplied by columns in
matrix H . Matrix W has size ×M K , with each of the K columns re-
presenting a group of weighted genes and wij corresponding to the
weight of gene i in group j. K denotes the number of factors and is a
given input. Matrix H has size ×K N , where each of the N columns
denotes the feature coefficients for each subject. Entry hij is the value of
feature i in sample j. The decomposition is achieved by iteratively
updating the matrix W and H to minimize a divergence objective
[16,25]. Specifically, for the purpose of sparseness, we used non-
smooth Nonnegative Matrix Factorization (nsNMF) [26]. More specifi-
cally, the application of nsNMF led to a high degree of sparseness by
adding a positive symmetric matrix in the objective function. We
achieved modest to high degree of sparseness in both the W (average
51% sparseness) and H matrix (average 85% sparseness). Each analysis
was repeated ten times to address the local optima problem.

2.4. Classifier training

Matrix H has size ×K N , where each of the N columns denotes the
feature coefficients for the corresponding subject. To retain the in-
formation from both W and H matrices, a new matrix F was generated
by multiplying the transposed matrix AScore with matrixW . Specifically,
an entry in matrix F was computed as = =f A Wij x

m
ix xj1
T . Matrix F has

size ×N K , with each of the K columns representing the coefficient for
each subject. Since A WHScore , matrix F can be approximated by a
kernel matrix × ×W H W( )T . Subsequently, columns in matrix F were
utilized as features to train the classifier. Support vector machine (SVM)
was used for the training, where each column corresponds to one pre-
dictor in the model. The Radial Basis Function (RBF) kernel was used,
with parameters of gamma and C set to default. This trained SVM model
was a cancer type classifier.

2.5. Factor number selection

Note that before factorization, the number of factors K need to be
pre-defined. Typically, the number of factors K is chosen so that

+ × < ×N M K N M( ) [16]. Selection of K is critical because it de-
termines the number of patterns to be found. Numerous studies have
presented different methods for factor number selection: The factor

Table 1
The number of samples in each cancer type and the corresponding number of
somatic mutations. Mutations annotated with moderate effects are missense
mutations or in-frame shift mutations. Mutations annotated as high effects are
nonsense mutations. Numbers in parenthesis are standard deviations.

Cancer Sample size Somatic
moderate

Somatic high

BRCA Breast Invasive Carcinoma 1044 68 (11) 20 (5)
LUSC Lung Squamous Cell

Carcinoma
497 214 (15) 44 (3)

PRAD Prostate Adenocarcinoma 497 34 (19) 8 (3)
GBM Glioblastoma Multiforme 393 133 (55) 27 (9)

Z. Zeng, et al. Journal of Biomedical Informatics 96 (2019) 103247

2



number K can be determined based on different metrics composing of a
cophenetic correlation coefficient [18,26], variation of sum of squares
[27], or maximum information reservation [28]. In our study, the most
important feature for the classifier is the ability to identify intrinsic
patterns that best distinguish cancer types accurately. To achieve this, a
numerical screening test was conducted to screen through the different
number of factors for best prediction performance. The screened factor
numbers ranged from 2 to 15. Multi-class prediction accuracy in each
classification was obtained as a performance measurement. Five-fold
cross-validation was conducted using multiple different factor numbers.
The factor number with the best performance in the cross-validation
was chosen. Each experiment was replicated ten times with different
initial seeds. Prediction accuracy, precision, recall, and f-measure were
used as performance evaluation matrices.

2.6. Evaluation

To set up baselines for comparison, the mutation frequency and the
collapsed scores were used as independent predictors to fit SVM models
and penalized logistic regression models were used to predict cancer
types. All somatic mutations were also used as predictive variables for
cancer classification using the SVM and penalized logistical regression
model. A number of models have been developed for cancer classifi-
cation utilizing somatic mutation profiles, including variations of CADD
scores [29], logistical regression on L1-regularised terms [30], and
SVM-RFE [30]. In this study, we compared the performances between
our proposed model and these reported methods for cancer classifica-
tion. All studies were replicated ten times with different initial seeds
and significance tests were performed for evaluations. P-values were
obtained for the evaluations.

2.7. Pathway study

The feature matrix F was obtained by multiplying a transposed

matrix AScore with matrix W , with size ×N K , where each K columns
represents the coefficient for each subject. To determine the association
level of each factor with each cancer type, elastic net regression models
were fitted using the cancer type as the output variable and each of the
columns in the F matrix as input variables. To differentially discover
pathways for a cancer type, subjects with the cancer type of interest
were treated as cases and the remaining subjects as controls. The reg-
ulation parameter λ was selected using ten-fold cross-validation.
Association effects for each feature were represented by the beta value
and the vector was denoted as . We selected the factor corresponding
to the largest , and denote the factor as a cancer-relevant factor. After
selecting the factor, we utilized the matrix W to rank genes. The weights
in the matrix W are composed of genes with different weights. We as-
sume genes with the largest coefficients cumulatively and linearly in-
teract with each other and are associated with cancer development. For
each cancer, we repeated the experiment and selected the top genes in
each factor for enrichment analysis and presented the top significant
pathways (adjusted P-value < 0.05). To ensure stable results, we
analyzed the top 100, 200, 300, 400, 500, and 600 genes for pathway
analysis and determined 300 genes started yielding stable results as
illustrated with BRCA (Table S2).

3. Experiment results

After collapsing mutations’ numbers and scores in each gene, a
matrix Ascore was formed with the 2431 subjects as rows. Entry Aij de-
notes the jth gene’s collapsed score for the ith subject. For gene pre-
selection, we screened the pvalue of 0.05, 0.1, 0.2, 0.5, and 1 as cutoffs.
For each cutoff, prediction accuracy was used as the performance
measurement. The experiment was repeated using the Number (col-
lapsed number of mutations), SIFT (collapsed sift scores), PP2 (col-
lapsed PP2 score), and CADD (collapsed CADD scores) matrices. Factor
numbers ranged from 2 to 15 (Fig. 2). The Number matrix was found to
result in better performance than the other matrices. Using the Number

Fig. 1. Workflow of the study. Orange boxes are the data or processes; green boxes are the tools used; blue boxes are the results of the study. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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matrix, the performance derived from the cutoff of 1 is significantly
better than the cutoff of 0.05 (P-value= 0.001), 0.1 (P-value= 0.01),
and 0.2 (P-value= 0.04), but not significantly different from the cutoff
of 0.5 (P-value=0.61). Balancing the number of features to be in-
cluded for computation and accuracy, we selected the cutoff of 0.5 for
gene pre-selection. Following gene pre-selection, 11,949, 12,753,
17,702, and 11,734 genes were retained for subsequent analysis for the
Number, SIFT, PP2, and CADD matrix, respectively.

We then compared these four matrices: Number, SIFT, PP2, and
CADD. The number of factors K ranged from 2 to 15, a range within the
constraint of the rule (N+M)K < NM. For each factor number K,
nsNMF was applied to the matrices, and a corresponding classifier was
trained. The performances derived from the Number matrix out-
performed the other matrices significantly (p < 0.01 for all compar-
isons) (Fig. 3). The precision, recall, and f-measures were derived and
similar patterns and trends were observed. Based on performance, the
matrix Number was used for subsequent analyses. Using Number ma-
trix, the maximum accuracy was 80.0% (Standard Error of the Mean
SEM=0.1%) when the factor number equaled 12 (Fig. 3). The accu-
racy was found to become stable when factor number was larger than
12. To prevent potential overfitting, we chose a factor of 12 for our
analysis.

The performance of our proposed model (80.0%, SEM=0.1%)
significantly outperformed the other four baselines (Fig. 4). The P-value
using the Student’s t-test was 0.0001 comparing our proposed model to
the second-ranked model (73.9% (SEM=0.8%), which applies pena-
lized logistical regression with the aggregated Number matrix. In the
baselines, aggregating the mutations in a gene has improved the per-
formance significantly as well (p < 0.01 in both comparisons). A
comparison of our proposed model with previously applied methods for

cancer classification was conducted. We found that our method
achieved significantly improved performance (Fig. 5) compared to
methods that utilize variations of CADD scores (71.6%) [29], logistical
regression on L1-regularised term (74.0%) [30], and SVM-RFE (55.9%)
[30].

Using regularized logistic regression, we assessed each gene’s as-
sociation effect with each cancer type. The association score was de-
fined as the sum of feature weights multiplied by the coefficient of each

Fig. 2. The accuracy of cancer type classification using different P-value cutoffs. (A) Sum of the count of mutations (B) Sum of the SIFT scores (C) Sum of the PP2
scores (D) Sum of the CADD scores.

Fig. 3. The accuracy of cancer type predictions using different numbers of
factors from the matrices of Number (blue), SIFT (red), PP2 (green), and CADD
(purple) scores. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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gene. A high score indicates the significant role of a mutated gene in the
disease. The genes for each cancer type were identified and sorted by
association score (Table S1). The top 300 genes associated with each
cancer type were derived and analyzed for pathway enrichment.
Interestingly, distinct biological processes were found to be sig-
nificantly associated (p < 0.05) with each type of cancer. Microtubule
processes, axon guidance, cell morphogenesis, and synaptic transmis-
sion were found to be associated with BRCA, GBM, PRAD, and LUSC,
respectively (Table 2). Additional pathways associated with each
cancer type can be found in Table S2. Many of these pathways are
known to be associated with their corresponding cancer type. For

instance, a majority of breast cancer drugs involve targeting micro-
tubules [31]. In glioblastoma, axon guidance is known to play a role in
glioma progression [32]. To confirm the robustness of our findings, we
performed and evaluated pathway enrichment and discovery using
multiple methods [33–37]. We also discovered axon guidance from the
Reactome pathway database [36] and synaptic transmission in the
KEGG pathway database [37]. Together, these results corrobarated the
relevant pathway discovered by our method.

4. Discussion

We have proposed a novel method to fully use and understand so-
matic mutations to classify the cancer type and derive relevant genes
and pathways. In this study, we applied nsNMF and SVM to train a
classifier to distinguish and classify a tumor type as Glioblastoma
Multiforme (GBM), Breast Invasive Carcinoma (BRCA), Lung Squamous
Cell Carcinoma (LUSC), and Prostate Adenocarcinoma (PRAD).
Products of the basis matrix and coefficient matrix derived from nsNMF
were both retained to construct the feature matrix. Subsequently, the
constructed features were used as input variables to train the classifier.
We compared functional scores using CADD, SIFT, and PP2, and
counted mutation number and found that counted mutation number
yielded the best performance (accuracy=80.0% with SEM=0.1%).
Finally, regularized logistic regression was applied to study each gene’s
association effect with cancer type. Using the associated features, we
derived relevant genes and pathways for each cancer.

When training the classifier, we used an alternative method by
multiplying the matrix Ascore with matrixW to obtain the feature matrix
F . Information from the basis component W was retained, providing
information about weights in each gene group. This information was
then used as features to train the classifier. Another benefit of this al-
ternative method is the ease of us at the testing stage. With the trained
W matrix, we only need to multiply the testing Ascore matrix in order to
get the test feature matrix. In addition to improving cancer type clas-
sification, each gene’s association effect with the cancers was of interest
and also studied. The p-value for gene pre-selection was to limit the
number of features to be included. One of the challenges for genomics
studies are the large number of genes accompanied by the small sample
sizes, resulting in a wide and flat matrix, henceforth impact the per-
formance of matrix decomposition. In this study, we utilized a p-value
cutoff to pre-select genes but try to only introduce a minimum amount
of influence on model performance. Therefore, we have tested multiple
p-values and selected the cutoff of 0.5, in which we observed non-sig-
nificant differences in model performances compared to the no-selec-
tion scenario. Genes that were filtered are those with only one or two
mutations and only appeared in one or two subjects in the cohort.
Removing these genes has a minimum amount of influence and has the
potential to remove noises for model training. In our study, if we tune
NMF+SVM (our model), we can get even better results. But our pur-
pose is to focus on assessing improvements from NMF. In addition, with
the default parameters for NMF+ SVM, our model still outperformed
the state-of-the-art methods that are parameter-tuned.

The development of high throughput sequencing technology has
enabled the cataloging of large-scale mutation information. Somatic
mutations are relatively stable and lead to the initiation and progres-
sion of many sporadic cancers. Hence in this study, we utilized muta-
tions in protein-coding genes as input data. We acknowledge that non-
protein-coding genes, including mutations in intronic areas [38,39],
long non-coding RNAs [40], mi-RNAs [41] are also important for
cancer development. In future work, we will incorporate these multiple
dimensions of genetics data to increase the model performance. Tra-
ditionally, mutations derived from sequence data were examined as a
single variable using the regression models [30,42]. Unfortunately, the
large number of variables limit the power of such studies. To reduce the
number of variables, studies have proposed to aggregate mutations at
the gene level as an input in a regression model [24,43,44]. In other

Fig. 4. Comparison of our proposed model (nsNMF+SVM) with baselines. LR
is penalized logistical regression. SVM is support vector machine. Aggregated
are the matrices to sum mutations together in the same gene. Mutations are the
model that utilizes every single mutation as an input variable.

Fig. 5. Comparison of our proposed model (nsNMF+SVM) with the state-of-
the-art methods.

Table 2
Biological processes most associated with each cancer type.

GO term Cancer

Microtubule-based process BRCA
Axon guidance GBM
Morphogenesis of a polarized epithelium PRAD
Chemical synaptic transmission LUSC
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studies, mutations in a gene have also been proposed to be studied in a
matrix as an input for a kernel test [45,46]. In this study, we proposed
using a framework which utilizes a regression model to pre-select de-
leterious genes, nsNMF to decompose the matrix, SVM to train a clas-
sifier, and then penalized regression to derive relevant genes. Following
the careful tuning of parameters and models, we have proved that this
is an effective model to classify cancers, derive relevant genes, and
identify associated pathways.

5. Conclusion

To fully understand a disease, studying mutations using a full range
of genes together is of critical importance. Complex traits are modified
by multiple genes and multiple mutations together [47]. Traditionally,
NMF has been applied to study gene expression [18,28]. In this study,
we proposed using somatic mutations for cancer classification. Fur-
thermore, we proposed generating the feature matrix by integrating
both the basis matrix W and the coefficient matrix H. Moreover, we
developed a novel method to derive effect scores from the feature
matrix. Using this method, we obtained the association score of each
gene with a particular cancer type enabling relevant pathway dis-
covery. The discovered effect scores have a high potential to help us
better understand the genetic pathophysiology behind cancer.

In this study, we proposed a novel strategy to study the genetic
landscape of multiple cancers. In the future, we will use tensor factor-
ization to integrate known pathways to guide the grouping of muta-
tional variants [48] and use external cohorts to validate the proposed
model. Furthermore, this generic process only requires the input of
somatic mutations and a disease type of interest, without much domain
specific knowledge. This strategy has the potential to be easily adapted
and applied to other diseases as well.
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