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Abstract— This paper introduces a system-theoretic approach
to improve inpatient discharge process at the University of Wis-
consin (UW) Hospital. The complex hospital discharge process
is modeled by a stochastic process with parallel subprocesses,
splits, merges, and reworks. Then, a stochastic analysis method is
introduced to evaluate the performance of discharge. Specifically,
the waiting and service times are characterized by gamma
distributions, and an efficient algorithm is presented to aggregate
the multiple interacting subprocesses and calculate the mean,
variability, and discharge-time performance, i.e., the probability
to discharge a patient within a desired or given time interval.
High accuracy in performance evaluation is obtained by using
such a method. To improve the discharge process at UW Hospital,
bottleneck and what-if analyses are carried out and improvement
recommendations are discussed.

Note to Practitioners—Hospital discharge is a complex process
with substantial variabilities and challenges. Delays in discharge
are common and become a nationwide problem. Although sig-
nificant efforts have been devoted to improving the discharge
process, most of the studies are qualitative or case specific. Thus,
there is a need to develop a mathematical model to systematically
characterize the discharge process, analyze the performance,
and investigate improvement options, which can provide a fresh
look from the system perspective. In this paper, we introduce
a system-theoretic approach to evaluate and improve the inpa-
tient discharge process at the University of Wisconsin (UW)
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Hospital. The discharge process is represented by a complex
network consisting of multiple stochastic subprocesses, as well
as splits, merges, and reworks. In addition to evaluating mean
and variance of the discharge time, we introduce the notion
of discharge-time performance (DTP), which is the probability
to discharge a patient within a desired time interval, and an
approximation method to calculate DTP. Moreover, we carry
out a bottleneck analysis to identify the most critical step
impeding the discharge process in the strongest manner. We also
present recommendations to improve the discharge process at
UW Hospital.

Index Terms— Aggregation, bottleneck, discharge process,
discharge-time performance (DTP), improvement, stochastic
model.

I. INTRODUCTION

ACCORDING to the National Hospital Discharge Survey,
there are about 35 million discharges in the United States

annually [1]. Due to the extreme complexities, substantial
variations, and incredible challenges involved in the discharge
process, delays have been a common, long-standing, and
nationwide problem, which have facilitated increased hospital
cost, loss of capacity, bed shortage, more adverse events, and
readmissions [2]–[4]. Therefore, improving the quality and
efficiency of the discharge process is of significant importance.

The hospital discharge process involves multidisciplinary
efforts from multiple care providers, such as physicians,
advanced practice providers (APPs) [who are the nurse
practitioners (NPs) or physician assistants (PAs)], social
workers (SWs), case managers (CMs), occupational therapists
(OTs), physical therapists (PTs), pharmacists, and nurses [5].
Substantial efforts have been devoted to reducing delays
in the discharge process, mainly focusing on identifying
the factors causing the delays. Most of the studies are
qualitative or case study-based, which may lack systematic
characterization of the discharge process, quantitative analysis
of process performance, and in-depth investigation of system
behavior. Although analytical models have been widely
applied in healthcare systems research, to the best of our
knowledge, mathematical models of the discharge process are
still unavailable.

In this paper, the complex discharge process at the
University of Wisconsin (UW) Hospital is systematically
characterized and analyzed by a network with parallel sub-
processes, splits, merges, and repeated procedures that com-
prise the main and unique properties of the system. Then,
the network is decomposed into multiple serial processes,
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interacting with each other. An analytical method is introduced
to evaluate the performance of the serial subprocess and the
overall process. Through stochastic modeling of the discharge
process, the probability to finish the discharge process within a
desired or given time interval, referred to as the discharge-time
performance (DTP), as well as the mean and coefficient of
variation (CV) of discharge time, can be calculated. Such a
model has been validated with high accuracy by simulations
and the data collected at UW Hospital. Using this model,
the most critical constraining or impeding steps (i.e., bot-
tlenecks) in the discharge process are identified, and various
improvement strategies are proposed and evaluated.

The main contribution of this paper lies in characterizing
the complex discharge process and workflow, developing an
aggregation method for DTP evaluation, and introducing bot-
tleneck analysis for improvement, all from an analytical model
perspective, which can provide a fresh and unique view of
the system. Comparing with existing work studying serial or
assembly processes in manufacturing and healthcare delivery
systems, this paper analyzes not only the average output (such
as throughput or length of stay) but also the variability and
the distribution of discharge time for more complex discharge
process with multiple parallel, split, merge, and reentrant
features. Such a method can be easily applied to discharge
processes at other hospitals and provides a quantitative tool
for hospital management to study and improve discharge.

The remainder of this paper is organized as follows.
Section II reviews the related literature. The discharge process
at UW Hospital is described in Section III. Section IV intro-
duces the analytical model and formulates the problem. The
method to evaluate the performance of discharge process is
introduced in Section V. Section VI presents the bottleneck
analysis and improvement results. Finally, conclusions and
future works are summarized in Section VII. All proofs are
given in the Appendix.

II. RELATED LITERATURE

Discharge delays are common in many hospitals. Extensive
studies have been carried out to find out the factors leading
to delays, such as diagnostic services, medical consultation
or investigation, home arrangement, various disruptions, vari-
ability in patient’s medical condition, and clinical decision-
making [6]–[9]. A total of 21 articles on discharge delays have
been reviewed in [7], and four types of factors are identified:
internal hospital factors, downstream service factors, funding
factors, and patient or carer-related factors. In [10], the delays
are categorized due to medical or nonmedical factors, internal
or external reasons, psychological issues, evaluation errors,
hospital capacity limitation, shortage of local facilities, and
organizational assessment delays.

To improve the discharge process, different methods, such
as appropriateness evaluation protocol, delay tool, and inter-
vention mapping framework, have been used to analyze
the length of stay, appropriateness of hospitalization, and
causes for delay [11], [12]. Standardization of the process,
establishment of guidelines and policies, organizational inter-
ventions, timely scheduling of consultation and diagnos-
tic testing, addressing social issues in advance, involving

patients and family in discharging planning, and coordination
between units and interdisciplinary teams, staff, and patients
are advocated [4], [9], [11]–[16]. In [17], 224 articles are
reviewed and 47 tools on patient evaluation, planning and
teaching, and optimizing discharge summaries are identified.

However, almost all of the above-mentioned studies are
qualitative and based on case studies, opinions of expert
practitioners or researchers, or standardized lists of criteria [7],
which lack quantitative analysis and system property investiga-
tion. As there exist considerable heterogeneity and variations
due to local contexts [7], [14], identifying the delay factors
could be challenging [10]. Thus, a systematic quantitative
approach is needed to identify the critical constraints and
improve the hospital discharge process.

Analytical models have been widely applied in health care
systems to evaluate system performance and facilitate care
quality improvement. Bottleneck analysis has been viewed
as an effective way for process improvement (see exam-
ples in rapid response, diagnosis and test, and surgery
flows [18]–[23]). Unfortunately, a few studies have been
devoted to analyzing hospital discharge process using a math-
ematical model. In [5], discrete-event simulations are used to
study the hospital discharge process and provide recommen-
dations for potential improvement.

In addition, although Markov and empirical models have
been used in manufacturing and healthcare delivery sys-
tems (see [24]–[26]), throughput, length of stay, and waiting
times are the main average performance measures under
investigation, and serial or assembly processes are the main
focuses. Only a limited work is devoted to variability
study [20], [21], [27]–[30]. Thus, there is a need to develop
an analytical model to study the complete distribution of task
finishing time in a more complex environment, such as the
discharge process. The goal of this paper is contributing to
this end.

III. PROCESS DESCRIPTION

UW Hospital is a 505-bed regional referral center that is
home to a Level 1 adult and pediatric trauma center. It has an
American College of Surgeons verified burn center, one of the
nation’s largest organ transplant programs, one of the nation’s
first certified comprehensive stroke centers, and UW Carbone
Cancer Center, one of the National Cancer Institute designated
comprehensive cancer centers.

A. Discharge Process

The discharge process in the UW Hospital is a multidis-
ciplinary coordinated process, including many subprocesses,
components, and numerous variations [5]. The process can
vary substantially among different hospitals and different units
within a hospital. Even within the same unit, the process
can differ depending on many factors, such as physician’s
preferences, patient conditions, post-acute facilities, and trans-
portation options. In this paper, we focus on the medical unit
of the hospital. Based on extensive observations, interviews,
and discussions with the discharge team, the discharge process
can be described as follows.
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The discharge process in a broad sense begins right after
the admission of a patient. Upon admission, the SW and
CS start to gather information related to the patient’s health,
insurance, and contacts, where the person previously lived,
social supports, and other determinants of social wellbeing,
and compile them into a discharge plan of care, which should
be almost finished before the final day for discharge. Usually,
the discharge signal is given during the morning round meeting
(at 9:00 A.M.), which includes physicians (MD), APPs (i.e.,
NPs or PA), nurses (RN), pharmacists (RPH), SWs, CMs, OT,
and PT, depending on the conditions of the patient. During
this meeting, a list of patients who are ready for discharge
will be informed by the physician, and their conditions and
progresses will be reported and discussed by the participating
staff. After the meeting, a discharge order is entered into
the medical record by the physician and the staff begins
preparing for discharge. Many times the APP may orchestrate
the discharge process once the MD is off the unit. In this
paper, we mainly focus on the process after the morning
rounds.

There are mainly three primary parallel subprocesses, rep-
resented by the SW/CM workflow, the transportation flow,
and the pharmacist workflow, as shown in Fig. 1. A patient
cannot be discharged until all the three parallel and indepen-
dent streams are finished. Typically, even after finishing each
process, there could be delays before the final discharge due to
waiting for a therapy evaluation and the result of the patient’s
unawareness. Such a waiting is characterized by “waiting for
others” in Fig. 1. The detailed workflows of each subprocess
are described next.

Remark 1: Although the discharge processes vary
significantly among different hospitals, units, and provider
preferences, the basic functionality of the physician,
pharmacist, CM, SW, and nurses is similar. Thus, the method
introduced in this paper can be applied in other discharge
processes with minor changes.

B. SW/CM Workflow

The SW and CM have similar functions and they often
work together to complete the contact and confirmation work.
Thus, their workflows are modeled together as one. The main
work of SW and CM is to communicate and engage with the
patient and his/her family regarding the discharge location,
aftercare (post-acute) facilities, transportation arrangement,
insurance information, and medical record, and finally compile
the discharge plan of care. In most cases, such a work is started
upon the patient’s admission and is considered complete when
the patient is discharged. On the day of discharge, the SW
and CM only need to have a quick scan to reconfirm all
the information and procedure and then prepare the summary
report. In the rare case of “unexpected discharge,” the SW and
CM will meet again with the patient and family, the physicians,
and the staff at the post-acute care facility if necessary. In the
medical unit of UW Hospital, the percentage of unexpected
discharge is estimated to be less than 2%.

The SW and CM workflow is illustrated as the top flow
in Fig. 1. The major steps include the following.

1) First, the patient’s medical record will be reviewed.
If there is no unexpected change, the SW or CM needs
to talk to the patient and reconfirm all the information,
including aftercare location of facility, insurance, and
transportation.

2) If there is any change to be made, the SW or CM will
communicate with the physician and talk to the patient
as well as his or her family to address all the related
issues.

3) If the discharge location is the patient’s home, the After
Hospital Care Plan will be completed by the interdis-
ciplinary staff, printed by the Health Unit Coordina-
tor of the unit. The nurse will review this with the
patient/family prior to discharge.

4) If the discharge location is an aftercare facility, the SW
or CM needs to confirm with the facility, review the
medical record, and talk to the patient. Finally, they will
prepare the discharge packet and necessary documents
for the aftercare facility.

To simplify the notation, such steps are referred to as
Steps 1–17 of SW/CM flow in Fig. 1. Note that such num-
bers are used for notation simplification purpose and do not
represent any sequence in the process. Similar notations are
used for other processes as well.

C. Transportation Workflow

The transportation work characterizes the transportation
arrangement, which refers to the period from the discharge
decision being made to the time the expected transportation
being ready. All patients will need some type of ride to home
or to a post-acute care facility. The transportation method
and time are set up by the SW/CM right after the discharge
decision under the agreement with the patient and physician.
If an ambulance is needed for transporting, it may need to be
set up the day before discharge. It is observed that only 14%
of the patients may need transportation arrangement from UW
Hospital. In other times, the transportation workflow can be
ignored. Such a process is illustrated in the middle part of
Fig. 1 and referred to as Step 1 of transportation (TR) flow.

D. RPH Workflow

The pharmacist workflow is the most critical and compli-
cated one during the day of discharge. The main responsibility
of a pharmacist is to check and clear any potential issues in
the medical order and communicate with the patient to educate
about the prescription after the discharge decision. The specific
steps in the workflow include the following.

1) The pharmacist needs to go over the medical order
after the morning round meeting. If no error or issue
is found, the process can continue without contacting
the physician.

2) If there is any issue or question in the medical order,
which is about 60% of chances in the hospital, a phar-
macist intervention is needed. In this case, the pharma-
cist will contact the physician to make any necessary
changes under the agreement, and the MD/APP has to
reorder the medication.

Authorized licensed use limited to: Peking University. Downloaded on March 10,2022 at 06:56:29 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: IMPROVING DISCHARGE PROCESS AT THE US HOSPITAL: A SYSTEM-THEORETIC METHOD 1735

Fig. 1. UW Hospital discharge process.
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3) If the home is the discharge location, the pharmacist
needs to print out the order and bring to the patient
for education. If the aftercare facility is the location,
the order will be included in the discharge packet to be
sent to the facility.

4) Finally, nurse education is provided to the patient. The
nurse is also responsible for getting the supplies or
providing further education on something the patient
may need.

These steps are illustrated in bottom of Fig. 1 and denoted
as Steps 1–12 in the RPH flow.

IV. SYSTEM MODELING AND PROBLEM FORMULATION

As shown in Fig. 1, the hospital discharge process can
be characterized as a complex network with multiple splits,
merges, reworks, and parallel lanes. To evaluate the perfor-
mance of discharge of such a process, introduce the following
assumptions.

1) The three parallel workflows are independent. However,
the discharge process cannot continue until all SW,
transportation, and RPH workflows are finished.

2) The service time (or waiting time) at each step sl
i is

defined by a random process with mean τ l
i and CV

cvl
i , where i is the step number as shown in Fig. 1

and l represents the workflows of SW/SW, pharmacist
(RPH), and transportation (TR). All successive steps are
assumed to be independent.

3) In the SW workflow, the probability of unexpected
discharge is defined by probability αunexp, which charac-
terizes the possibility that the preparation for discharge
is not finished by the discharge date.

4) A patient has probability αcare to be discharged to an
aftercare facility. In other words, the probability of
discharging to home is 1 − αcare.

5) There exists a probability αtr that a patient will require
transportation arrangement.

6) In the RPH workflow, a physician’s order has probability
αint needing a pharmacist’s intervention. Among them,
there exists a probability αsign that the pharmacist and
physician need to co-sign the updated prescription.

Remark 2: In hospitals, usually the resources, such as
physicians, nurses, and pharmacists, are limited and need to
take responsibility for multiple tasks. Thus, the patients may
need to wait before receiving the service for discharge because
of availability issue. In this paper, the availabilities of the
resources are considered by including the steps named “wait”
in the discharge process (as shown in Fig. 1), which represent
the time that the patient needs to wait before the next service
step due to the unavailability of the resource. In the future
work, we plan to include the multiple tasks of providers in
the model so that the availability and the resulting waiting
time can be generated and evaluated from the model directly.

Remark 3: Based on observations in the hospital, the steps
with long durations include transportation work, wait for order,
talk to patients, review of medical records, discharge summary,
and nurse education. The durations of such steps are mainly
determined by the services in their own tasks rather than other

steps. Thus, the independence assumption of successive steps
is practical.

Under assumptions 1–6, define the time to finish each
process as T l , l = SW, TR, RPH. Then, the time to finish
the overall discharge process, T , is characterized by

T = max{T SW, T TR, T RPH}. (1)

Note that here T does not include the last waiting time
(“waiting for others”) in Fig. 1 since such a step may not
be observed in every discharge process. Clearly, such a time
can be easily included by addition.

Introduce the discharge-time performance (DTP) as the
probability to finish the discharge process within a desired
or given time interval Tgiven. Then, DTP is a function of all
system variables, i.e.,

DTP(Tgiven) = Pr(T ≤ Tgiven) = f (M, V, A, Tgiven) (2)

where

M = [
τSW

1 , . . . , τSW
17 , τTR

1 , τRPH
1 , . . . , τRPH

12

]
V = [

cvSW
1 , . . . , cvSW

17 , cvTR
1 , cvRPH

1 , . . . , cvRPH
12

]
A = [

αunexp, αcare, αtr, αint, αsign
]
.

Due to the independence assumption of parallel lanes,
DTP(Tgiven) can be evaluated as

DTP(Tgiven) = Pr(T SW ≤ Tgiven) · Pr(T TR ≤ Tgiven)

· Pr(T RPH ≤ Tgiven)

=
∏

l=SW,TR,RPH

DTPl(Tgiven) (3)

where DTPl(Tgiven) indicates the probability to finish work-
flow l within time interval Tgiven.

When DTP is obtained, the expected discharge time Td can
be calculated. Thus

Td = E(T ) =
∫ ∞

0
(1 − DTP(x))dx . (4)

In addition to the average value, the variability of discharge
time, characterized by the CV, CVd can be evaluated as

CVd =
√

V ar(T )

E(T )
=

√
E[(T − Td)2]

Td
. (5)

Then, the problem to be studied can be formulated as
follows. Under assumptions 1–6, develop a method to calculate
DTP, Td , and CVd and investigate improvement strategies.

Solutions to the problem are provided in Sections V and VI.

V. EVALUATION OF DISCHARGE-TIME PERFORMANCE

A. Process Decomposition

As shown in Fig. 1 and assumptions 1–6, the discharge
process includes multiple parallel subprocesses, splits, merges,
and reworks with random variables following general distribu-
tions. The direct analysis of the process performance is all but
impossible. In fact, even the mean and variance of discharge
time are difficult to calculate. Evaluating the discharge-time
performance (in other words, the distribution of discharge
time) will be more challenging.
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However, considering that each patient can only take one
specific procedure or route in SW/CM workflow, transporta-
tion, and RPH subprocesses, we can decompose the discharge
process into a collection of serial procedures, each with a
certain probability. Specifically, in the SW/CM workflow,
the following serial procedures are possible.

1) SW1: Unexpected discharge occurs, and the patient is
discharged to aftercare facility.

2) SW2: Unexpected discharge occurs, and the patient is
discharge to home.

3) SW3: No unexpected discharge occurs.
For transportation flow, there are only two scenarios as fol-
lows.

1) TR1: Need transportation work.
2) TR2: No need for transportation work.

The RHP workflow involves more possibilities as follows.
1) RPH1: Need RPH intervention, need hard copy signa-

ture, and the patient is discharged to aftercare facility.
2) RPH2: Need RPH intervention, need hard copy signa-

ture, and the patient is discharged to home.
3) RPH3: Need RPH intervention, do not need hard copy

signature, and the patient is discharged to aftercare
facility.

4) RPH4: Need RPH intervention, do not need hard copy
signature, and the patient is discharged to home.

5) RPH5: Do not need RPH intervention, and the patient
is discharged to aftercare facility.

6) RPH6: Do not need RPH intervention, and the patient
is discharged to home.

An illustration of these serial procedures is presented
in Fig. 2. Then, the probability for each serial procedure can
be denoted as

P = [
pSW

1 , . . . , pSW
3 , pTR

1 , pTR
2 , pRPH

1 , . . . , pRPH
6

]
(6)

where the subscript corresponds to the procedure number
defined in each workflow and

pSW
1 = αunexpαcare

pSW
2 = αunexp(1 − αcare)

pSW
3 = 1 − αunexp

pTR
1 = αtr

pTR
2 = 1 − αtr

pRPH
1 = αintαsignαcare

pRPH
2 = αintαsign(1 − αcare)

pRPH
3 = αint(1 − αsign)(1 − αcare)

pRPH
5 = (1 − αint)αcare

pRPH
6 = (1 − αint)(1 − αcare). (7)

In addition, if nl is the number of decomposed serial proce-
dures in workflow l described earlier, then

nSW = 3, nTR = 2, nRPH = 6.

In addition

nl∑
k=1

pl
k = 1, l = SW, TR, RPH. (8)

Using such a decomposition method, the complex discharge
process can be represented by a group of serial procedures,
and each of them consists of multiple sequential steps. For
each patient, his/her discharge process is the combination of
three parallel procedures, each being selected from the sets
of SW/CM workflow, transportation flow, and RPH workflow.
In each flow, we obtain the total time as

T l =
∑nl

k=1 pl
kT l

k∑nl

k=1 pl
k

, l = SW, TR, RPH (9)

where T l
k is the time spent in procedure k of workflow l. When

T l
k and T l are known, the discharge time T can be calculated

from (1), and the discharge-time performance DTP can be
evaluated from (2).

B. Performance Evaluation

However, even if the complex discharge process can be
decomposed into a set of serial procedures, an analysis
of the finishing time in each procedure is still difficult.
Since each procedure will be the sum of multiple random
variables following arbitrary distributions, the calculation of
DTP is not straightforward, and the evaluation of mean and
CV of discharge time relies on DTP calculation. To solve
this problem, we propose to approximate each service or
step using a gamma distribution based on the first two
moments. As it has been shown that in many healthcare
systems [20]–[23], [31]–[35] and manufacturing systems [24],
when the CVs of the processes are small (less than 1), the over-
all performance could be primarily dependent on the first two
moments of the process rather than the complete distribution.
Since a gamma distribution depends on two parameters that
enable us to place the mean and variance with much freedom,
it can represent many distributions with significantly varied
shapes. In addition, it is a fairly flexible positive-skewed
distribution with convenient mathematical properties, which
enables us to carry out more complex analytical investigation.
However, this is only suitable when the variability of the
process is small (i.e., CV < 1). Thus, we hypothesize that a
gamma distribution can be used to approximate the discharge
process.

Specifically, denote the mean and CV of the j th service or
waiting time in serial procedure k of workflow l as τ l

k,( j ) and
cvl

k,( j ), respectively. In addition, introduce nl
k as the number

of steps in such a procedure (i.e., procedure k of workflow l).
Then, we have

T l
k =

nl
k∑

j=1

τ l
k,( j ), l = SW, TR, RPH

CV l
k =

√∑nl
k

j=1

(
cvl

k,( j ) · τ l
k,( j )

)2

T l
k

, l = SW, TR, RPH. (10)

By assuming that each step follows a gamma distribution,
it is equivalent to evaluate the cumulative distribution func-
tion (cdf) of the sum of independently distributed gamma
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Fig. 2. Decomposed serial procedures.
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TABLE I

MEAN AND CV OF SERVICE/WAITING TIME OF EACH STEP AT UW HOSPITAL. (a) MEAN SERVICE/WAITING TIME. (b) CV OF SERVICE/WAITING TIME

variables. If nl is the number of serial procedures of work-
flow l, then the discharge-time performance can be calculated
as follows.

Proposition 1: Under assumptions 1–6, if the service/
waiting time at each step follows a gamma distribution,
the discharge-time performance can be calculated as

DTP(Tgiven) =
∏

l=SW,TR,RPH

∑nl

k=1 pl
kGl

k(Tgiven)∑nl

k=1 pl
k

(11)

where Gl
k(Tgiven) represents the cdf of serial procedure k in

workflow l, i.e., the probability the time spent in this procedure
is less than Tgiven, which can be evaluated as

Gl
k(Tgiven) =

nl
k∏

j=1

(
βl

k,min

βl
k,( j )

)γl
k,( j)

·
∞∑

m=0

δl
k,mγ

(
ρl

k + m,
Tgiven

βl
k,min

)
	

(
ρl

k + m
)

(12)

and

γl
k,( j ) = 1(

cvl
k,( j )

)2 , βl
k,( j ) = (

cvl
k,( j )

)2 · τ l
k,( j )

βl
k,min = min

(
βl

k,( j )

)
, j = 1, . . . , nl

k

ρl
k =

nl
k∑

j=1

γl
k,( j ), δl

k,0 = 1,

vl
k,m = 1

m

nl
j∑

j=1

γl
k,( j )

(
1 − βl

k,min

βl
k,( j )

)m

, m = 1, 2, . . .

δl
k,m = 1

m + 1

m+1∑
j=1

jvk, jδk,m+1− j , m = 1, 2, . . .

γ (a, x) =
∫ x

0
ya−1e−ydy

	(a) = lim
x→∞ γ (a, x). (13)

Proof: See the Appendix.
Using DTP(Tgiven), the mean and CV of discharge times,

Td and CVd , can be evaluated from (4) and (5).

C. Model Validation

Proposition 1 introduces an approximation method to cal-
culate discharge-time performance. To validate the model, two
questions arise. First, when the variability of each step is
small (i.e., its CV < 1), is the discharge-time performance
mainly dependent on the mean and CV of each step rather than
the complete distribution? In other words, is it acceptable to
use gamma distribution to characterize each random variable?
As explained earlier, the reason to use gamma distribution is
due to the large freedom of placing mean and variance and
its good analytical property. If the answer is positive, then
the next question is related to the accuracy of such approxi-
mation, i.e., can Proposition 1 provide a precise estimate of
discharge-time performance?

First, we investigate the feasibility of gamma approxima-
tion. Two simulation models are compared. One assumes that
every step is represented by a gamma distribution, while the
other assumes that each step follows a randomly selected
distribution (either gamma, lognormal, Weibull, or a mixture
of them). However, the same first two moments are assumed
in both scenarios at each step. Using the data collected at UW
Hospital (see Table I), we randomly generate mean service
time at each step between 50% and 150% of the mean value
in Table I and randomly select the CV between 0.1 and
1.0. The simulations are setup as follows; 10 000 patients are
simulated to collect data and 20 replications are executed to
ensure the confidence interval small enough to be less than
1% of the DTP values. Then, the discharge-time performances
are simulated and compared for 20 data sets. The results are
shown in Table II, where the average, minimum, and maximum
differences between the two models for given Tgiven values are
presented.
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TABLE II

DTP DIFFERENCES IN DISTRIBUTION TYPES

As one can see, the differences are very small, which implies
that the discharge-time performance is practically independent
of distribution type but mainly depends on the mean and CV
of the service or waiting time. This justifies that the gamma
distribution can be used to characterize the service or waiting
time at each step. Fig. 3 presents four examples by comparing
the model having gamma distribution at each step with the one
having a randomly selected distribution of lognormal, Weibull,
or gamma (referred to as “mixed” in the figure) at each step.
Again, the differences are minimal. Thus, a “distribution-free”
property can be observed (by ignoring the minor differences).

When the “distribution-free” property is justified, we next
use gamma distribution to characterize the service/waiting time
at each step and then apply Proposition 1 to calculate DTP.
The results are compared with that from the simulation model
by randomly selecting distributions. The average, minimum,
and maximum differences are shown in Table III, which are
very small. To illustrate, four examples are presented in Fig. 4.

Moreover, the data collected from about 3000 discharge
records and 50 observations at UW Hospital (Table I) are used
for comparison as well. First, we calculate the average dis-
charge time as 270.35 min with the CV being 0.53. While the
observed data show an average discharge time of 276.48 min

TABLE III

DTP COMPARISON WITH SIMULATIONS

and a CV of 0.38. Second, the discharge-time performance
calculated from Proposition 1 is compared with simulation
assuming randomly selected distributions at each step. The
results are shown in Fig. 5. In all scenarios, the estimations
have an acceptable accuracy.

Since Td and CVd are dependent on DTP(Tgiven), their
accuracies are similar to those of DTP.

VI. IMPROVEMENT ANALYSIS

Using the performance evaluation method introduced ear-
lier, we seek to improve the efficacy of discharge process.
Particularly, identifying the most critical step and factors
impeding the discharge process and mitigating their effects are
of importance. To do this, monotonicity is investigated first to
identify the directions of potential improvement.

A. Monotonicity

Proposition 2: Under assumptions 1–6, the discharge-time
performance is monotonically decreasing with respect to the
mean waiting time of each step.

Proof: See the Appendix.
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Fig. 3. Comparison examples in distribution type. (a) Example 1. (b) Example 2. (c) Example 3. (d) Example 4.

Such a property is also verified through extensive simu-
lations and numerical experiments. As shown in Fig. 6(a),
when the mean service/waiting time is reduced by 10%,
the DTP is always increased. However, such increases are not
the same for different values of τ l

i . In Fig. 6(a), the corre-
sponding DTP curves due to reduction in τSW

1 , τSW
13 , τTR

1 ,
τRPH

1 , and τRPH
5 are illustrated. As one can see, a small

reduction in waiting time at step sRPH
1 of RPH workflow

(i.e., waiting for physician discharge order) will lead to
much more increase in DTP comparing the reduction in
other steps, which only result in a very small increase in
DTP.

Typically, the upper portion of DTP or larger Tgiven is where
the interest is in. When Tgiven is large, as shown in Fig. 6(b),
when the CV of service/waiting time is reduced by 20%,
the DTP is increased. As the mean and CV of total time in
each procedure are monotonically decreasing when those of
service/waiting time at each step are decreasing, the resulting
total discharge time will decrease as well, but the DTP is
increasing. Again, reducing CV of waiting time at step sRPH

1 of
RPH workflow has a much larger increase in DTP comparing
with reducing time at other steps, where the DTP increases
are very small.

To further illustrate such behaviors, Table IV provides the
detailed improvement in DTPs for mean and CV reduction of

the service/waiting times at each step. It is clear that reducing
τRPH

1 and cvRPH
1 could result in the largest improvement in

DTP.
Similar to DTP monotonicity, the mean discharge time

also exhibits monotonic property with respect to the mean
service/waiting time at each step.

Proposition 3: Under assumption 1–6, the mean discharge
time Td is monotonically increasing with respect to the mean
of waiting time of each step.

Proof: See the Appendix.
Fig. 7 shows such a behavior. As shown in the figure,

the expected discharge time is monotonically increasing with
respect to the mean time waiting for physician order (Step 1
in the RPH workflow).

Concerning the CV of discharge time, intuitively, it should
monotonically increase with respect to the CV of service/
waiting time at each step. Such a property is validated
through extensive numerical experiments. Three examples are
presented in Fig. 8, where the monotonicity with respect to the
waiting time for physician order (Step 1 in the RPH workflow),
document preparation time for aftercare facility (step 11 in the
SW/CM workflow), and transportation time (Step 1 in the TR
workflow) is illustrated. It is shown that the CV of discharge
time is more sensitive to the CV of waiting time for physician
order.
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Fig. 4. Comparison examples with simulation. (a) Example 1. (b) Example 2. (c) Example 3. (d) Example 4.

Fig. 5. Comparison example using hospital data.

Remark 4: Numerical experiments indicate that each step’s
mean time τ has a very small influence on the CV of discharge
time, and the mean discharge time is insensitive to the CV of
service/waiting time at each step.

B. Bottleneck Analysis

The monotonicity study indicates that reducing each step’s
τ and CV could lead to higher DTP, but the resulting increase

in DTP can be significantly different when different steps are
considered. Then, the question arises, which step’s reduction
could lead to the largest improvement in DTP comparing with
reduction in other steps? In other words, which step impedes
the discharge-time performance in the strongest manner? We
refer such a step to as the bottleneck step. Formally, for a
continuous function of DTP, the bottleneck step can be defined
as follows.

Definition 1: Step sl
i is the mean time DTP bottleneck

(BN-DTPτ ) if∣∣∣∣∣∂DTP

∂τ l
i

∣∣∣∣∣ >

∣∣∣∣∣∂DTP

∂τ k
j

∣∣∣∣∣ , ∀{ j, k} �= {i, l}.

Definition 2: Step sl
i is the variability DTP bottleneck

(BN-DTPcv) if∣∣∣∣∣∂DTP

∂cvl
i

∣∣∣∣∣ >

∣∣∣∣∣∂DTP

∂cvk
j

∣∣∣∣∣ , ∀{ j, k} �= {i, l}.

However, the partial derivatives are difficult to evaluate ana-
lytically. To identify the bottleneck steps, let DTP(τ l

i − δτ τ
l
i )

and DTP(cvl
i − δcvcvl

i ) be the DTPs when the mean and CV
of service/waiting time at step sl

i are reduced by proportion δτ
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Fig. 6. WTP monotonicity. (a) DTP monotonicity with respect to τ . (b) DTP monotonicity with respect to cv.

Fig. 7. Mean time monotonicity with respect to τ .

and δcv, respectively. In addition, δτ � 1 and δcv � 1. Then,
the following approach is used to identify the bottlenecks.

1) Mean time τ l
i is the BN-DTPτ if

DTP
(
τ l

i − δτ τ
l
i

)
> DTP

(
τ k

j − δτ τ
k
j

)
, ∀{ j, k} �= {i, l}.

2) CV cvL
i is the BN-DTPcv if

DTP
(
cvl

i − δcvcvl
i

)
> DTP

(
cvk

j − δcvcvk
j

)
,

∀{ j, k} �= {i, l}.

Using such a method, based on the discharge data listed
in Table I, we evaluate DTP improvement at the hospital by
assuming δτ = 0.1 and δcv = 0.2. The results are presented
in Table IV.

As one can see, the reduction of mean or CV of service/
waiting time of SW/CM makes insignificant improvement to
DTP, due to their short service time and low rate of unexpected
discharge. The decrease in τRPH

1 and cvRPH
1 leads to the largest

improvement in DTP. Thus, the “wait for order” step is the
bottleneck. Reducing the waiting time for physician’s order
will substantially improve the discharge process.

Fig. 8. CV monotonicity with respect to cv.

Similarly, the mean time and CV bottlenecks for discharge
time can be defined and evaluated. Specifically, it is shown in
Definition 3.

Definition 3: Step sl
i is the mean discharge time bottleneck

(BN-τ ) if ∣∣∣∣∣∂Td

∂τ l
i

∣∣∣∣∣ >

∣∣∣∣∣∂Td

∂τ k
j

∣∣∣∣∣ , ∀{ j, k} �= {i, l}.

Definition 4: Step sl
i is the discharge time variability bot-

tleneck (BN-CV) if∣∣∣∣∣∂CVd

∂cvl
i

∣∣∣∣∣ >

∣∣∣∣∣∂CVd

∂cvk
j

∣∣∣∣∣ , ∀{ j, k} �= {i, l}.

As the calculations of Td and CVd are complicated, we eval-
uate the differences in mean time and CV reduction to identify
the bottlenecks.

1) Mean time τ l
i is the BN-τ if

Td
(
τ l

i − δτ τ
l
i

)
> Td

(
τ k

j − δτ τ
k
j

)
, ∀{ j, k} �= {i, l}.

2) CV cvL
i is the BN-CV if

CVd
(
cvl

i − δcvcvl
i

)
> CVd

(
cvk

j − δcvcvk
j

)
∀{ j, k} �= {i, l}.
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TABLE IV

DTP IMPROVEMENTS WITH RESPECT TO MEAN OR CV REDUCTION. (a) REDUCING τ . (b) REDUCING CV

TABLE V

IMPROVEMENTS IN MEAN DISCHARGE TIME

TABLE VI

IMPROVEMENTS IN THE CV OF DISCHARGE TIME

The bottleneck for mean discharge time indicates that the
reduction of the average service/waiting time of this step can
lead to the largest decrease in the expected discharge time.
Using the gamma approximation method, the improvements
of mean discharge time are listed in Table V with δτ = 0.1.
As one can see, a 10% reduction of τRPH

1 can lead to the
largest improvement in Td , which is 18.48 min, making the
“wait for order” the bottleneck of the discharge process here.
More efforts should be focused on finding the factors or
causes that can reduce this waiting time more significantly.
In addition, the reductions of τTR

1 and τRPH
9 can also lead

to substantial improvements in expected total discharge time,
which are 1.12 and 1.08 min, respectively. It indicates that the
transportation work and the “wait” after “contact physician for
agreement” in the RPH workflow are also critical due to the
large values of mean waiting times of these two steps.

Moreover, the reductions in CV of discharge time are
listed in Table VI with δcv = 0.1. Again, the reduction of
cvRPH

1 leads to the largest improvement in CVd , which is
0.0420, making the step of “wait for order” the bottleneck
for variability of discharge process. The reduction of CV in
transportation work leads to an improvement of 0.0035 in the
CV of discharge time, while other reductions result in almost
no changes.

C. What-If Analysis

In addition to mitigating bottlenecks, we next investigate
how other parameters may impact discharge-time performance.
Especially, we conduct what-if analysis with respect to the
rates of unexpected discharge, discharging to aftercare facility,
transportation need, and pharmacist intervention.
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TABLE VII

WHAT-IF ANALYSIS WITH RESPECT TO UNEXPECTED DISCHARGE RATE

TABLE VIII

WHAT-IF ANALYSIS WITH RESPECT TO GO TO AFTERCARE FACILITY RATE

TABLE IX

WHAT-IF ANALYSIS WITH RESPECT TO TRANSPORTATION RATE

1) Unexpected Discharge: The unexpected discharge rate
on the discharge date is typically low in practice since the SW
and CM start their work in advance once the patient is admitted
to hospital. As shown in Table VII, the DTPs only have
insignificant changes when the rate of unexpected discharge
increases from 2% to 50%. This is because the service/waiting
times in the SW/CM workflow are much shorter than those in
the RPH workflow, even if the discharges are unexpected.

2) Discharging to Aftercare Facility: If the patient is to be
discharged to an aftercare facility, the service/waiting time will
be longer in the SW/CM workflow since the SWs and CMs
need to contact the aftercare facility, while the RPH workflow
will have a shorter time since the pharmacist only needs to
submit the information for discharge package instead of pro-
viding further education to the patient. As shown in Table VIII,
the DTPs can be improved when the rate of discharging to
aftercare facility increases. However, the improvements are
still insignificant or moderate. This is because the probability
that SW/CM needs to contact aftercare facility for unexpected
discharge is quite small though the contacting time is longer
than the pharmacist’s education time.

3) Transportation Need: The expected preparation time for
transportation work is 233 min for 14% of all patients at

UW Hospital. As shown in Table IX, the DTPs will decrease
significantly when the rate of transportation increases from
14% to 40%. When the rate of transportation need is 40%,
the decrease in DTP will be 7.5% for Tgiven to be 300.

4) RPH Intervention: The medication reconciliation is
applied to all patients to identify potential discrepancies,
such as medical issues, questions, or errors and adverse drug
events, in the prescription medication orders. If a discrepancy
is found, pharmacist intervention is needed to change the
order. The order change rate in RPH intervention is high
at UW Hospital, which is estimated around 60%. As shown
in Table X, the DTPs will be improved moderately if the
intervention rate decreases from 60% to 10%. This result
indicates that improving coordination and consensus between
physicians and pharmacists in prescription orders to reduce
RPH intervention rate could help reduce discharge time.

D. Discussion

Based on the above-mentioned analyses, it can be seen that
the waiting time for physician’s order is the main bottleneck of
the discharge process. In addition, the transportation time will
become an issue if the rate requiring transportation is increased
(although less likely). Thus, to reduce discharge time, the first
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TABLE X

WHAT-IF ANALYSIS WITH RESPECT TO RPH INTERVENTION RATE

priority is to minimize the waiting time for physician’s order.
In other words, the physician is dominating the process to
make the final decision, which can be viewed as the captain
of the ship in the discharge process. From this perspective,
the whole discharge process can be shortened significantly
if the physician’s order can be prescribed at an earlier time,
given that the patient condition is ready for discharge. In some
cases, the long waiting time for physician’s order is due to
waiting for lab results to confirm the patient’s conditions.
Thus, it will be important to investigate how to reduce lab
turnaround time for the discharging patients. Overall, it would
be ideal if the provider (MD/APP) could write an “intent to
discharge tomorrow” order so that some of the workflows can
be started. Some providers are hesitant to do this because of
the possibility of the patient’s condition changing, labs coming
back abnormal, and so on.

Although the RPH workflow is still the most critical
subprocess in the whole discharge process, the pharmacist
is not the constraint or bottleneck in the UW Hospital’s
discharge process. Currently, the pharmacist may have many
interventions during the discharge period. However, reducing
the pharmacist’s interventions can only lead to moderate
improvement, and such interventions are important since they
can effectively reduce medication errors and adverse drug
events [36]. Therefore, making the pharmacist focus on the
complex duties and keeping rigorous checks to eliminate med-
ication errors and adverse drug events are critically needed.
If the physician’s order can be prescribed at an earlier time
and the SW/CM can set up the transportation earlier, then the
process efficiency will be more sensitive to RPH workflow.
Such dedications will be more important.

In this paper, the discharge process is not critical to the
SW/CM workflow as many activities have been finished before
the discharge order. Thus, there is no need to hire more SW
or CM from the discharge improvement perspective. Note that
this assumes that the place of discharge (where the patient is
going to) can be easily arranged. Sometimes it is very difficult
to place patients due to their medical complexity or because
they do not have insurance and so on. Such issues can consume
the SW/CM time.

Moreover, there exist many complicated delay factors, such
as medical consultation or investigation, various disruptions,
and variability in patient’s condition and patient’s mood,
in the discharge process. Such factors could be medical or
nonmedical-related, internal or external reasons, or due to
psychological issues. Thus, coordination and communication

among the team members in the discharge process play a
key role. The physician is the “captain of the ship” since the
discharge order is needed to “get the ball rolling.” The nurse
and the SW/CM are the ones who begin the process and keep it
rolling. The nurse involvements to coordinate with physicians,
therapists, lab technologist, pharmacists, and CMs are crucial
to achieve timely and high-quality discharges.

VII. CONCLUSION

In this paper, an analytical model is introduced to study the
hospital discharge process. By systematically characterizing
the discharge process and using an aggregation approach and
gamma approximation, the mean discharge time, the variabil-
ity, and the discharge-time performance can be evaluated with
high accuracy. It is shown that such performances are prac-
tically independent of the distribution of service/waiting time
at each step in the discharge process but primarily depends
on their mean and CV. In addition, using the approximation
method, the monotonicity properties are investigated. Based
on the data collected at the UW Hospital, the bottleneck
analysis is carried out to identify the most impeding step in the
process, which turns out to be the waiting time for physician’s
discharge order.

Such a model provides a quantitative tool for hospital man-
agement to study and improve the discharge process. It is not
only applicable to UW Hospital but also useful for analyzing
discharge processes in other hospitals. Moreover, the method-
ology can be applied to production, product development, and
other engineering fields with multiple concurrent processes.
To extend this study, a more in-depth analysis of the discharge
process can be carried out. Particularly, the following topics
are of interest as follows:

1) assumption of phase-type or other distributions (such as
Pearson distribution) for service (or waiting) time at each
step;

2) communication and coordination between multiple care
providers during discharge;

3) multiple tasks for providers, which relates to availability
and resulting waiting time of the providers;

4) patients’ and families’ involvement in discharge;
5) different workflows, configurations, and protocols or

guidelines for discharge;
6) alliance with predictive models of patient conditions;
7) integration with analysis of admission, readmission, and

patient transitions within hospitals.
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APPENDIX

PROOFS

A. Proof of Proposition 1

It has been shown in [21] that if {Xi , i = 1, . . . , n} are
independently distributed gamma random variables with mean
τi and standard deviation σi , then

G(Tgiven) =
n∏

i=1

(
βmin

βi

)γi ∞∑
k=0

δkγ (ρ + k, Tgiven/βmin)

	(ρ + k)

(A.1)

where βmin, βi , γi , δk , ρ, γ (·), and 	(·) are defined in (13).
Using this result, the number of steps in serial process i can
be defined by nl

i . Then, DTPl
i of procedure i of workflow l

for time interval Tgiven can be evaluated by Gl
i (Tgiven). Then,

DTPl can be calculated using the weighted sum of the cdfs of
all the pathways in workflow l, i.e.,

DTPl =
∑

i pl
i G

l
i (Tgiven)∑
i pl

i

.

Taking the maximum, we obtain the overall discharge-time
performance of the whole process.

B. Proof of Proposition 2

For the mean of waiting time τ l
i , it is obvious that

∂Gl
j (Tgiven)

∂τ l
i

< 0

when route j of workflow l includes step τ l
i ; otherwise,

Gl
j (Tgiven) does not change with τ l

i .
In addition, for workflow k �= l, k ∈ {SW, TR, RPH},

we have

∂Gk
j (Tgiven)

∂τ l
i

= 0.

That is to say, the discharge-time performance of a workflow
decreases with respect to the mean of waiting time of the step
from the same workflow and does not change with the one
from a different workflow

∂DTPl

∂τ l
i

< 0 (A.2)

∂DTPk

∂τ l
i

= 0, for k �= l. (A.3)

Thus, from (3), we obtain

∂DTP

∂τ l
i

= ∂
∏

k=SW,TR,RPH DTPk

∂τ l
i

< 0.

C. Proof of Proposition 3

From Proposition 2, by (A.2) and (A.3), we obtain

∂Td

∂τ l
i

= ∂
∫ ∞

0 (1 − DTP)dTgiven

∂τ l
i

= ∂
∫ ∞

0 (1 − ∏
k=SW,TR,RPH DTPk)dTgiven

∂τ l
i

> 0.
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