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Abstract— Identifying the population structure of the newly 

emerged coronavirus SARS-CoV-2 has significant potential to 

inform public health management and diagnosis. As SARS-CoV-2 

sequencing data accrued, grouping them into clusters is important 

for organizing the landscape of the population structure of the 

virus. Due to the limited prior information on the newly emerged 

coronavirus, we utilized four different clustering algorithms to 

group 16,873 SARS-CoV-2 strains, which automatically enables 

the identification of spatial structure for SARS-CoV-2. A total of 

six distinct genomic clusters were identified using mutation 

profiles as input features. Comparison of the clustering results 

reveals that the four algorithms produced highly consistent 

results, but the state-of-the-art unsupervised deep learning 

clustering algorithm performed best and produced the smallest 

intra-cluster pairwise genetic distances. The varied proportions of 

the six clusters within different continents revealed specific 

geographical distributions. In particular, our analysis found that 

Oceania was the only continent on which the strains were 

dispersively distributed into six clusters. In summary, this study 

provides a concrete framework for the use of clustering methods 

to study the global population structure of SARS-CoV-2. In 

addition, clustering methods can be used for future studies of 

variant population structures in specific regions of these fast-

growing viruses. 
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I. INTRODUCTION 

    The COVID-19 pandemic was caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) [1, 2], and 

has spread throughout the world. In an effort to understand the 

molecular characteristics of the virus, viral genomes have been 

abundantly sequenced and presented at the Global Initiative on 

Sharing All Influenza Data (GISAID). As an emerging virus, it 

is important to understand the genetic diversity, evolutionary 

trajectory and possible routes of transmission of SARS-CoV-2 

from its natural reservoir to humans. Most studies have looked 

into the aspects of real-world SARS-CoV-2 evolution and strain 

diversification through phylogenetic tree [3-7]. Phylogenetic 

tree is a graph that shows the evolutionary relationships among 

various biological entities based on their genetic closeness [8, 

9]. The distances from one entity to the other entities indicate 

the degree of relationships. However, as population genomic 

datasets grow in size, simply using pairwise genetic distances 

cannot present an explicit structure of the total population in 

phylogenetic analysis. Grouping similar entities into the same 

cluster and identifying the number of main subtypes (clusters) 

makes it easier to understand the main characteristics of the 

population. Traditionally, using the distance matrix and the 

bifurcations between branches of leaves on the phylogenetic 

tree, entities can be grouped into clusters. However, when the 

number of entities becomes large, it is not easy to directly and 

accurately partition the clades in the phylogenetic tree. 

    To identify a better way to effectively group entities, 

clustering methods emerge as more productive and robust 

solutions. The objective of clustering is automatically 

minimizing intra-cluster distances and maximizing inter-cluster 

distances [10]. Accurate clustering helps to better understand 

the inner relationships between data and inform downstream 

analysis. Clustering methods have been widely used as a good 

supplemental tool in phylogenetic analysis, including 

phylogenetic tree construction [11-13], ancestral relationship 

identification [14], evolutionary rate estimation [15, 16], gene 

evolutionary mechanisms research [17] and population 

structure analysis [18]. 

    Herein, to identify the population structure of the newly 

emerged coronavirus SARS-CoV-2, we took inspiration from 

recent state-of-the-art deep embedding clustering method [19] 

to group a total of 16,873 strains. Compared with traditional 

methods, this deep learning clustering algorithm showed 

significant improvements in terms of both Silhouette score, sum 

of squared errors (SSE) and Bayesian information criterion 

(BIC) [20]. The clustering results showed that there were six 

major clusters of SARS-CoV-2. In particular, we found that the 

proportions of six clusters in each continent showed a specific 

geographical distribution. In summary, this study provides a 

perspective of the SARS-CoV-2 population structural analysis, 

helping to investigate the evolution and spread of the virus 

across the human populations worldwide. 
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II. METHODOLOGY 

A. SARS-CoV-2 sample collection 

    A set of African, Asian, European, North American, Oceanian 

and South American SARS-CoV-2 strains marked as “high 

coverage” were downloaded from GISAID. The “high 

coverage” was defined as strains with <1% Ns and <0.05% 

unique amino acid mutations (not seen in other sequences in 

databases) and no insertion/deletion unless verified by the 

submitter. In addition, all strains with a non-human host and all 

assemblies of total genome length less than 29,000 bps were 

removed from our analysis. Ultimately, our dataset consisted of 

16,873 strains. 

B. Mutation calls and phylogenetic reconstruction 

    All downloaded genomes were mapped to the reference 

genome of SARS-CoV-2 (GenBank Accession Number: 

NC_045512.2) following Nextstrain pipeline [21]. Multiple 

sequence alignments and pairwise alignments were constructed 

using CLUSTALW 2.1 [22]. Considering many putatively 

artefactual mutations and the gaps in sequences are located at 

the beginning and end of the alignment, we masked the first 130 

bps and last 50 bps in mutation calling following Nextstrain 

pipeline. We used substitutions as features to reconstruct the 

phylogenetic tree using FastTree 2 [23]. The phylogeny is 

rooted following Nextstrain pipeline using FigTree v1.4.4. The 

phylogenetic trees were visualized using the online tool 

Interactive Tree Of Life (iTOL v5) [24]. 

C. Data analysis and visualization 

    All Figures and statistical analyses were generated by the 

ggplot2 library in R 3.6.1, the seaborn package in Python 3.7.6 

and GraphPad Prism 8.0.2. 

D. Data clustering 

    Herein, we employed a published state-of-the-art deep 

learning unsupervised clustering algorithm to iteratively cluster 

the SARS-CoV-2 strains [19]. Each identified cluster was a 

subtype of SARS-CoV-2. We first used K-means clustering to 

initialize centroids for the clusters. To determine the number of 

clusters, we plotted the curves of the sum of squared errors 

(SSE) and Bayesian information criterion (BIC) [20] under 

different cluster numbers ranging from 2 to 20. 

    To update the cluster assignments, we implemented the 

Student’s t-distribution as a kernel to measure the distance from 

a strain (ℎ𝑖) to a cluster centroid (𝑢𝑗): 

𝑞𝑖𝑗 =
(1 + ‖ℎ𝑖 − 𝑢𝑗‖

2
𝛼⁄ )

−
𝛼+1

2

∑ (1 + ‖ℎ𝑖 − 𝑢𝑗′‖
2

𝛼⁄ )
−

𝛼+1
2𝐾

𝑗′=1

            (1) 

where the distance 𝑞𝑖𝑗  can be interpreted as the probability of 

assigning strain i to cluster j. The 𝛼 is the degree of freedom of 

the Student’s t-distribution, and we let 𝛼 = 1  in this study. 

Next, we defined an auxiliary target distribution P by raising 

each 𝑞𝑖𝑗  to the second power which upweights strains assigned 

with high confidence: 

𝑝𝑖𝑗 =
𝑞𝑖𝑗

2 ∑ 𝑞𝑖𝑗
𝑁
𝑖=1⁄

∑ (𝑞𝑖𝑗′
2 ∑ 𝑞𝑖𝑗′

𝑁
𝑖=1⁄ )𝐾

𝑗′=1

                             (2) 

where the denominator is to normalize the loss contribution of 

each centroid to prevent large clusters from distorting the 

feature space. Finally, we defined the objective function using 

a Kullback-Leibler (KL) divergence loss: 

L = KL(P||Q) = ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗

𝐾

𝑗=1

𝑁

𝑖=1
            (3) 

The parameters and cluster centroids were jointly optimized 

by minimizing L using Stochastic Gradient Descent (SGD) with 

momentum.  

    Besides the deep learning clustering algorithm, we also 

employed K-means clustering, hierarchical clustering and 

BIRCH (Balanced Iterative Reducing and Clustering using 

Hierarchies) for SARS-CoV-2 strain clustering. The three other 

models were implemented using the Python package sklearn 

with the KMeans function (K-means), 

AgglomerativeClustering function (hierarchical clustering) and 

Birch function (BIRCH), respectively. 

E. Data Availability 

    The publicly available SARS-CoV-2 datasets in this study ar

e available at GISAID (https://www.gisaid.org). The reference 

SARS-CoV-2 is available at the NCBI GenBank (GenBank Ac

cession Number: NC_045512.2, https://www.ncbi.nlm.nih.gov/

nuccore/NC_045512.2). 

III. EXPERIMENTAL RESULTS 

A. Genetic analysis indicates high diversity and rapidly 

proliferating of SARS-CoV-2 

We obtained a total of 16,873 (98 from Africa, 1324 from 
Asia, 9527 from Europe, 4765 from North America, 1040 from 
Oceania and 119 from South America) earliest SARS-CoV-2 
whole-genome sequencing data from GISAID, aligned the 
sequences, and identified the genetic variants. A total of 7,970 
substitutions were identified, including 4,908 non-synonymous 
mutations, 2,748 synonymous mutations and 314 intronic 
mutations. The average mutation count per genome was 6.99 
(Fig. 1A). The frequency spectrum of substitutions illustrated 
that more than half (54.05%) of the mutations were singletons 
and 15.35% were doubletons. The proportion of the mutations 
below 0.01 was 99.28% (Fig. 1B). The high percentage of these 
low-frequency mutations suggested that SARS-CoV-2 occurred 
recently and displayed a rapidly proliferating pattern [25]. In 
addition, there were 8,706 unique strains across the 16,873 
strains (Fig. 1C), and most unique strains (7,078) were 
singletons, yielding high diversity of the virus. In particular, 
Simpson’s diversity index of the strains was 0.8222, indicating 
that two random strains would have a high probability of being 
genetically different. The frequency spectrum of substitutions 
and Simpson’s diversity index indicated high genetic diversity 
of SARS-CoV-2. 
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Fig. 1. The genetic information of the 16,873 SARS-CoV-2 strains. (A) The 
distribution of the mutation counts of SARS-CoV-2. (B) Frequency spectra of 
SARS-CoV-2. The mutation frequency of derived mutations of 16,873 SARS-
CoV-2 stains is depicted on the X axis, and the number of mutations in 
corresponding strains occurred is displayed on the Y axis. A log-10 scale is used 
for the Y axis of the graph, and the Y axis ranges from 1 to 10,000. (C)  
Normalized allele frequency of SARS-CoV-2. There are 8,706 unique genomes 
across the 16,873 strains. The X axis is the number of strains for each unique 
genome and the Y axis is the proportion of the unique genomes. A log-10 scale 
is used for the Y axis of the graph, and the Y axis ranges from 0.0001 to 1 

 

B. Clustering of SARS-CoV-2 reveals six major clusters 

    To clarify the main population structure of the virus, 

grouping these strains into clusters is necessary, as these 

clusters displayed the major types of the virus. However, the 

genetic analysis of SARS-CoV-2 showed that there were 8,706 

unique strains across the 16,873 strains (Fig. 1C), it is not easy 

to directly and accurately partition the strains. For this reason, 

we applied clustering techniques to measure similarities 

between these strains and effectively group them. 

Because SARS-CoV-2 exhibits a limited number of SNPs 

per virus strain and little ongoing horizontal gene exchange, 

making SNPs ideal clustering input features. We first used the 

aggregated SNP matrix to cluster samples using an 

unsupervised deep learning clustering algorithm published by  

Xie et al [19] (see methodology). The unsupervised deep 

learning clustering algorithm requires one to pre-specify the 

number of clusters (K), but we have little prior knowledge about 

the number of subtypes formed by the heterogeneous SARS-

CoV-2 genome. To determine the number of clusters, we 

plotted the curves of the SSE and BIC under different cluster 

numbers ranging from 2 to 20 (Fig. 2). We used the elbow 

method and chose the elbow of the curve as the number of 

clusters [26]. This approach resulted in K=6 for both the SSE 

and BIC curves.  

 
Fig. 2. Evaluation of the number of clusters. The evolution of the sum of squared 
errors (SSE; left) and Bayesian information criterion (BIC; right) for the number 
of clusters in the deep learning clustering runs. We used the elbow method and 
chose the elbow of the curve as the number of clusters. The elbow method 
indicated that the number of clusters is six. 

To evaluate the performance of the algorithm, we also 

employed K-means clustering [27], hierarchical clustering and 

BIRCH clustering [28, 29] for comparison. The objective of 

clustering is minimizing intra-cluster distances and maximizing 

inter-cluster distances. To this end, we did five repetitions for 

each of the four clustering algorithms and selected the one that 

achieved the best performance (lowest average intra-cluster 

pairwise genetic distances). The average intra-cluster pairwise 

genetic distances in the deep learning clustering algorithm 

(4.892) was significantly lower than that in K-means (4.896, P-

value < 0.001, Wilcoxon rank-sum test), hierarchical clustering 

(5.062, P-value < 0.001, Wilcoxon rank-sum test) and BIRCH 

(4.985, P-value < 0.001, Wilcoxon rank-sum test). We 

compared the Silhouette score (Fig. 3A), SSE (Fig. 3B) and 

BIC (Fig. 3C) of the four algorithms. The deep learning 

clustering obtained the highest Silhouette score and BIC, and 

the lowest SSE, indicating that the clustering results of deep 

learning clustering are better than the other algorithms. In 

contrast, BIRCH performed the worst of the four algorithms. 

We aligned the partitions of the six clusters against the 

phylogenetic tree for the three best methods (Fig. 3D). The 

clustering results indicated that the partitions from the three 

algorithms were similar. The differences between the 

hierarchical clustering results and the two other clustering 

results were mainly at the boundary of the clusters. Of the three 

methods, strains grouped by deep learning clustering and K-

means were more compact in the phylogenetic tree than those 

by hierarchical clustering. For example, the strains in both deep 

learning clustering cluster D and K-means cluster D were split 

into two clusters using hierarchical clustering. However, such a 

split was not supported by the phylogenetic tree (Fig. 3D).  

In the meantime, we used complementary approaches to 
validate the deep learning clustering results. First, we compared 
the pairwise genetic distances between intra-cluster and inter-
cluster. In all six clusters, the average number of intra-cluster 
genetic distances was significantly lower (P-value < 0.001, 
Wilcoxon rank-sum test, Fig. 3E) than inter-cluster genetic 
distances. Next, we applied T-distributed Stochastic Neighbor 
Embedding (t-SNE) to visualize the deep learning clustering 
results. In the t-SNE plot, the strains were adequately isolated 
between clusters (Fig. 3F). 
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Fig. 3. Clustering of SARS-CoV-2. (A, B and C) The Silhouette score (A), Sum 

of Squared Errors (SSE; B) and Bayesian Information Criterion (BIC; C) for 

the four selected algorithms (X axis). (D) Phylogenetic tree of 16,873 SARS-
CoV-2 strains. Four colored panels outside the phylogenetic tree are used to 

identify auxiliary information for each virus strain. The inner panel represents 

the distribution of the continents. The outer three panels represent the partitions 
of the six clusters across the three best performance clustering algorithms (deep 

learning, K-means and Hierarchical) in the tree. (E) Mean pairwise genetic 

distances for intra-clustered and inter-clustered genetic distances. The blue bars 
represent mean pairwise genetic distances between pairs of isolates within the 

clusters, and the red bars represent mean pairwise genetic distances between 

pairs of isolates outside the clusters. The error bar represents the standard 
deviation. The mean distance between pairs of strains for intra-clusters was 

significantly lower (P-value < 0.001, Wilcoxon rank-sum test) than that of inter-

clusters. (F) The t-SNE plot of the deep learning clustering results. Each dot 

represents one strain and each color represents the corresponding cluster. 

C. The varied proportions of the clusters in different 

continents 

Mapping the proportions of strains from each continent 

showed that the clusters differed in their geographical 

distributions (Table 1). Of the six clusters, cluster C spread 

globally. By contrast, cluster A and cluster F occurred at high 

frequencies in specific regions. 81.92% of the strains in cluster 

A and 85.73% of the strains in cluster F were from Europe. The 

geographical spread of each of the three remaining clusters was 

intermediate. Cluster E occurred at higher frequencies in North 

America and Europe, lower frequencies in Asia and Oceania. 

Cluster D occurred at higher frequencies in North America, and 

lower frequencies in Asia, Europe and Oceania. The strains in 

cluster B were mainly in Asia and Europe and partially in North 

America and Oceania.  

However, due to the sampling bias of the SARS-CoV-2, 85% 

of the strains were collected from Europe and North America, 

making the proportion of the continents in each cluster not 

informative. Therefore, we evaluated the proportion of the 

clusters on each continent. In most continents, the distributions 

of the strains were concentrated in one or two clusters, 

including Asia (49% in cluster B), Africa (66% in cluster C), 

South America (78% in cluster C and F), North America (74% 

in cluster D and E) and Europe (64% in cluster C and F). 

Among the six continents, Oceania was the only continent that 

was uniformly separated into the six clusters, indicating strains 

in Oceania were more diverse than in the other continents. 

Table 1 Geographic distribution of six continents for each cluster. 

 

IV. CONCLUSION 

Understanding the population structure of SARS-CoV-2 is 

important in evaluating future risks of novel infections. To 

precisely analyze their population structure, we used clustering 

methods in phylogenetic analysis to group a total of 16,873 

publicly available SARS-CoV-2 strains. To improve the 

accuracy, we use a state-of-the-art deep learning clustering 

algorithm, which has been demonstrated to exhibit better 

performance than three traditional clustering algorithms: K-

means clustering, hierarchical clustering and BIRCH.  

Our clustering results indicated six major clusters of SARS-

CoV-2. The mutation profile characterizing clusters of the viral 

sequences displayed specific geographical distributions. Most 

continents were mainly concentrated in one or two clusters, but 

we also found that in Oceania, the strains were dispersively 

distributed into six clusters.   

    It is noteworthy that our study is limited due to the 

sampling bias of SARS-CoV-2, with more than 60% of the 

strains being from the United Kingdom and the USA. In 

contrast, the overall proportion of strains from Africa and South 

America is less than 2%. Sampling biases can lead to biased 

parameter estimation and affect the clustering results we 

Cluster A B C D E F Total 

Africa 3 4 65 7 10 9 98 

Asia 38 648 248 217 57 116 1,324 

Europe 1,137 990 3,119 212 1,108 2,961 9,527 

North 
America 

94 334 625 1,268 2,274 170 4,765 

Oceania 110 161 233 196 191 149 1,040 

South 

America 
6 5 44 10 5 49 119 

Total 1,388 2,142 4,334 1,910 3,645 3,454 16,873 
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observed. To address this issue, another clustering can be used 

for more further analyses. 

    Despite the limited number of SARS‐CoV‐2 genome 
sequences, our analysis of population genetics is informative. 
Our discovery of high genetic diversity in SARS‐CoV‐2 is 
consistent with an earlier study [30]. The topology and the 
divergence of the clusters in the phylogenetic tree illustrate a 
relatively recent common ancestor, similar to the fact that the 
emergence and the spread of the virus was highly concentrated 
in a short time [1, 31-33]. Our work, as well as previous studies 
[3, 34, 35] that use clustering techniques to study the population 
structure of the SARS-CoV-2 virus, has proved to be a valuable 
supplemental tool in phylogenetic analyses.  For future work, we 
plan to further apply soft clustering techniques to better account 
mixtures in clusters, the efficacy of which has been showcased 
by previous studies in multiple fields [36-42]. In addition, 
clustering ideas can be used for further study of variant 
population structures in specific regions of these fast-growing 
viruses.   
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