
Vol.:(0123456789)

Flexible Services and Manufacturing Journal (2020) 32:35–71
https://doi.org/10.1007/s10696-019-09347-6

1 3

A two‑level iteration approach for modeling and analysis 
of rapid response process with multiple deteriorating 
patients

Zexian Zeng1 · Zhenghao Fan2 · Xiaolei Xie2 · Colleen H. Swartz3 · 
Paul DePriest4 · Jingshan Li5 

Published online: 15 April 2019 
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In acute care, a patient’s clinical deterioration is often a precursor to serious and 
often fatal outcomes. To reduce the severity and frequency of negative outcomes, 
care providers need to response rapidly by providing quick evaluation, triage, and 
treatment to patients with declining conditions. However, a provider’s availability 
to respond can be constrained when multiple patients are deteriorating at the same 
time. To study the multiple patients rapid response process, we introduce a network 
model with complex structures, such as split, merge, and parallel. Iterative methods 
are presented to evaluate the mean decision time (i.e., the average time from the 
detection of a patient’s declining to a physician’s treatment decision being made). It 
is shown that such methods lead to convergent results and high accuracy in perfor-
mance evaluation. Such a model provides a quantitative tool for healthcare profes-
sionals to design and improve rapid response systems.

Keywords Rapid response · Decision time · Mean waiting time · Multiple patients · 
Patient deterioration · Iterations

1 Introduction

After the publication of the US Institute of Medicine’s report “To Err is Human” 
(Kohn et al. 2000), there has been a national initiative in the US to improve patient 
safety (Watcher 2004; Leape and Berwick 2005; Berwick et  al. 2006; Brind-
ley 2010). In addition to regular care services, rapid response teams (RRTs), also 
referred to as medical emergency teams (METs), or critical care outreach (CCO), 
have been implemented in many hospitals to provide quick evaluation, triage, 
and treatment to patients with clinical signs of deterioration on the hospital floor 
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(DeVita et al. 2006, 2011). However, recent studies have indicated that there exist 
inconsistent results regarding the effectiveness of implementing RRTs. Therefore, an 
in-depth study of the efficacy of RRTs is necessary.

To study this issue, in this paper, we consider a rapid response system with mul-
tiple patients in a teaching hospital environment. In such systems, multiple patients 
could deteriorate simultaneously. Each requires timely diagnosis and treatment from 
a limited number of providers, who need to make prompt decisions through a hierar-
chical referral procedure. When a patient’s deterioration is identified by a monitoring 
nurse, he/she can inform one of the providers or the RRT, as shown in Fig. 1. In other 
words, the nurse can notify either the intern, or the RRT, or both RRT and one provider 
(intern, resident, fellow, or attending). The RRT can either keep the patient “stay” or 
can notify the resident and rely on his/her judgment. If a provider is asked, either a 
diagnosis and treatment decision can be made, or assistance from an upper level pro-
vider can be sought. For instance, an intern (or RRT, or RRT & intern) may seek help 

Decision

ICU

Step Down

Tele

Stay

Attending

Fellow

Resident

Intern

RRT

RRT & Intern

RRT & Resident

RRT & Fellow

RRT & Attending

Deteriorating NurseMonitoring

Decision

ICU

Step Down

Tele

Stay

Attending

Fellow

Resident

Intern

RRT

RRT & Intern

RRT & Resident

RRT & Fellow

RRT & Attending

Deteriorating NurseMonitoring

Patient 1

Patient mPatient m

Fig. 1  Rapid response process with multiple patients
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from the resident. Similarly, the resident (or RRT & resident) may either make a deci-
sion or ask help from the fellow. The fellow (or RRT & fellow) again can make a deci-
sion or request the attending’s help. The attending (or RRT & attending) must make a 
final decision, in one of the four options: elevating the patient to be admitted to “ICU”, 
monitoring for progressive care (referred to as “step down”), moving to a telemetry bed 
(“tele”), or keeping the patient for observation (i.e., “stay”).

As one can see, the rapid response process requires integrated and collaborative 
operations of multiple care providers from different divisions or departments. Early 
identification, better recognition, as well as prompt response and treatment, play 
key roles. Therefore, a systematic study of the whole rapid response system (RRS), 
rather than an individual response or a provider, is necessary and important (DeVita 
et  al. 2006). Among various performance measures, the mean decision time, i.e., 
the average time from decline to an appropriate medical decision is important since 
clinical studies have shown that patient safety is strongly correlated to the decision 
time (Hillman et  al. 2001). Therefore, evaluation of the mean decision time is of 
critical importance for RRS, which is the focus in this study.

Although extensive clinical studies have been devoted to the rapid response pro-
cess, the investigation from a systems engineering point of view is still limited. To 
bridge this gap, both discrete event simulation and analytical methods are viable. 
They are complement to each other and have different advantages and limitations, 
which can provide results and insights from different perspectives. In this paper, we 
focus on developing an analytical method. The contribution of this paper is to intro-
duce an iteration method to evaluate the average decision time in a multi-patient 
rapid response process, where the extra waiting times, due to unavailability of the 
providers are taken into account and are updated through recursive procedures. 
To our best knowledge, no such study is available in the literature. Using such a 
method, the estimation of the mean decision time can be obtained, which is critical 
to patient safety. Such a method provides a quantitative tool for operation manage-
ment of the rapid response process with multiple patients. In addition, such a model 
could also enable us to identify the response time that is most critical to the overall 
decision time through sensitivity analysis. Then efforts can be organized to decrease 
this response time, such as increasing number of resident doctors, thus reducing the 
number of patients each covers, so that the overall decision time can be improved.

The remainder of the paper is structured as follows: Sect. 2 briefly reviews the 
related literature. Section 3 introduces the rapid response process in multiple patients 
environment and formulates the problem. By considering limited resource, a two-
level iteration method to estimate the mean decision time is presented in Sect.  4. 
Finally, Sect.  5 presents conclusions and summarizes future work. All proofs are 
provided in the “Appendix”.

2  Related literature

The historical report “To Err is Human,” published by the US Institute of Medi-
cine, has estimated that the number of potentially preventable hospital deaths in 
the US is up to 100,000 per year (Kohn et  al. 2000). Since its publication, there 
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has been a worldwide concern regarding patient safety; numerous efforts have been 
made to improve processes (see, for example, reviews by Watcher 2004; Leape and 
Berwick 2005; Berwick et al. 2006). Moreover, the data in the report has triggered 
a trend in the US to implement RRTs (or METs, CCO) in hospitals (DeVita et al. 
2011). Numerous studies have been carried out to investigate the effectiveness of 
RRTs and RRSs. In some studies, it is found that the implementation of RRT has 
provided a systematic response procedure to patients with deterioration episodes, 
leading to substantial reduction in mortality in some hospitals (e.g., Priestley et al. 
2004; DeVita et al. 2006; Dacey et al. 2007). However, in other hospitals, such posi-
tive improvements were not observed and there is no consistent clinical conclusion 
regarding the effectiveness of RRTs (see Massey et al. 2010; Hillman et al. 2005; 
Winters et al. 2007; Ranji et al. 2007; Chan et al. 2010). As most of the available 
studies are observational or trial-based, a systematic study using mathematical mod-
els could provide a new perspective and generate guidance to adjust and optimize 
the existing rapid response system (Downey et al. 2008).

Clinical studies have suggested that the majority of the patients show signs of 
deterioration before ICU admission (Hillman et al. 2001; Downey et al. 2008; Xie 
et al. 2012, 2014), and the time of quick response and treatment to patient decline 
is critical to reduce safety risk and ICU burden (McGloin et  al. 1999; McArthur-
Rouse 2001). Thus, a quantitative study of the response and decision time in RRS 
becomes important. However, in the current literature, only the single patient sce-
nario has been studied (see papers by Xie et al. 2012, 2014). In Xie et al. (2012), the 
mean decision time and its variability are analyzed via a response network model 
with split and merge. The most impeding response, i.e., the bottleneck response 
with respect to improvement in individual response time can be identified. To fur-
ther investigate the system behavior, the response time performance (RTP), i.e., the 
probability that an appropriate decision can be made within a desired time duration, 
is proposed by Xie et al. (2014). A closed formula is presented under exponential 
assumption of response time, and an empirical modification law for the general case 
is introduced. The bottleneck response from the RTP perspective is also analyzed.

However, these studies are based on response process for a single patient and 
assumes providers are always available. In practice, there are multiple patients on 
the floor, and more than one patients may deteriorate simultaneously while the num-
ber of providers on the hospital floor is limited. Thus, there is a chance that the 
limited providers may need to treat multiple patients who are deteriorating simul-
taneously. In this case, care delivery may be delayed due to the unavailability of 
providers. This will significantly impact patient safety and quality of care. Unfortu-
nately, such a scenario has not been investigated yet.

From the methodology point of view, among substantial efforts contributing 
to healthcare systems research, simulation has been used as a prevailing tool (see 
reviews by Jacobson et  al. 2006; Gunal and Pidd 2010; Wiler et  al. 2011; Zhong 
et al. 2015). Although simulation is a viable approach, this paper provides an alter-
native  and complement method based on network analysis. Analytical model can 
provide a fast and accurate estimation and is not dependent on the detailed descrip-
tion of the process. More importantly, such a quick approach enables us to study 
numerous scenarios related to sensitivity analysis and design considerations to 
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find better solutions. For example, queueing models and Markov chain approach 
are often used [see monographs by Brandeau et al. 2004; Hall 2006 and papers by 
Schaefer et  al. 2005; Green 2006; Fomundam and Herrmann 2007; Lakshmi and 
Iyer 2013;  Garg et  al. 2010;  Mayhew and Smith 2008;  Wang et  al. 2012, 2013, 
2014]. However, in some cases, some specific assumptions (e.g., poisson arrivals, 
exponential service time) may limit their applications. For example, a Markov chain 
model of ward patient rescue process is presented by Xie et  al. (2016). Although 
RRT is involved in the model, the main focus is on estimating the steady state prob-
abilities of patient status based on exponential assumption of intervention time.

To summarize, developing a novel analytical model to study rapid response sys-
tem with multiple declining patients and limited provider availability is necessary, 
which is pursued using an analytical approach in this study.

3  System assumptions and problem formulation

Consider a rapid response system under a multi-layer referral mechanism, shown in 
Fig. 1. The variables used to characterize the rapid response process throughout the 
paper are summarized in Table 1.

Remark 1 In the US medical system (Whitlock 2017), particularly in teaching hospi-
tals, “interns” refer to the doctors who have completed their first year of post-medi-
cal school training; the residency follows the intern year. Fellows are the physicians 
who have completed their residency and have elected to complete further training in 
a specialty. Finally, attending physicians are those who have completed their training 
and practise independently in their chosen specialty.

The following assumptions define the patients, the providers, and their 
interactions.

(1) There are m patients in the system. Each patient is continuously monitored. 
When a decline in vital signs, such as heart rate, blood pressure, or respiratory 
rate, is detected, the primary nurse will respond to notify the RRT or the intern, 
or inform both the RRT and a provider (intern, resident, fellow, and attending) 
for help.

(2) Once the nurse call is received, the provider should arrive immediately and carry 
out appropriate diagnosis and treatment. A decision will be made according to 
the patient’s condition. The decision includes sending help requests to a higher 
level provider (as shown in Fig. 1), or one of the following four options: ICU, 
step down, tele, or stay. The RRT can only make a “stay” decision. If the attend-
ing is called for help, his/her decision is final.

(3) The probability of provider i’s possible action j (making a final decision or asking 
for higher level help) is defined as �i,j , where i ∈ {nur , int, rrt, res, fel, int&rrt , 
res&rrt , fel&rrt} , and j ∈ {rrt , int, res, fel, atn, int&rrt , res&rrt , fel&rrt , 
atn&rrt}.
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(4) Each patient may exhibit his/her own deteriorating characteristics. In other 
words, the patients’ deteriorations are independent. Thus, it is possible that 
multiple patients decline simultaneously. However, each provider can only take 
care of one patient at a time.

(5) The response time (including diagnosis and possible treatment time) of provider 
i is modeled by a general random distribution with mean �i . However, if mul-
tiple patients are declining and need the specific provider at the same time, the 
provider will work with the first requesting patient, and other patients will wait 
until the current response is finished.

Remark 2 The above assumptions imply that the providers follow a first-come-first-
serve policy to respond to patient deteriorations (assuming that all clinical declines 
have the same priority), which is typical in most acute care environments.

Remark 3 In practice, when the higher level provider is busy, the staff who initiated 
the request may wait or seek help from other providers, which depends on patient 
status, clinical protocols, and physicians’ preferences, etc. The latter one is indeed 
considered from routing probability perspective, where the scenarios of routing to 

Table 1  Variables

Providers

rrt Rapid response team
nur Nurse
int Intern doctor
res Resident doctor
fel Fellow doctor
atn Attending doctor

Time

�i Mean response, diagnosis, and treatment time of provider i
�k,r Mean decision time including patient k’s waiting time for provider r
Tnormal Average time period a patient is not in declining status
Tin Mean decision time in Level-1 iteration, including additional waiting time
Tfinal Mean decision time after 2-level iterations
Td Mean decision time

Probability

�i,j Probability that provider i will ask for help from provider j
pi Probability that response i has been carried out
pk,r Probability that provider r is treating patient k with another request
�k Percentage of time the patient is in a deteriorating status
�k Probability patient k is declining with other patients
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the second provider are already included in the data. Thus, in the current model, we 
assume the former case (i.e., waiting) only.

Such a rapid response process can be viewed as a complex network model 
consisting of split, merge, and parallel features. Thus, we define a resource set 
of RRT, intern, resident, fellow and attending doctors, and their joint groups as 
X = {rrt , int, res, fel, atn, rrt&int , rrt&res , rrt&fel , rrt&atn} . Let td denote the 
decision time, i.e., from the time a decline is detected to the time a final deci-
sion is made. In addition, introduce Td as the mean decision time. Clearly, Td is 
not a simple summation of all the response times since it includes the possible 
unknown waiting time due to interactions between all the providers and patients. 
Thus, Td is a function of all processes involved, including patients’ decline, 
responses from all the providers, and decisions. As one can see, Td cannot be 
estimated directly due to the complexity of the system. Developing a method to 
estimate such a time is needed.

Therefore, the problem to be addressed in this paper is formulated as: Under 
assumptions (1)–(5), develop an analytical method to evaluate the mean decision 
time in the multiple patients rapid response system.

As one can see, the rapid response process is complex involving multiple care 
providers (nurse, intern, resident, RRT, fellow, attending, and a combination of 
them) and various routings for response. In addition, if several patients decline 
simultaneously, providers will be unavailable, making the process even more 
complicated. Thus, direct analysis is constrained by the curse of dimensional-
ity (e.g., using Markov chain or state-based methods), and the non-exponential 
nature of service time will again increase the level of difficulty. Therefore, a hier-
archical structure and a two-level iteration method are proposed for this study.

Remark 4 In practice, improving operation management is of critical importance 
in healthcare delivery. Using the analysis method introduced in this paper, one can 
adjust the system parameters to predict the system performance and compare them 
to find an appropriate direction or strategy for operation improvement. For instance, 
one can adjust a provider’s mean response time to find out whose response is more 
critical and then reduce the response time. One can also evaluate the impacts of dif-
ferent team configurations and compare them, such as a more experienced nurse 
with a quick response time working with a junior resident needing more time to 
response, or a recently graduated nurse working with a senior resident.

The details of the iterative method to solve the problem are presented in Sect. 4.

4  Performance analysis method

We first review the case of single patient. Then, using a three-patient example, the 
idea of the iteration approach is introduced. Finally, the general case is discussed.
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4.1  Single patient case

When there is only one patient involved in the rapid response system, a formula 
to evaluate the mean decision time Td is introduced in Xie et al. (2012).

where �i , i ∈ X , is the average response time of provider i, and pi is the probability 
that response i, i ∈ X , has been carried out. Then pi can be calculated as follows:

When there is only one patient, the providers are always available. If there are 
multiple patients and more than one patient is deteriorating simultaneously, a pro-
vider can only take care of one patient at a time so that the other patients may 
need to wait for additional time. To study such cases, we start with a three-patient 
example.

4.2  A three‑patient example

When multiple patients are declining simultaneously, they may need to share the 
limited resource (i.e., providers). For example, as shown in Fig. 2 (where “N” and 
“D” represent normal and declining states, respectively), patient 2 starts declining 
and immediately requests help from the RRT. During the time period of RRT diag-
nosis and treatment to patient 2, patient 1 starts deteriorating and also asks for help 
from the RRT. However, patient 1 needs to wait until the RRT finishes the treatment 
for patient 2 and requests higher level provider’s intervention. The wide dark bar 
represents the waiting time due to RRT sharing. Similar scenarios can be observed 
for all other care providers, where the patients need to share the same resource.

However, the extra waiting time due to such sharing is not easy to analyze. First, 
when a patient in a hospital ward may decline at any time, resource sharing can only 
occur when multiple patients are deteriorating during the same time period. Second, 
even if multiple patients are declining, they may request different providers; which 
resource being shared and the length of extra waiting time are still not clear. The 
time depends on the probability that a provider is called and his/her response time. 
Thus, a closed form formula to estimate waiting time is extremely difficult to obtain.

Td =
∑
i∈X

pi�i,

pi =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1, if i = nur,

�nur,i, if i ∈ {int, rrt, rrt&int, rrt&res,

rrt&fel, rrt&atn},

�nur,res +
∑

j=int,rrt,rrt&int �j,respj, if i = res,

�res,felpres + �res&rrt,felpres&rrt, if i = fel,

�fel,atnpf + �rrt&fel,atnprrt&fel, if i = atn.
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To solve this problem, an iteration approach is introduced. As there are two 
factors that initiate the waiting time: multiple patients decline simultaneously, 
and they all request the same provider, we introduce a two-level iteration method. 
First, the waiting time due to requests to the same provider is addressed. Since 
such analysis rely on the probability that the provider is treating other patients, 
which is unknown, we introduce iterations, referred to as Level 1 iteration. Sec-
ondly, using the information from Level 1, the waiting time due to multiple 
patients’ simultaneously declining is studied. Again since this depends on another 
unknown probability, the probability that multiple patients are declining, we 
introduce iterations again, referred to as Level 2 iteration. An illustration of both 
Level-1 and Level-2 iterations is shown in Fig. 3.

As one can see, in Level-1 iteration, we consider each patient k iteratively. Using 
parameters pi , �i , and Td in single patient case, the possibility that the same provider 
can be requested by k patients simultaneously is investigated and the response time 
(including additional waiting time) for patient i is quantified. Using this result for 
the next patient, we calculate the similar information. Then the same process to is 
carried out the third patient. Afterwards, using the updated information, the pro-
cedure restarts with the first patient. Upon Level-1 iteration convergence, the mean 
decision time Tin , including Td and the waiting time, is obtained.

Using Tin , and the time that the patient is in non-deteriorating condition, Tnormal , 
Level-2 iteration is carried out. We calculate the probability that multiple patients 
are deteriorating and the mean decision time (including the waiting time) for each 
patient. The result is then supplied to the next patient and evaluate its probability 
and decision time. When all patients’ information are updated, we start the next iter-
ation. Upon convergence, the final decision time Tfinal is obtained. Below, through a 
three-patient example, the details of the two-level iterations are explained.

4.2.1  Level‑1 iteration

In Level-1 iteration, the single patient model is used to evaluate the mean decision 
time, Td , and to calculate the probability a provider is requested for help, pi , i ∈ X , 
under the assumption that all providers are available.

Fig. 2  RRT is shared by two patients
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Consider patient k, k = 1, 2, 3 , and provider r, r ∈ X . Denote �k,r as the mean deci-
sion time that includes patient k’s waiting time for provider r. Let pk,r be the prob-
ability that provider r is treating patient k and there is another request for provider r.

First, consider patient 1 requesting help from an intern. For this patient, he/she 
needs to wait if he/she requests help from an intern but the intern is treating the sec-
ond or the third patient. We denote such probabilities as p2,int and p3,int , respectively. 
If these probabilities are known, then the average response time of the intern includes 
the time when only the intern is requested, pint�int , and the time when both intern and 
RRT are requested, prrt&int�rrt&int . Therefore, the mean decision time, �1,int , will include 
the actual time to make decision when provider is available, Td , and the first patient’s 

Td

Tnormal
Tin

p i τ i

Tfinal

Evaluate patient 1
response time, utilizing probabilityLevel-1

iteration

Evaluate patient 2
response time, utilizing probability

Evaluate patient 3
response time, utilizing probability

Evaluate patient 1
deteriorating time percentage

mean decision time

Evaluate patient 2
deteriorating time percentage

mean decision time

Evaluate patient 3
deteriorating time percentage

mean decision time

Level-2

iteration

Fig. 3  Illustration of the two-level iteration procedure
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waiting time for the intern, pint�int + prrt&int�rrt&int , multiplied by the probability the 
second or third patient is being treated by the intern, p2,int + p3,int . Therefore, we obtain:

Using �1,int , we can evaluate p1,int , which is the probability that the first patient is 
working with the intern when the second or the third patient also requests help from the 
intern. Again such a request can occur in both single provider (int only) and joint pro-
viders (both rrt&int ) scenarios. For the single provider case, pint�int∕�1,int represents 
the percentage of time that the intern is working. Analogously, for the joint providers 
case, prrt&int�rrt&int∕�1,int represents the time percentage the intern is working (jointly 
with RRT). Multiplied by pint or prrt&int , respectively, we obtain the weighted prob-
ability that the intern is serving another patient. Therefore, considering both cases, we 
have,

Analogously, if we know probabilities p1,int and p3,int , we can evaluate the sec-
ond patient’s waiting time for the intern, �2,int , as well as probability p2,int . In other 
words, we have

Using the same logic, from probabilities p1,int and p2,int , the third patient’s waiting 
time for the intern, �3,int , and probability p3,int , can be evaluated.

Since probabilities pi,int , i = 1, 2, 3 , are unknown, we introduce iterations to con-
tinuously update pi,int and �i,int , i = 1, 2, 3 , until convergence.

For resident, RRT, fellow and attending, similar updates can be carried out. Note 
that for RRT, there will be multiple joint service scenarios (RRT & intern, RRT & 
resident, RRT & fellow, and RRT & attending). A detailed description of such an 
iteration procedure is presented in “Appendix 1”.

When the procedure converges, the mean decision time, Tin , which includes addi-
tional waiting time, can be calculated. This finishes Level-1 iteration.

�1,int = Td + (p2,int + p3,int)(pint�int + prrt&int�rrt&int).

p1,int =
p2
int
�int + p2

rrt&int
�rrt&int

�1,int
.

�2,int = Td + (p1,int + p3,int)(pint�int + prrt&int�rrt&int),

p2,int =
p2
int
�int + p2

rrt&int
�rrt&int

�2,int
.

�3,int = Td + (p1,int + p2,int)(pint�int + prrt&int�rrt&int),

p3,int =
p2
int
�int + p2

rrt&int
�rrt&int

�3,int
.

Tin = Td + Σr,r∈XPrTr.
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4.2.2  Level‑2 iteration

Level-1 iteration provides the results if the same provider is requested by multi-
ple patients. We also need to know when multiple patients will be declining. Thus, 
Level-2 iteration is carried out. Denote �k , k = 1, 2, 3 , as the percentage of time the 
patient is in a deteriorating status. In addition, let �k , k = 1, 2, 3 , update the mean 
decision time, including the case patient k is declining with other patients. In other 
words, when patient 1 is declining, the additional waiting will occur if patient 2 or 
patient 3 is also declining, and such a probability can be estimated as �1(�2 + �3) if 
�i is known. Thus, �1 can be evaluated as follows:

Note that the probability of all three patients declining is typically very small so that 
this scenario is ignored.

Next, calculate �1 as the time percentage that a patient is in deteriorating status 
during a normal-declining cycle, i.e.,

where Tnormal is the average time period a patient is not in declining status.
Moving to patients 2 and 3, we obtain �2 and �3 using the same logic.

As �i , i = 1, 2, 3 , is unknown, we introduce another iteration. Assuming all �i ’s 
starting from 0, we calculate �i ’s and re-evaluate �i’s. The process is repeated until 
the procedure converges. Finally, denote Tfinal as the final value of mean decision 
time, we obtain

A detailed description of Level-2 iteration is provided in “Appendix 1” as well.

4.3  General procedure

Considering that there are m patients in the system. Using the similar idea in 
three-patient example, the waiting time of patient k, k = 1,… ,m , for provider r, 
r ∈ X , needs to consider all the possibilities that the provider is treating patient i, 
i = 1,… ,m , i ≠ k . “Appendix  1” provides a formal presentation of the iteration 

�1 = Tin[1 + �1(�2 + �3)].

�1 =
�1

�1 + Tnormal
,

�2 = Tin[1 + �2(�1 + �3)],

�2 =
�2

�2 + Tnormal
,

�3 = Tin[1 + �3(�1 + �2)],

�3 =
�3

�3 + Tnormal
.

Tfinal = �1 = �2 = �3.



47

1 3

A two-level iteration approach for modeling and analysis of…

method, referred to as Procedure  1. Such a procedure includes two algorithms: 
Level-1 iterations and Level-2 iterations. The convergence of Level-1 iteration 
can be rigorously proved if the number of patients in the network equals to 2. The 
Level-2 iteration can be mathematically proved to be convergent for any number of 
patients. These results are presented below.

Proposition 1 Under assumptions (1)–(5), when m = 2, Level-1 iteration of Proce-
dure 1 is convergent, i.e.,

Proof See the “Appendix”.   ◻

Proposition 2 Under assumptions (1)–(5), Level-2 iteration of Procedure 1 is con-
vergent, i.e.,

Proof See the “Appendix”.   ◻

If more than two patients present in the network, it is extremely difficult to pro-
vide a mathematical proof of convergence for Level-1 iteration due to its nature 
of oscillating pattern. Thus, extensive numerical investigation of the convergence 
of such a procedure is conducted. Numerous examples are generated by randomly 
selecting parameters. In all the examples, the procedure converges and a unique 
solution is obtained. Therefore, we formulate the results as a numerical fact:

Numerical Fact 1 Under assumptions (1)–(5), Level-1 iteration of Procedure 1 is 
convergent when more than two patients present in the network, i.e., 

The convergence of �i,res , �i,rrt , pi,res and pi,int in Level-1 iteration is illustrated in 
Figs. 4, 5, 6, 7. For Level-2 iteration, Figs. 8 and 9 illustrate the convergence of �i 
and �i , respectively. Other variables exhibit similar convergence properties.

Clearly, in all figures, the procedure only needs 3 iterations to converge. In fact, 
the convergence is always observed in 3-5 iterations in all the examples we tested. 
The accuracy of the procedure is investigated next.

4.4  Accuracy

The accuracy of Procedure  1 has been investigated numerically. Dozens exam-
ples were generated to compare with the simulation results. In each example, uni-
form distribution between 20 and 40 min is assumed for the response time of 
each provider. The routing probabilities are randomly generated between 0 and 

(1)lim
j→∞

�
(j)

i,r
= �i,r, lim

j→∞
p
(j)

i,r
= pi,r, i = 1, 2, r ∈ X.

(2)lim
j→∞

�
(l)

i
= �i, lim

j→∞
�
(l)

i
= �i, i = 1,… ,m.

(3)lim
j→∞

�
(j)

i,r
= �i,r, lim

j→∞
p
(j)

i,r
= pi,r, i = 1, 2,… ,m.
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Fig. 4  Illustration of conver-
gence of Level-1 iteration: �i,res

Fig. 5  Illustration of conver-
gence of Level-1 iteration: �i,rrt

Fig. 6  Illustration of conver-
gence of Level-1 iteration: pi,res

Fig. 7  Illustration of conver-
gence of Level-1 iteration: pi,int
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1, again following uniform distribution. An exponential distribution is assumed 
for the patient time in the normal status. Since, in the wards, the patients are in 
normal status most of the time, the ratio between declining and normal status for 
patients is always assumed to be less than 20%. Finally, the simulations are exe-
cuted using Plant Simulation 9. In the simulation model, each patient is presented 
as an entity. The service stations are introduced to characterize single processes. 
The waiting queues are described as buffers. Flow controllers are used to deter-
mine the destination of the patients based on probabilities. For each simulation 
experiment, 50,000 units of warm-up time are assumed. The next 5,000,000 units 
simulation time are carried out, and 10 replications are conducted, to ensure the 
confidence interval is less than 1% of the performance measure. Note that the 
computation time of simulation is in the order of minutes or longer, while the 
analytical model, programmed using Matlab R2016a, can be computed within a 
few seconds (see Table 2).

Remark 5 Note that the simulation speed can be increased by optimizing the set-
ting and interface while the speed for analytical calculation can also be improved by 
using executable programs. The comparison in Table 2 only illustrates one aspect of 
the methods, the computation efficiency. There are many other aspects where sim-
ulations have an advantage, such as detailed outcomes and complexity modeling. 
Thus, both approaches are viable from different perspectives, and complement each 
other .

Fig. 8  Illustration of conver-
gence of Level-2 iteration: �i
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Fig. 9  Illustration of conver-
gence of Level-2 iteration: �i
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Denote Tsim,i

final
 and Titer,i

final
 as the mean decision times obtained by simulation and 

by Procedure 1 for example i, respectively. Then �i defines the relative difference 
between Tsim,i

final
 and Titer,i

final
 , i.e.,

The mean value of �i characterizes the average relative error and is denoted as 𝜖 . The 
results of accuracy are shown in Table 3, which provide the maximal, minimal and 
average accuracy as a function of number of patients and normal time, respectively.

As one can see, 𝜖 is typically increasing when the normal time becomes 
shorter or the number of declining patients is higher. Particularly, when the nor-
mal time is not too short, i.e., more than 350 min (i.e., about 6 h), and the num-
ber of patients deteriorating is not high, e.g., less than 6, the accuracy is within 
6%. Such errors may due to the heuristic updates in each iteration. When the 
normal time becomes short and the number of declining patients increases, such 
as 200 to 300 min normal time with number of patients up to 8 or 10, the accu-
racy decreases from 15% to 30% (even up to 50% for the worst case with 200 
min normal time and 10 patients). In addition, the minimum and maximum of 
�i ’s are also included in the table. Similar trends are observed for the minimal 
and maximal differences. However, the cases with large discrepancies seldom 
happen, because these scenarios imply a substantial number of patients (e.g., 
10 patients) could decline simultaneously and also quite frequently (deteriorat-
ing every 3 or 4 h), then these patients could already have been elevated to ICU 
or more providers have been called for help. Thus, the errors are small in most 
practical scenarios. We thus claim that the iteration procedure can result in an 
acceptable accuracy in estimating the mean decision time. In the scenarios of 
extreme cases, the simulation approach should be pursued to ensure the accu-
racy of the analysis.

From the above results, we conclude that the two-level shared resource itera-
tion method can be used for performance evaluation of a multiple patients rapid 
response system.

�i =
|Tsim,i

final
− T

iter,i

final
|

T
sim,i

final

⋅ 100%.

Table 2  Comparison of 
computation time

2 patients 3 patients 4 patients 5 patients

Analytical model 2.18 2.66 12.46 15.51
Simulation 556.79 803.77 1106.99 1451.81
Ratio (simula-

tion/analytical 
model)

255.41 302.17 88.84 93.60
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4.5  Distribution sensitivity analysis

In the accuracy study, an exponential distribution is assumed in simulations for the nor-
mal time, i.e., when a patient is not declining. In practice, such times may not exhibit 
exponential behavior. Investigating the case of non-exponential normal time is nec-
essary. Therefore, gamma and lognormal distributions were used since one can eas-
ily alter their coefficients of variation (CV). In addition, in the rapid response process, 
a patient’s risk of deterioration becomes higher as the time elapses, which leads to 
CV smaller than 1 (Li and Meerkov 2005). Therefore, we focus on four data points, 
CV = 0.25, 0.5, 0.75 and 1. First, additional accuracy studies using Lognormal and 
Gamma distributions with CV = 0.25 , 0.5, and 0.75 are carried out. As shown in 
Table 4, the average accuracy is at the same level as exponential normal time.

Second, we hypothesize that the variability’s impact on the mean decision time will 
be small. A dozen examples assuming Lognormal distributions were randomly gener-
ated and the largest possible relative error was recorded. Denote Ti,j as the mean deci-
sion time obtained from simulation, where j represents the experiment number, and 
i indicates the CV value, where i = 1, 2, 3, 4 refer to CV = 0.25, 0.5, 0.75, 1 , respec-
tively. Then the difference between the largest and smallest mean decision time in 
experiment j for any given CV is defined as �j , which represents the maximal deviation 
under different variability.

�j =
maxi Ti,j −mini Ti,j

mini Ti,j
⋅ 100%.

Table 4  Accuracy of two-level iteration method: non-exponential case

Normal time (min) 300 350 400 450 500 550 600

(a) Lognormal distribution
2 patients (%) 0.68 0.61 0.58 0.53 0.50 0.48 0.44
3 patients (%) 1.43 1.28 1.15 1.05 0.97 0.90 0.84
4 patients (%) 2.54 2.22 1.94 1.70 1.51 1.39 1.25
5 patients (%) 3.93 3.38 2.92 2.56 2.22 1.92 1.73
6 patients (%) 6.26 5.27 4.56 4.12 3.66 3.12 2.82
8 patients (%) 12.83 10.48 8.86 7.63 6.71 5.84 5.24
10 patients (%) 22.15 17.25 14.29 12.17 10.68 9.62 9.02
(b) Gamma distribution
2 patients (%) 0.72 0.64 0.58 0.55 0.50 0.49 0.46
3 patients (%) 1.55 1.36 1.23 1.10 0.99 0.93 0.87
4 patients (%) 2.71 2.53 2.05 1.80 1.57 1.38 1.23
5 patients (%) 4.28 3.58 3.12 2.67 2.39 2.04 1.82
6 patients (%) 6.68 5.58 4.80 4.21 3.72 3.33 2.93
8 patients (%) 13.44 10.99 9.28 8.02 7.03 6.15 5.44
10 patients (%) 22.65 17.77 14.81 12.64 11.03 9.77 8.76
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Using the average value of �j , denoted as 𝛿 , we study the impact of non-exponential 
normal time.

The results are presented in Table  5, where normal time is between 300 to 
600 min under scenarios of 2 to 10 patients. It can be seen that the differences ( �
’s) are quite small, less than 0.5% for the cases of 2–4 patients and up to 3.78% 
for more-patient cases except the worst one (with 300 min normal time and 10 
patients, making the difference as high as 6.62%).

Similarly, the results of a gamma distribution of normal status time are shown in 
Table 6. Again � is smaller than 1% for cases up to 5 patients. If more patients are 
deteriorating, the errors can increase to 4.76%, and the worst one (seldom happens) 
is 7.68% with 300 min normal time and 10 patients. These results are also satisfac-
tory to support the hypothesis that the model reasonably represents reality. There-
fore, we conclude that, even with different patients’ declining distributions, the itera-
tion method introduced in this paper can provide an acceptable estimation of mean 
decision time in the multiple patients system.

� =

Σ10

j=1

|maxi Ti,j−mini Ti,j|
mini Ti,j

10
⋅ 100%.

Table 5  Accuracy of two-level 
iteration: lognormal distribution 
case, �

Normal time (min) 300 350 400 450 500 550 600

2 patients (%) 0.09 0.07 0.07 0.06 0.04 0.05 0.05
3 patients (%) 0.27 0.16 0.10 0.09 0.07 0.06 0.06
4 patients (%) 0.51 0.35 0.26 0.21 0.18 0.19 0.21
5 patients (%) 0.85 0.55 0.25 0.31 0.28 0.21 0.26
6 patients (%) 1.38 0.81 0.49 0.39 0.28 0.33 0.28
8 patients (%) 3.22 1.82 1.00 0.57 0.46 0.43 0.42
10 patients (%) 6.62 3.78 2.09 1.21 0.92 0.53 0.50

Table 6  Accuracy of two-level 
iteration: gamma distribution 
case, �

Normal time (min) 300 350 400 450 500 550 600

2 patients (%) 0.23 0.16 0.13 0.11 0.09 0.08 0.06
3 patients (%) 0.51 0.36 0.29 0.22 0.19 0.15 0.12
4 patients (%) 0.91 0.66 0.44 0.42 0.31 0.26 0.29
5 patients (%) 1.46 0.93 0.83 0.56 0.48 0.37 0.37
6 patients (%) 2.12 1.38 1.01 0.80 0.64 0.63 0.41
8 patients (%) 4.32 2.82 1.86 1.42 1.11 0.93 0.70
10 patients (%) 7.68 4.76 3.14 2.25 1.56 1.28 1.12
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4.6  Monotonicity

Using the iteration method introduced above, we can efficiently investigate the 
monotonic properties of decision time with respect to its parameters, such as a pro-
vider’s response time, number of patients, and the normal time. Based on extensive 
numerical experiments, we observe:

Numerical Fact 2 Under assumptions (1)–(5), them mean decision time Td is 
monotonically increasing with respect to each provider’s response time �i, normal 
time Tnormal, and number of patients m.

An illustration of such monotonicity is shown in Figs.  10, 11, 12. As one can 
see, the monotonic properties can provide the direction of operation improvement 
to reduce mean decision time. Decreasing the RRT’s response time, the number of 

Fig. 10  Monotonicity of mean 
decision time with respect to 
response time
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Fig. 11  Monotonicity of mean 
decision time with respect to 
number of patients
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patients (the providers are responsible for), and increasing normal time, all lead to 
reduction of mean decision time.

Using such properties, we can evaluate the impact of improvement efforts to 
identify the most critical factor that will lead to the largest improvement, which is 
referred to as bottleneck.

Definition 1 The provider response time �i is the bottleneck response time if

Since even the evaluation of Td is difficult, calculating the partial derivatives 
becomes all but impossible. Therefore, sensitivity analysis is carried out. Specifi-
cally, response time �i becomes the bottleneck if

where 0 < 𝜂 ≪ 1.
After identifying the bottleneck, improvement efforts can be focused on how to 

reduce the bottleneck response time. For instance, assigning patients with specific 
diseases to residents who have more experience, reducing the frequency calling for 
residents, etc., could be investigated. As one can see, this will requires repeated cal-
culation and comparison. Thus, the performance evaluation method introduced in 
this paper enables a quick analysis in such activities.

Remark 6 The above model provides a quantitative tool for hospital management 
to design continuous improvement activities. Note that due to shortage and/or mul-
tiple job functions of critical care providers and nurses (Buchman et al. 2017), and 
restricted rules on their duty hours (Meyers et al. 2017), adding more staff is typi-
cally difficult to achieve. However, the system performance can be improved by 
reorganize the workforce to find out the optimal or improved option of team configu-
ration of staffs, such as pairing a more experienced nurse with a new resident doctor.

||||
𝜕Td

𝜕𝜏i

|||| >
|||||
𝜕Td

𝜕𝜏j

|||||
, ∀j ≠ i.

Td(𝜏i − 𝜂𝜏i) > Td(𝜏j − 𝜂𝜏j), ∀j ≠ i,

Fig. 12  Monotonicity of mean 
decision time with respect to 
normal time
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5  Conclusions

This paper introduces the study of rapid response system with multiple patients and 
limited provider availability. An iteration method is introduced to evaluate the mean 
decision time for multiple simultaneously declining patients. The convergence of the 
iteration procedure is justified both analytically and numerically. It is shown that the 
procedure converges within a few iterations and a reasonable accuracy is obtained in 
the test cases. Such a method presents an effective quantitative tool for performance 
evaluation of multiple patients rapid response system. The model and outcome of 
this study have been well received by healthcare professionals.

Clearly, the proposed method also exists limitations. In future work, we plan to 
address these limitations. Specifically, we will further explore to completely prove 
the convergence of the recursive procedure. Also, analysis of the systems with more 
complex structures should be conducted, for instance, multiple same type providers 
may work on the floor simultaneously, providers may seek help from multiple higher 
level resources at the same. In addition to average decision time, the variabilities 
in decision time, such as coefficients of variation and response-time performance 
(probability to make a decision within a given time interval) are also critical. Devel-
oping methods to evaluate the variability is strongly needed. Moreover, efforts can 
be devoted to evaluating and comparing the impacts of different team configurations 
to design appropriate staffing policy. Besides, patients are critical elements in health-
care delivery. Introducing a patient model to characterize the dynamic behavior of 
the patient and declining status is necessary, and such a model should be integrated 
with the response model. Furthermore, other methods, both simulations and analyti-
cal models, such as Petri Nets, Markov chains, should be investigated. Finally, more 
insights, patterns, and protocol implications should be derived from the analytical 
study, and all the developed methods and models will be validated and applied on 
the hospital floor. The successful development of these works can provide hospital 
management quantitative tools and decision support to improve patient safety and 
quality of care.
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Appendix 1: Iteration procedures

Three‑patient example: Level‑1 iteration procedure

Denote � (j)
k,r

 , k = 1, 2, 3 , r ∈ X , as the mean decision time that includes patient k’s 
waiting time for provider r during the j-th iteration, j = 1, 2,… . Let p(j)

k,r
 be the prob-

ability that provider r is treating patient k and there is another request for provider r 
during the j-th iteration. At the beginning of iteration, assume

�
(0)

k,r
= Td and p

(0)

k,r
= 0, k = 1, 2, 3, r ∈ X.
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First, consider patient 1. During the first iteration, � (1)
1,int

 can be updated as:

The p(1)
1,int

 can be updated as:

Next, Consider patient 2. Decision time � (1)
2,int

 and probability p(1)
2,int

 can be calculated.

Lastly, consider patient 3, we have

This completes the update of the intern.
Similar updating process for the resident can be carried out. First, we study patient 1:

Next, consider patient 2:

Then, patient 3 is included:

�
(1)

1,int
= Td + (p

(0)

2,int
+ p

(0)

3,int
)(pint�int + prrt&int�rrt&int).

p
(1)

1,int
=

p2
int
�int + p2

rrt&int
�rrt&int

�
(1)

1,int

.

�
(1)

2,int
= Td + (p

(1)

1,int
+ p

(0)

3,int
)(pint�int + prrt&int�rrt&int),

p
(1)

2,int
=

p2
int
�int + p2

rrt&int
�rrt&int

�
(1)

2,int

.

�
(1)

3,int
= Td + (p

(1)

1,int
+ p

(1)

2,int
)(pint�int + prrt&int�rrt&int),

p
(1)

3,int
=

p2
int
�int + p2

rrt&int
�rrt&int

�
(1)

3,int

.

�
(1)

1,res
= Td + (p

(0)

2,res
+ p

(0)

3,res
)(pres�res + prrt&res�rrt&res),

p
(1)

1,res
=

p2
res
�res + p2

rrt&res
�rrt&res

�
(1)

1,res

.

�
(1)

2,res
= Td + (p

(1)

1,res
+ p

(0)

3,res
)(pres�res + prrt&res�rrt&res),

p
(1)

2,res
=

p2
res
�res + p2

rrt&res
�rrt&res

�
(1)

2,res

.

�
(1)

3,res
= Td + (p

(1)

1,res
+ p

(1)

2,res
)(pres�res + prrt&res�rrt&res),

p
(1)

3,res
=

p2
res
�res + p2

rrt&res
�rrt&res

�
(1)

3,res

.
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Similarly, all the rest of providers are updated. Particularly, for the RRT, considering 
patient 1, we obtain:

Regarding patient 2, we have

Furthermore, parameters of patient 3 are updated:

Then for the fellow, patients 1 to 3 are considered:

�
(1)

1,rrt
= Td + (p

(0)

2,rrt
+ p

(0)

3,rrt
)(prrt�rrt + prrt&int�rrt&int + prrt&res�rrt&res

+ prrt&fel�rrt&fel + prrt&atn�rrt&atn),

p
(1)

1,rrt
= (p2

rrt
�rrt + p2

rrt&int
�2
rrt&int

+ p2
rrt&res

�rrt&res + p2
rrt&fel

�rrt&fel

+ p2
rrt&atn

�rrt&atn)∕�
(1)

1,rrt
.

�
(1)

2,rrt
= Td + (p

(1)

1,rrt
+ p

(0)

3,rrt
)(prrt�rrt + prrt&int�rrt&int + prrt&res�rrt&res

+ prrt&fel�rrt&fel + prrt&atn�rrt&atn),

p
(1)

2,rrt
= (p2

rrt
�rrt + p2

rrt&int
�2
rrt&int

+ p2
rrt&res

�rrt&res + p2
rrt&fel

�rrt&fel

+ p2
rrt&atn

�rrt&atn)∕�
(1)

2,rrt
.

�
(1)

3,rrt
= Td + (p

(1)

1,rrt
+ p

(1)

2,rrt
)(prrt�rrt + prrt&int�rrt&int + prrt&res�rrt&res

+ prrt&fel�rrt&fel + prrt&atn�rrt&atn),

p
(1)

3,rrt
= (p2

rrt
�rrt + p2

rrt&int
�2
rrt&int

+ p2
rrt&res

�rrt&res + p2
rrt&fel

�rrt&fel

+ p2
rrt&atn

�rrt&atn)∕�
(1)

3,rrt
.

�
(1)

1,fel
= Td + (p

(0)

2,fel
+ p

(0)

3,fel
)(pfel�fel + prrt&fel�rrt&fel),

p
(1)

1,fel
=

p2
fel
�fel + p2

rrt&fel
�rrt&fel

�
(1)

1,fel

,

�
(1)

2,fel
= Td + (p

(1)

1,fel
+ p

(0)

3,fel
)(pfel�fel + prrt&fel�rrt&fel),

p
(1)

2,fel
=

p2
fel
�fel + p2

rrt&fel
�rrt&fel

�
(1)

2,fel

,

�
(1)

2,fel
= Td + (p

(1)

1,fel
+ p

(1)

2,fel
)(pfel�fel + prrt&fel�rrt&fel),

p
(1)

2,fel
=

p2
fel
�fel + p2

rrt&fel
�rrt&fel

�
(1)

3,fel

.
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Finally, for the attending, we again address all three patients:

When the first iteration is finished, all the updated parameters will be used for the 
second iteration to calculate � (2)

k,r
 , k = 1, 2, 3 , r ∈ X , and p(2)

k,r
 . The process is repeated 

until procedure converges. Let � = 10−5 . When

the procedure is convergent, i.e.,

In particular, all �i,r, i = 1, 2, 3, are identical and all pi,r, i = 1, 2, 3, are the same. 
Then the mean decision time (including waiting time) Tr and provider utilization Pr 
can be obtained:

The mean decision time Tin includes the additional waiting time.

Three‑patient example: Level‑2 iteration procedure

Denote �(l)
k

 , k = 1, 2, 3 , l = 1, 2,… , as the percentage of time the patient is in a deterio-
rating status in iteration j, and �(l)

k
 , k = 1, 2, 3 , l = 1, 2,… , as the updated mean decision 

time in iteration j by including the time percentage patient k is declining. When the 
iteration starts, assume all

�
(1)

1,atn
= Td + (p

(0)

2,atn
+ p

(0)

3,atn
)(patn�atn + prrt&atn�rrt&atn),

p
(1)

1,atn
=

p2
atn
�atn + p2

rrt&atn
�rrt&atn

�
(1)

1,atn

,

�
(1)

2,atn
= Td + (p

(1)

1,atn
+ p

(0)

3,atn
)(patn�atn + prrt&atn�rrt&atn),

p
(1)

2,atn
=

p2
atn
�atn + p2

rrt&atn
�rrt&atn

�
(1)

2,atn

,

�
(1)

3,atn
= Td + (p

(1)

1,atn
+ p

(1)

2,atn
)(patn�atn + prrt&atn�rrt&atn),

p
(1)

3,atn
=

p2
atn
�atn + p2

rrt&atn
�rrt&atn

�
(1)

3,atn

.

|� (j+1)
i,r

− �
(j)

i,r
| ≤ �, |p(j+1)

i,r
− p

(j)

i,r
| ≤ �, i = 1, 2, 3, r ∈ X,

lim
j→∞

�
(j)

i,r
= �i,r, lim

j→∞
p
(j)

i,r
= pi,r, i = 1, 2, 3.

�1,r = �2,r = �3,r ∶= Tr, p1,r = p2,r = p(3, r) ∶= Pr.

Tin = Td + Σr,r∈XPrTr.

�
(0)

k
= 0 and �

(0)

k
= Tin, k = 1, 2, 3.
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Considering patient 1, �(1)
1

 can be updated as:

The time percentage that the first patient is in deteriorating status can be calculated 
as

Next consider patients 2 and 3, where �(1)
i

 and �(1)
i

 , i = 2, 3 , can be obtained:

This finishes the first iteration. Then �(1)
k

 , k = 1, 2, 3 , and �(1)
k

 are used for the second 
iteration to evaluate �(2)

k
 and �(2)

k
 . The process is repeated until the procedure con-

verges. When the following criteria is met:

the procedure is convergent. Again � = 10−5 . Upon converges, we have

The final mean decision time can be obtained:

General iteration procedure

Procedure 1 (1) Level-1 iteration
Step 1.1 Initialization: Calculate pi , i ∈ X , and Td using the results in Xie et al. 

(2012). Set j = 0 and

Step 1.2 Update � (j)
k,i

 and p(j)
k,i

 : For patient 1,

�
(1)

1
= Tin

[
1 + �

(0)

1

(
�
(0)

2
+ �

(0)

3

)]
.

�
(1)
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�
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1

�
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2
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)]
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2

�
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2
+ Tnormal

,

�
(1)

3
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[
1 + �

(0)

3

(
�
(1)

1
+ �

(1)

2

)]
,

�
(1)

3
=

�
(1)

3

�
(1)

3
+ Tnormal

.

|�(j+1)
i

− �
(l)

i
| ≤ �, |�(j+1)

i
− �

(l)

i
| ≤ �, i = 1, 2, 3,

lim
l→∞

�
(l)

i
= �i, lim

l→∞
�
(l)

i
= �i, i = 1, 2, 3.

�1 = �2 = �3 = Tfinal.

�
(j)

k,i
= p

(j)

k,i
= 0.
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For patient k = 2,… ,m − 1,

(4)
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1,int
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p
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= Td + Σn

i=2
p
(j)

i,rrt
(prrt�rrt + prrt&int�rrt&int + prrt&res�rrt&res

+ prrt&fel�rrt&fel + prrt&atn�rrt&atn),
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For patient m,

Step 1.3 Iteration: Set j = j + 1 . If the terminating criteria is not met, go back to Step 
1.2. Let � = 10−5 , the Level-1 iteration is finished if

Step 1.4 Termination: If the stopping conditions are met, set

(2) Level-2 iteration
Step 2.1 Initialization: Set l = 0 and

Step 2.2 Update �(l)
k

 and �(l)
k

 : For patient 1,

(6)

�
(j+1)

m,int
= Td + Σm−1

i=1
p
(j+1)

i,int
(pint�int + prrt&int�rrt&int),

p
(j+1)

m,int
=

p2
int
�int + p2

rrt&int
�rrt&int
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(j+1)

k,r
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� (j+1)
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i=1
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(j+1)
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�res + p2
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�rrt&res)

/
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,

�
(j+1)
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i=1
p
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(prrt�rrt + prrt&int�rrt&int + prrt&res�rrt&res

+ prrt&fel�rrt&fel + prrt&atn�rrt&atn),
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m,r

= (p2
rrt
�rrt + p2

rrt&int
�2
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+ p2
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/
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i=1
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m,fel
,

�
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p
(j+1)

i,atn
(patn�atn + prrt&atn�rrt&atn),

p
(j+1)
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�atn + p2

rrt&atn
�rrt&atn)

/
�
(j+1)
m,atn.

|� (j+1)
i,r

− �
(j)

i,r
| ≤ �, |p(j+1)

i,r
− p

(j)

i,r
| ≤ �, i = 1, 2,… ,m.

(7)
�
(j+1)

i,r
= Tr, p

(j+1)

i,r
= Pr, i = 1,… ,m,

Tin = Td + Σr,r∈XPrTr.

�
(l)

1
= 0, �

(l)

1
= Tin.
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For patient k = 2,… ,m − 1,

For patient m,

Step 2.3 Iteration: Set l = l + 1 . If the terminating criteria is not met, go back to Step 
2.2.

Step 2.4 Termination: If the terminating condition is met, set

Appendix 2: Proofs

To prove Proposition 1, Lemmas 1 and 2 are needed.

Lemma 1 Under assumptions (1)–(5), when m = 2, if p
(j)

2,r
> p

(j−1)

2,r
 , r ∈ X , 

j = 1, 2,…, then 𝜏 (j+1)
1,r

> 𝜏
(j)

1,r
 , p(j+1)

1,r
< p

(j)

1,r
 , 𝜏 (j+1)

2,r
< 𝜏

(j)

2,r
 , p(j+1)

2,r
> p

(j)

2,r
.

(8)

�
(l+1)

1
= Tin(1 + �

(l)

1
Σm
i=2

�
(l)

i
),

�
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1
=

�
(l+1)

1

�
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1
+ Tnormal

.
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i
+ Σm
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=

�
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�
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k
+ Tnormal

.

(10)

�(l+1)
m

= Tin(1 + �
(l)

k
Σm−1
i=1

�
(l+1)

i
),

�(l+1)
m

=
�
(l+1)

k

�
(l+1)
m + Tnormal

.

|�(l+1)
i

− �
(l)

i
| ≤ �, |�(l+1)

i
− �

(l)

i
| ≤ �, i = 1,… ,m.

�
(l+1)

i
= �i, �

(l+1)

i
= �i, �i = Tfinal, i = 1,… ,m.
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Lemma 2 Under assumptions (1)–(5), when m = 2, the sequences p(j)
1,r

 and � (j)
2,r

 
are monotonically decreasing, while the sequences p(j)

2,r
 and � (j)

1,r
 are monotonically 

increasing.

Proof of Lemma 1 From all the equations related to the update of � (j)
i,r

 and p(j)
i,r

 , which 
are from (4) to (6), define C1,r and C2,r as constants related to resource r, r ∈ X . We 
have

For iteration j, if p(j)
2,r

> p
(j−1)

2,r
 , then for patient 1:

C1,r =

⎧
⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pint�int + prrt&int�rrt&int, if r = int,

pres�res + prrt&res�rrt&res if r = res,

prrt�rrt + prrt&int�rrt&int

+prrt&res�rrt&res

+prrt&fel�rrt&fel + prrt&atn�rrt&atn if r = rrt,

pfel�fel + prrt&fel�rrt&fel if r = fel,

patn�atn + prrt&atn�rrt&atn if r = atn.

C2,r =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p2
int
�int + p2

rrt&int
�rrt&int, if r = int,

p2
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�rrt&res if r = res,

p2
rrt
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�2
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+p2
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�rrt&fel + p2
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�rrt&atn if r = rrt,

p2
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�fel + p2

rrt&fel
�rrt&fel if r = fel,

p2
atn
�atn + p2

rrt&atn
�rrt&atn if r = atn.

(11)𝜏
(j)

1,r
= Td + p

(j−1)

2,r
C1,r < Td + p

(j)

2,r
C1,r = 𝜏

(j+1)

1,r
,

(12)p
(j)

1,r
=

C1,r

𝜏
(j)

1,r

>
C1,r

𝜏
(j+1)

1,r

= p
(j+1)

1,r
.
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This leads to, for patient 2,

The obtained results in the above four inequations complete the proof.   ◻

Proof of Lemma 2 Induction is used for the proof of the lemma.
Initial Step: When j = 1 , since p(0)

2,r
= 0 , from Eq. (14), we have

Then, from Lemma 1, we obtain

The base case is proved.
Inductive Step: Assume when j = k , we have

From Lemma 1, this leads to

Thus, the case of j = k + 1 also holds.
By induction, we obtain that, when m = 2 , the sequences p(j)

1,r
 and � (j)

2,r
 are mono-

tonically decreasing, while the sequences p(j)
2,int

 and � (j)
1,int

 are monotonically increas-
ing, r ∈ X , j = 1, 2,… .   ◻

Proof of  Proposition 1 From Lemma  2, we obtain the monotonicity of decreasing 
sequences p(j)

1,r
 and � (j)

2,r
 and increasing sequences p(j)

2,int
 and � (j)

1,int
 , r ∈ X , j = 1, 2,… . 

Next we show that the sequences � (j)
i,r

 and p(j)
i,r

 , are bounded from above and below. 
For p(j)

i,r
 s, from Eqs. (12) and (14), we have

For � (j)
i,r

 s, from Eqs. (11) and (13), since 0 < p
(j)

i,r
< 1 , we obtain

(13)𝜏
(j)

2,r
= Td + p

(j)

1,r
C1,r > Td + p

(j+1)

1,r
C1,r = 𝜏

(j+1)

2,r
,

(14)p
(j)

2,r
=

C2,r

𝜏
(j)

2,r

<
C2,r

𝜏
(j+1)

2,r

= p
(j+1)

2,r
.

p
(1)

2,r
> p

(0)

2,r
= 0.

𝜏
(2)

1,r
> 𝜏

(1)

1,r
, p

(2)

1,r
< p

(1)

1,r
, 𝜏

2)

2,r
< 𝜏

(1)

2,r
, p

(2)

2,r
> p

(1)

2,r
.

𝜏
(k+1)

1,r
> 𝜏

(k)

1,r
, p

(k+1)

1,r
< p

(k)

1,r
, 𝜏

(k+1)

2,r
< 𝜏

(k)

2,r
, p

(k+1)

2,r
> p

(k)

2,r
.

𝜏
(k+2)

1,r
> 𝜏

(k+1)

1,r
, p

(k+2)

1,r
< p

(k+1)

1,r
, 𝜏

(k+2)

2,r
< 𝜏

(k+1)

2,r
, p

(k+2)

2,r
> p

(k+1)

2,r
.

0 < p
(j)

i,r
< 1.
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Since the sequences � (j)
i,r

 and p(j)
i,r

 , r ∈ X ; j = 1, 2,… , are monotonic and bounded 
from above and below, they are convergent. Thus, Level-1 iteration is convergent.  
 ◻

To prove Proposition 2, Lemma 3 is needed.

Lemma 3 Under assumptions (1)–(5), if 𝜌(l)
i
> 𝜌

(l−1)

i
 , i = 1,… ,m , l = 1, 2,…, then 

𝜌
(l+1)

i
> 𝜌

(l)

i
.

Proof of Lemma 3 From Eq. (8), we obtain

This implies that

When 2 ≤ k ≤ m − 1 , from (9), we have

Finally, for k = m , from (10), it follows that

Td < 𝜏
(j)

i,r
< Td + Ci,r.

𝜆
(l+1)

1
= Tin(1 + 𝜌

(l)

1
Σm
i=2

𝜌
(l)

i
) > Tin(1 + 𝜌

(l−1)

1
Σm
i=2

𝜌
(l−1)

i
) = 𝜆

(l)

1
.

𝜌
(l+1)

1
=

𝜆
(l+1)

1

𝜆
(l+1)

1
+ Tnormal

=
1

1 +
Tnormal

𝜆
(l+1)

1

>
1

1 +
Tnormal

𝜆
(l)

1

= 𝜌
(l)

1
.

𝜆
(l+1)

k
= Tin(1 + 𝜌

(l)

k

(
Σk−1
i=1

𝜌
(l+1)

i
+ Σm

i=k+1
𝜌
(l)

i

)

> Tin(1 + 𝜌
(l−1)

1

(
Σk−1
i=1

𝜌
(l)

i
+ Σm

i=k+1
𝜌
(l−1)

i

)

= 𝜆
(l)

k
,

𝜌
(l+1)

k
=

𝜆
(l+1)

k

𝜆
(l+1)

k
+ Tnormal

>
1

1 +
Tnormal

𝜆
(l)

k

= 𝜌
(l)

k
.

𝜆(l+1)
m

= Tin

(
1 + 𝜌(l)

m
Σm−1
i=1

𝜌
(l+1)

i

)
> Tin

(
1 + 𝜌(l−1)

m
Σm−1
i=1

𝜌
(l)

i

)
= 𝜆(l)

m
,

𝜌(l+1)
m

=
𝜆(l+1)
m

𝜆
(l+1)
m + Tnormal

>
1

1 +
Tnormal

𝜆
(l−1)
m

= 𝜌(l)
m
.
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The arguments follow directly.   ◻

Proof of Proposition 2 First we prove that the sequences �(l)
i

 and �(l)
i

 , i = 1, 2,… ,m ; 
l = 1, 2,… , are monotonically increasing using mathematical induction.

Initial Step: When l = 1 , since �(0)
i

= 0 , from Lemma 3,

This leads to

The base case is proved.
Inductive Step: Assume when l = k , we have

Then from Lemma 3, we have

Therefore, the case where l = k + 1 also holds. Then, the sequences �(l)
i

 and �(l)
i

 , 
i = 1, 2,… ,m ; l = 1, 2,… , are monotonically increasing.

For boundedness, it is clear that �(l)
i

 s are bounded between 0 and 1 from Eqs. (8), 
(9), and (10), while �(l)

i
 s are also bounded according to equations (8) and (9).

Since the sequences �(l)
i

 and �(l)
i

 , i = 1, 2,… ,m , are both monotonic and bounded 
from above and below, they are convergent.   ◻

References

Berwick DM, Calkins DR, McCannon CJ, Hackbarth AD (2006) The 100,000 lives campaign: setting a 
goal and a deadline for improving health care quality. J Am Med Assoc 295(3):324–327

Brandeau ML, Sainfort F, Pierskalla WP (2004) Operations research and health care: a handbook of 
methods and applications. Springer, Berlin

Brindley PG (2010) Patient safety and acute care medicine: lessons for the future, insights from the past. 
Crit Care 14(2):217–221

Buchman TG, Coopersmith CM, Meissen HW, Grabenkort WR, Bakshi V, Hiddleson CA, Gregg SR 
(2017) Innovative interdisciplinary strategies to address the intensivist shortage. Crit Care Med 
45(2):298–304

Chan PS, Jain R, Nallmothu BK, Berg RA, Sasson C (2010) Rapid response teams: a systematic review 
and meta-analysis. Arch Intern Med 170(1):18–26

Dacey MJ, Mirza ER, Wilcox V, Doherty M, Mello J, Boyer A, Gates J, Brothers T, Baute R (2007) The 
effect of a rapid response team on major clinical outcome measures in a community hospital. Crit 
Care Med 35(9):2076–2082

𝜌
(1)

i
> 𝜌

(0)

i
= 0.

𝜌
(2)

i
> 𝜌

(1)

i
, 𝜆

(2)

i
> 𝜆

(1)

i
.

𝜆
(k)

i
> 𝜆

(k−1)

i
, 𝜌

(k)

i
> 𝜌

(k−1)

i
, i = 1, 2,… ,m.

𝜆
(k+1)

i
> 𝜆

(k)

i
, 𝜌

(k+1)

i
> 𝜌

(k)

i
.



69

1 3

A two-level iteration approach for modeling and analysis of…

DeVita MA, Bellomo R, Hillman K, Kellum J, Rotondi A, Teres D, Auerbach A, Chen W-J, Duncan K, 
Kenward G (2006) Findings of the first consensus conference on medical emergency teams. Crit 
Care Med 34(9):2463–2478

DeVita MA, Hillman K, Bellomo R (2011) Textbook of rapid response systems: concept and imple-
mentation. Springer, Berlin

Downey A, Quach J, Haase M, Haase-Fielitz A, Jones D, Bellomo R (2008) Characteristics and out-
comes of patients receiving a medical emergency team review for acute change in conscious 
state or arrhythmias. Crit Care Med 36(2):477–481

Fomundam S, Herrmann J (2007) A survey of queuing theory applications in health care. Technicial 
report no. 2007-24, the Institute for Systems Research, University of Maryland, College Park, 
MA

Garg L, McClean S, Meenan B, Millard P (2010) A non-homogeneous discrete time Markov model 
for admission scheduling and resource planning in a cost or capacity constrained healthcare sys-
tem. Health Care Manag Sci 13(2):155–169

Green L (2006) Queueing analysis in healthcare. In: Hall RW (ed) Patient flow: reducing delays in 
healthcare delivery. Springer, Berlin, pp 281–307

Gunal MM, Pidd M (2010) Discrete event simulation for performance modelling in health care: a 
review of the literature. J Simul 4(1):42–51

Hall RW (2006) Patient flow: reducing delays in healthcare delivery. Springer, Berlin
Hillman K, Bristow P, Chey T, Daffurn K, Jacques T, Norman S, Bishop GF, Simmons G (2001) 

Antecedents to hospital deaths. Inter Med J 31(6):343–348
Hillman K, Chen J, Cretikos M, Bellomo R, Brown D, Doig G, Finfer S, Flabouris A (2005) Introduc-

tion of the medical emergency team (MET) system: a cluster-randomised controlled trial. Lancet 
365(9477):2091–2097

Jacobson SH, Hall SN, Swisher JR (2006) Discrete-event simulation of health care systems. Patient 
Flow Reducing Delay Healthc Deliv 91:211–252

Kohn LT, Corrigan JM, Donaldson MS (2000) To err is human: building a safer health system. Insti-
tute of Medicine, National Academy Press, Washington

Lakshmi C, Iyer SA (2013) Application of queueing theory in health care: a literature review. Oper 
Res Health Care 2(1):25–39

Leape LL, Berwick DM (2005) Five years after to err is human: What have we learned? J Am Med 
Assoc 293:2384–2390

Li J, Meerkov SM (2005) On the coefficients of variation of up- and downtime of manufacturing 
equipment. Math Probl Eng 2005:1–6

Massey D, Aitken LM, Chaboyer W (2010) Literature review: Do rapid response systems 
reduce the incidence of major adverse events in the deteriorating ward patient? J Clin Nurs 
19(23–24):3260–3273

Mayhew L, Smith D (2008) Using queuing theory to analyse the government’s 4-h completion time target 
in accident and emergency departments. Health Care Manag Sci 11(1):11–21

Meyers MO, Sarosi GA, Brasel KJ (2017) Perspective of residency program directors on accreditation 
council for graduate medical education changes in resident work environment and duty hours. 
JAMA Surg 152(10):905–906

McArthur-Rouse F (2001) Critical care outreach services and early warning scoring systems: a review of 
the literature. J Adv Nurs 36(5):696–704

McGloin H, Adam SK, Singer M (1999) Unexpected deaths and referrals to intensive care of patients on 
general wards. Are some cases potentially avoidable? J R Coll Phys Lond 33(3):255–259

Priestley G, Watson W, Rashidian A, Mozley C, Russell D, Wilson J, Cope J, Hart D, Kay D, Cowley K, 
Pateraki J (2004) Introducing critical care outreach: a ward randmized trial of phased introduction in 
a general hospital. Intensive Care Med 30(7):1398–1404

Ranji S, Auerbach A, Hurd C, O’Rourke K, Shohania K (2007) Effects of rapid response systems on 
clinical outcomes: systematic review and meta analysis. J Hosp Med 2(6):422–432

Schaefer AJ, Bailey MD, Shechter SM, Roberts MS (2005) Modeling medical treatment using Markov 
decision processes. In: Brandeau ML et al (eds) Operations research and health care. Springer, Ber-
lin, pp 593–612

Wang J, Quan S, Li J, Hollis A (2012) Modeling and analysis of work flow and staffing level in a com-
puted tomography division of University of Wisconsin Medical Foundation. Health Care Manag Sci 
15(2):108–120



70 Z. Zeng et al.

1 3

Wang J, Li J, Howard PK (2013) A system model of work flow in the patient room of hospital emergency 
department. Health Care Manag Sci 16(4):341–351

Wang J, Zhong X, Li J, Howard PK (2014) Modeling and analysis of care delivery services within patient 
rooms: a system-theoretic approach. IEEE Trans AutomSci Eng 11(2):379–393

Watcher RM (2004) The end of the beginning: patient safety five years after “To err is human”. Health 
Aff W4:534–545

Whitlock J (2017) Doctors, residents, interns, and attendings: What’s the difference? The doctors on your 
healthcare team. https ://www.veryw ell.com/types -of-docto rs-resid ents-inter ns-and-fello ws-31572 93 
Accessed Jan 2018

Wiler JL, Griffey RT, Olsen T (2011) Review of modeling approaches for emergency department patient 
flow and crowding research. Acad Emerg Med 18(12):1371–1379

Winters BD, Pham JC, Hunt E, Guallar EA, Berenholtz S, Pronovost PJ (2007) Rapid response systems: a 
systematic review. Crit Care Med 35(5):1238–1243

Xie X, Li J, Swartz CH, Depriest P (2012) Modeling and analysis of rapid response process to improve 
patient safety. IEEE Trans Autom Sci Eng 9(2):215–225

Xie X, Li J, Swartz CH, Depriest P (2014) Improving response-time performance in acute care delivery: a 
systems approach. IEEE Trans Autom Sci Eng 11(4):1240–1249

Xie X, Li J, Swartz C, Dong Y, DePriest P (2016) Modeling and analysis of ward patient rescue process 
on the hospital floor. IEEE Trans Autom Sci Eng 13(2):514–528

Zhong X, Williams M, Li J, Kraft S, Sleeth J (2015) Primary care redesign: review and a simulation 
study at a pediatric clinic. In: Yang H, Lee E (eds) Healthcare data analytics, Wiley series on opera-
tions research and management science (WORMS). Wiley, Hoboken, pp 399–426

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Zexian Zeng received both his master degrees in Industrial and Systems Engineering and Computer Sci-
ence from University of Wisconsin–Madison in 2013. He received his Ph.D. in Biomedical Informatics 
from Northwestern University in 2018. He is currently working as post-doc fellow in Dana-Farber Can-
cer Institute in Harvard University. His research interests include stochastic modeling, machine learn-
ing, natural language processing, computational genomics, with a focus on healthcare and biomedical 
applications.

Zhenghao Fan received his bachelor’s degree from the Department of Industrial Engineering at Tsing-
hua University in 2017 and is currently working towards his Ph.D. degree in the same department. His 
research interests are in stochastic process, simulation and healthcare analytics. He is the member of 
Institute of Industrial and Systems Engineers (IISE) and the Institute of Electrical and Electronics Engi-
neers (IEEE).

Xiaolei Xie is an associate professor with the Department of Industrial Engineering at Tsinghua Univer-
sity. He obtained his Ph.D. from Department of Industrial and Systems Engineering at University of Wis-
consin, Madison, in 2014. His research interests are healthcare operations management, healthcare data 
analytics and productions systems engineering. He is a member of the Institute for Operations Research 
and the Management Sciences (INFORMS) and the Institute of Electrical and Electronics Engineers 
(IEEE).

Colleen H. Swartz DNP, MSN, MBA, RN, NEA-BC, FNAP, holds a DNP degree, a master’s degree in 
nursing as a Clinical Nurse Specialist in Trauma/Critical Care, as well as an MBA. She has completed 
the Johnson & Johnson Wharton Fellows Program in Management for Nurse Executives and is a Robert 
Wood Johnson Foundation Executive Nurse Fellow Alumna, 2011 Cohort. She became chief nurse exec-
utive for UK HealthCare in December 2008 and was appointed chief administrative officer in February 
of 2017. In January 2019, she was appointed VP for Hospital Operations. Her prior experience includes 
serving as chief nursing officer at a regional community hospital, director of emergency and trauma ser-
vices, flight nursing and as director of the Capacity Command Center for UK HealthCare.

https://www.verywell.com/types-of-doctors-residents-interns-and-fellows-3157293


71

1 3

A two-level iteration approach for modeling and analysis of…

Paul DePriest MD, MHCM serves as Executive Vice President and Chief Operating Officer of Baptist 
Memorial Health Care in Memphis Tennessee. He is Board Certified in Obstetrics and Gynecology with 
sub-specialty board certification in Gynecologic Oncology. He received his medical degree at the Uni-
versity of Kentucky College of Medicine, where he also served his residency and fellowship training. 
He received a Master of Science Degree in Healthcare Management from the Harvard School of Public 
Health.

Jingshan Li received the B.S. degree from Tsinghua University, Beijing, China, the M.S. degree from 
Chinese Academy of Sciences, Beijing, and the Ph.D. degree from University of Michigan, Ann Arbor, 
in 1989, 1992, and 2000, respectively. He was a Staff Research Engineer at General Motors Research and 
Development Center from 2000 to 2006, and was with University of Kentucky from 2006 to 2010. He is 
now a Professor in Department of Industrial and Systems Engineering, University of Wisconsin–Madi-
son. His primary research interests are in modeling, analysis and control of manufacturing and health-
care systems. He is an IEEE Fellow and an IEEE Distinguished Lecturer in robotics and automation. 
He received 2010 NSF Career Award, 2009 IIE Transactions Best Application Paper Award, 2005 IEEE 
Transactions on Automation Science and Engineering Best Paper Award, 2006 IEEE Early Industry/Gov-
ernment Career Award in Robotics and Automation, and multiple awards in flagship international confer-
ences. He is a Senior Editor of IEEE Transactions on Automation Science and Engineering and IEEE 
Robotics and Automation Letters, Department Editor of IIE Transactions, Area Editor of Flexible Service 
and Manufacturing Journal, and Associate Editor of International Journal of Production Research and 
International Journal of Automation Technology. He is the Program Chair of 2019 IEEE International 
Conference on Automation Science and Engineering and was General and Program Co-Chair in 2013 and 
2015. He was the founding Chair of IEEE Technical Committee on Sustainable Production Automation 
(2012–2016) and has been the Chair of the Technical Committee on Automation for Healthcare Manage-
ment since 2016.

Affiliations

Zexian Zeng1 · Zhenghao Fan2 · Xiaolei Xie2 · Colleen H. Swartz3 · 
Paul DePriest4 · Jingshan Li5 

 Zexian Zeng 
 zexian.zeng@northwestern.edu

 Zhenghao Fan 
 fanzh17@mails.tsinghua.edu.cn

 Colleen H. Swartz 
 chswar2@uky.edu

 Paul DePriest 
 paul.dePriest@bmhcc.org

 Jingshan Li 
 jingshan.li@wisc.edu

1 Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
2 Department of Industrial Engineering, Tsinghua University, Beijing 100084, 

People’s Republic of China
3 University of Kentucky Chandler Medical Center, Lexington, KY 40506, USA
4 Baptist Memorial Health Care Corporation, Memphis, TN 38120, USA
5 Department of Industrial and Systems Engineering, University of Wisconsin, Madison, 

WI 53706, USA

http://orcid.org/0000-0003-0148-1232

	A two-level iteration approach for modeling and analysis of rapid response process with multiple deteriorating patients
	Abstract
	1 Introduction
	2 Related literature
	3 System assumptions and problem formulation
	4 Performance analysis method
	4.1 Single patient case
	4.2 A three-patient example
	4.2.1 Level-1 iteration
	4.2.2 Level-2 iteration

	4.3 General procedure
	4.4 Accuracy
	4.5 Distribution sensitivity analysis
	4.6 Monotonicity

	5 Conclusions
	Acknowledgements 
	References




