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MetaTiME integrates single-cell gene
expression to characterize the meta-
components of the tumor immune
microenvironment

Yi Zhang 1,2, Guanjue Xiang 1,2, Alva Yijia Jiang1, Allen Lynch1,2, Zexian Zeng1,2,
Chenfei Wang 1,2, Wubing Zhang1,2, Jingyu Fan 1,2, Jiajinlong Kang1,
Shengqing Stan Gu3, Changxin Wan1,2, Boning Zhang1,2, X. Shirley Liu1,2,4 ,
Myles Brown 3,4 & Clifford A. Meyer 1,2,4

Recent advances in single-cell RNA sequencing have shownheterogeneous cell
types and gene expression states in the non-cancerous cells in tumors. The
integration of multiple scRNA-seq datasets across tumors can indicate com-
mon cell types and states in the tumormicroenvironment (TME).Wedevelop a
data driven framework, MetaTiME, to overcome the limitations in resolution
and consistency that result frommanual labelling using known gene markers.
Using millions of TME single cells, MetaTiME learns meta-components that
encode independent components of gene expression observed across cancer
types. The meta-components are biologically interpretable as cell types, cell
states, and signaling activities. By projecting onto the MetaTiME space, we
provide a tool to annotate cell states and signature continuums for TME
scRNA-seq data. Leveraging epigenetics data, MetaTiME reveals critical tran-
scriptional regulators for the cell states. Overall, MetaTiME learns data-driven
meta-components that depict cellular states and gene regulators for tumor
immunity and cancer immunotherapy.

Recent advances in cancer research have implicated the integral
function of the tumor microenvironment (TME) in tumor progression
and therapy responses1–6. Understanding interactions between cancer
cells and the non-cancer compartments, including immune cells,
fibroblasts, and endothelial cells, has shown potential targets for
cancer immunotherapy. Specifically, single-cell RNA-sequencing
(scRNA-Seq) applied on multiple patient tumors has enabled the high-
resolution identification of TME constituents that interfere with the
elimination of cancer cells. For example, exhausted tumor-infiltrating
lymphocytes (TILs)4,7,8, and certain tumor-associated macrophages
subtypes9–11, have been associated with tumor development. However,

the definition of cell types and cell states in tumor scRNA analyses still
relies onmanual labeling by experts using knownexclusive biomarkers
following unsupervised clustering12,13, which lacks consistency and
varies between different cohorts.

As single-cell data accumulate, integrating a large collection of
cells from multiple cohorts can help unify the definition of cell types
and states to facilitate the automatic annotation of new scRNA-seq
data14,15. One approach to cell annotation is to use predefined bio-
marker lists. However, these biomarkers might not cover domain-
specific cellular states, for example, well-defined immune cell markers
derived from blood immune cells may not fully cover the TME disease
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context14. Moreover, although cell type definitions in reference data-
bases such as CIBERSORT, Azimuth, and Human Primary Cell Atlas16–18

can be useful, the granularity of these definitions varies between
databases. Several efforts integrating pan-cancer scRNA data have
revealed subtypes in the TME through the manual annotation of
clusters using a shortlist of exclusive gene markers13,19,20.

Another approach is tomapa dataset containing unannotated cell
states onto an annotated reference. Methods to obtain such repre-
sentations include canonical correlation analysis (CCA)21, adjusted
principal components (Harmony)22, or generative deep learning
models using variational autoencoders (scVI)23. These methods use
dimension reduction onto a common latent space to align cells with
similar states between datasets, without ascribing meaning to the
latent space representations. An alternative data driven approach is to
identify low dimensional latent space representations in which a bio-
logical meaning can be ascribed to each latent dimension. Several
matrix factorization algorithmshavebeendeveloped to represent high
dimensional data in a low-dimensional space with interpretable com-
ponents, including non-negative matrix factorization (NMF)24 and
independent component analysis (ICA)25,26.

Here we develop a computational framework for mapping mil-
lions of single cells from multiple cohorts onto a comprehensive and
interpretable latent space, learnt from the data. The framework,
MetaTiME (Meta-components of the Tumor immune MicroEnviron-
ment), identifies reproducible low-dimensionalmeta-components that
reflect independent components of gene expression variation across
cohorts and cancer types. MetaTiME adopts ICA for dimensional
reduction tomaximize themutual independence among components.
We useMetaTiME to obtainmeta-components (MeCs) from 1.7million

single cells across 79 tumor datasets. These MeCs represent the TME
landscape along 86 data-driven transcriptional directions mirroring
lineage-specific cell states and signaling activities. Furthermore, we
develop a MetaTiME toolkit for using the MeCs to annotate cellular
states and signature continuums in tumor scRNA datasets, and to
reveal differential signatures across immunotherapy responses.
Finally, by incorporating transcription factor binding data, MetaTiME
identifies and prioritizes putative transcriptional regulators that may
modulate tumor immunity.

Results
MetaTiME as a general framework to discover consensus tran-
scriptomic programs
The MetaTiME framework consists of three stages: meta-component
(MeC) discovery, interpretation ofMeCs, and application of cell state
annotations (Fig. 1a). The MeC discovery stage detects repeatable
sources of variation from multiple single-cell measurements sharing
similar cellular properties. The MeC interpretation step involves a
one-time curation effort using biomarker databases, pathway infor-
mation and Cistrome DB chromatin profiling data27. In the third step,
users map MeCs onto their new tumor scRNA-seq datasets using
MetaTiME application tools, to obtain annotated cell states and sig-
nature continuums.

To train MeCs for the TME context, we collected and curated
2,157,387 cells from 76 studies ranging across 27 cancer types, using
publicly available tumor scRNA-Seq data mostly from TISCH28. After
removing the TISCH annotated malignant cells using MAESTRO17,
102,703 stromal cells and 1,617,110 immune cells were retained for
downstream training (Supplementary Fig. 1, Supplementary Data 1).
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Fig. 1 | Overview ofMetaTiME.MetaTiME integrates 1.7 million single cells to learn
common transcriptional programs in the tumor microenvironment (TME). a Steps
for Meta-components (MeCs) discovery. For each scRNA dataset, the expression
matrix of TME cells is decomposed into a loading matrix (red) and an independent
component (IC) matrix through independent component analysis (ICA). The ICs
representmutually independent sources of transcriptional variation. ICs from each
dataset are concatenated and clustered into groups of ICs with high similarity,
representing transcriptional programs shared across TME. MeCs are then calcu-
lated as averaged profiles of ICs from each cluster. Each MeC is interpretable,

representing gene signatures of cell type, cell states, or signaling pathway activities.
b Left: MetaTiME provides 86 functionally annotated MeCs that depict the TME
transcriptional landscape. They are grouped into six lineage-related categories and
one category reflecting signaling activities, each using a background color corre-
sponding to the lineage. Middle: the MetaTiME annotation tool facilitates auto-
matic annotation of cell states for new tumor scRNA data. Right: candidate
regulators of each MeC are prioritized by combining MeC gene weights with epi-
genetics data. MeC: meta-components, TME: tumor microenvironment, ICA:
independent component analysis, MeC: meta-component, TF: transcription factor.
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The 76 studies were further partitioned according to cancer type,
resulting in 93 datasets, including 7 datasets with immune checkpoint
blockade (ICB) treatment and 3 10x Genomics provided datasets
representing peripheral blood mononuclear cells (PBMC) sampled
from healthy donors.

In the MeC discovery stage, MetaTiME first decomposes the log-
transformed expression matrix of each single dataset using Indepen-
dent Component Analysis (ICA)25.We adopted ICA tomaximizemutual
independence among gene expression components. In simulations
ICA performed slightly better than Non-negative Matrix Factorization
(NMF) in simulated single-cell data with pre-embedded transcriptional
signatures (Supplementary Fig. 2). The feature weight distribution of
each Independent Component (IC) also enables normalization of the
gene contribution scores formeasuring similarity among components.
MetaTiME then applies two transformations to the IC vectors, z-weight
normalization and skewness alignment, to ensure the scales of gene
representation scores are comparable among components (Methods,
Supplementary Fig. 3a). Next, MetaTiME filters ICs to retain ones that
are reproducible across multiple cohorts (the minimum Pearson cor-
relation with any other IC ≥3). These are passed to the Louvain graph
clustering algorithm to merge IC groups into MeCs (Methods). Lastly,
MetaTiME computes averaged profiles of gene z-weights within each
IC cluster, yielding 86 MeCs trained for the TME (Fig. 1a, Fig. 2a). The
number of MeCs was automatically determined by simultaneously
optimizing granularity and independence in IC clustering (Supple-
mentary Fig. 3b). Importantly, the MeC clustering does not depend on
cohort source (Supplementary Fig. 4a, cohort source of component),
and is robust during leave-one-out testing inwhich theMeCs are learnt
with a single cohort left out of the analysis (Supplementary Fig. 5).
The leave-one-out MeCs are highly correlated with the MeCs learnt on
the complete data (mean maximum correlation = 0.988), and the
numbers of components are similar (mean leave-one-out MeC num-
ber = 84.64, full-set MeC number = 86). This integration after decom-
position approach overcomes batch effects, which are often a
challenge in single cell RNA-seq data analysis. Moreover, we imple-
mented the standard approach in which cluster-wise signatures are
obtained by batch effect removal, clustering, and differential expres-
sion analysis (Supplementary Fig. 6a). Limited by server computing
memory, the maximum number of datasets we could integrate in this
way was 21, and the cluster-wise signatures display a lower level of
specificity in the test data (Supplementary Fig. 6b,c). Therefore, the
MetaTiME approach allows for the effective integration of large
numbers of single cell datasets, which will become increasingly
important as data accumulates.

MetaTiME defines interpretable meta-components
In principle, each MeC represents one independent source of tran-
scriptional variation commonly present in the TME. We investigated
top ranked genes in MeCs and found MeCs are highly interpretable,
reflecting common biological processes in the TME. For instance, the
MeCderived from the largest IC cluster is highly enriched in interferon
response genes, such as ISG15, IFI6, LY6E, and MX1, indicating that the
underlying interferon response is among the most common source of
transcriptional variation shared across tumor samples and cohorts
(Fig. 2a, b). Intriguingly, top genes of each MeC are enriched in known
biomarkers or regulators. For example, several T cell-related MeCs
identify different gene modules co-expressed in T cells reflecting
activation of different T-cell related processes (Fig. 2c, Supplementary
Fig. 7, Source Data 1). MeC-65, T cell co-signaling, features T cell
receptors in co-stimulatory and co-inhibitory pathways29,30, such as
TNFRSF4 (OX40), TNFRSF18 (GITR) TNFRSF9 (4-1BB), and ICOS (Fig. 2c,
left). MeC-40, CXCL13 + exhausted CD8 T cell, features receptors
characterizing the exhausted CD8 T cell state8, including HAVCR2
(TIM3), LAG3, TIGIT, and PDCD1 (PD1) (Supplementary Fig. 7, Source
Data 2), each being potential ICB targets31. In addition, this MeC is

characterized by a high level of CXCL13 (Fig. 2c, second panel), a
cytokine mediating immune cell trafficking to tertiary lymphoid
structures32. In contrast, a relatedMeC representing T cell co-signaling
receptors in regulatory CD4T cells (Treg) has a different ranking,
including TNFRSF18, TNFRSF4, TIGIT, TNFRSF1B, CTLA4, CD27 among
the top 20 genes, along with the regulatory T cell-specific marker
FOXP3 (Fig. 2c, right, Source Data 1). Though ICB has been an extre-
mely successful therapy for some patients, it has not yet had an impact
on the majority of patients33. Investigating the top members in the
MeCs involving T cell receptor pathways may help identify new ICB
targets.

MetaTiME depicts the functional landscape of transcriptomic
variation and cell states in the tumor microenvironment
We provided functional annotations of all MeCs by examining top z-
weight genes and compared these with functional gene sets, such as
immune cell typemarkers15,18 andgeneontologydatabases34.We found
that 86 MeCs clearly mirror gene expression patterns corresponding
to cell types, cell states and signaling pathway activities, depicting a
landscape of non-cancer cell states in the TME (Fig. 2, Supplementary
Data 2: MeC annotation). The top genes of the cell type MeCs match
well-known lineage-specific markers15,18. Examples include CD74,
CD79A,MS4A1 for B cells (MeC-18, B cell), CD3D,CD8A, CD8B for T cells
(MeC-32, CD3 +CD8 T cell), and LYZ, VCAN, S100A9 for CD14 +
Monocytes (MeC-17, CD14 monocyte) (Fig. 2b, Fig. 2d, Source Data 3).
Themajority ofMeCs define high resolution lineage-specific cell states
(Fig. 2b, Supplementary Fig. 4b). Taking the B cell lineage as an
example, multipleMeCs harbor genes specific to B cell developmental
stages35, ranging froma progenitor B cell state (CD69 and PAX5 inMeC-
50, PAX5 B cell), to a mature B cell state (CD79A in MeC-18, B cell), an
antibody-secreting plasma cell state (XBP1 in MeC-4, plasma B cell;
JCHAIN in MeC-77, JCHAIN + plasma B cell), and immunoglobulin
secretion states (IGK and IGH in MeC-30, immunoglobin kappa B cell;
IGL and IGH in MeC-50, immunoglobin lambda B cell) (Fig. 2b). Lastly,
like the interferon responsive MeC mentioned above, we found a
subset of MeCs that are more accurately interpreted as signaling
pathways because their top genes are more related to pathways or
molecular functions than to cell identities.

We organized the 86 annotatedMeCs into six cell lineage-focused
categories and one signaling pathway-focused category (Fig. 2a,b and
Supplementary Data 2: MeC annotation, MeC enrichment). Among
these, there are 6 B lineage-related MeCs for B cells; 20 T cell lineage
MeCs covering CD8 T cells, CD4 T cells, and natural killer (NK) cells; 4
dendritic cell (DC) lineage MeCs; 12 monocyte and macrophage-
related MeCs; 3 platelet, erythrocyte, and mast cell MeCs; 6 stromal
cell-related MeCs for fibroblasts, myofibroblasts and endothelial cells;
and 35 MeCs in the signaling category (Fig. 2b). We demonstrated that
the MeCs are of high specificity, visualizing the log-scaled z-weights of
known cell subtype markers and pathway biomarkers (Fig. 2d). Cor-
relating MeCs with the comprehensive immune cell type database
Azimuth15 validated the lineage-specificity of several MeCs, whilemost
MeCs reflect cell states that appear specific to the tumor context
(Supplementary Fig. 4b).

MetaTiME annotates cell states and signature continuums when
applied to the tumor microenvironment single-cell data
AsMetaTiMEMeCs provides a highly interpretable basis for the TME in
single cells, we provided a toolkit to discover MeC signature con-
tinuums and enriched cell states in scRNA-seq TME data (code
deposited in https://github.com/yi-zhang/MetaTiME). The MetaTiME
annotation toolkit takes as input the scRNA-seq expression matrix
after depth normalization and log transformation, maps each single
cell onto the pre-trained MeC space, and annotates the most highly
enriched cell states for pre-defined cell clusters. The cell clusters are by
default calculated using graph clustering with high resolution after an
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optional batch effect correction with Harmony22. We demonstrate the
application of MetaTiME on basal cell carcinoma (BCC) single-cells
from Yost et al.8. These test cells were excluded from the MetaTiME
training stage. MetaTiME annotates the enriched cell states (Fig. 3a)
highlighting gradients of exhausted CD8 T cells and follicular helper
T cells (Tfh) (Fig. 3c). Themost enriched cell states consistently match
the manual labelling from the original study with improved resolution
(Fig. 3b) and highly express corresponding markers (Fig. 3d, Source
Data 4). In addition, compared to Seurat’s14 automated CIBERSORT
marker-based annotations (14 cell types, Supplementary Fig. 6a),
MetaTiME provides higher resolution (38 cell states, Fig. 3b). Other
automatic annotation gene panels were also tested, including the
human primary cell atlas (HPCA) panel and Blueprint-ENCODE panel
used in SingleR16, where macrophages and plasma cells appear to be
mislabeled as subclusterswithin T cell clusters (Supplementary Fig. 8b,
c). Interestingly, theMetaTiME annotationnot only indicates theCD8T
cell and CD4 T cell subtypes, but also splits cells further into cell states
with polarized expression in proliferation, cytotoxicity, exhaustion
level, heat stress, co-signaling pathways, and so on. (Fig. 3a, Supple-
mentary Fig. 8a). The B cell group is further partitioned into distinct B
cell developmental states including a B cell cluster with cell cycle and
MYC activities (Fig. 3a,b, Supplementary Fig. 8), which possibly
represent germinal center (GC) B cells undergoing active expansion
and maturation36.

We thus re-annotated all tumor scRNA cohorts using MetaTiME
and investigated the distribution of cell state compositions across
cancer cohorts. As shown in Fig. 3e and Supplementary Fig. 9, tumors
are highly heterogenous and the TME cellular composition is only
partially determined by cancer type (Source Data 5–6). For example,
Cholangiocarcinoma (CHOL) is highly enriched in stromal cells
including collagen-secreting fibroblast, as expected37, while other
samples including ovarian cancer (OV), pancreatic adenocarcinoma
(PAAD), and multiple myeloma (MM) are also stromal-rich. Further-
more, tumors with high infiltration of the MeC-12, GZMK + CCL5 +
CD8 T cell state, include multiple tumor types including bladder
cancer, breast cancer, and skin cancer, suggesting that immune
infiltration is sample-dependent and that cancer treatments should
be personalized38.

Differential MetaTiME analysis detects alterations of transcrip-
tional programs in immunotherapy
Single-cell data derived from ICB trials is invaluable for identifying cell
types associated with ICB treatment or response8. However, the
detection of differential cell type abundances in ICB cohorts has been
challenging due to the heterogeneity of cell type proportions and to
the limited numbers of patients in each cohort39. We compared dif-
ferences in MeC signatures instead of cell count proportions, to
understand immune responses during ICB. We analyzed two ICB
cohorts, a basal cell carcinoma (BCC) cohortwith samples frompre- or
post-ICB treatment8, and a bladder cancer (BLCA) cohort with samples
from ICB responders and non-responders40. We applied MetaTiME for
per-cluster cell state annotation andper-cellMeC signature evaluation.
For each cell state cluster, we tested all MeC signatures passing sig-
nificance (average z-weight ≥2) between conditions using the two-
sided t-test. We plotted cluster-wise signatures in the significance –

effect size scatterplot to highlight the most significant differential
MeCs (Methods). In a comparison of pre- and post-ICB treatment, we
observed higher expression of cytotoxic T cell and B cell MeCs in the
post-ICB samples.Moreover, severalmonocyte andmacrophage states
are also suppressed after ICB treatment (Fig. 4a, Source Data 7).
Notably, the IL1B-positive macrophage signature is also found to be
elevated in non-responders compared to responders in the BLCA ICB
cohort (Fig. 4b, SourceData 8). Since activation of the IL1Bpathway is a
known regulator of inflammatory processes41, we sought to investigate
whether the IL1B-positive macrophage signature is associated with

tumor survival prognosis in bulk RNA-seq data from The Cancer
Genome Atlas Program (TCGA). We evaluated TCGA tumors using the
averaged expression of the top 20 genes from MeC-42, M_Macro-
phage-IL1-NFKB, which ranks first in elevated MeCs in non-responders
(Fig. 4a). We found that higher expression of the IL1B signature is
associated with lower survival rate in multiple cancer types, especially
in Low Grade Glioma (LGG) and in Kidney renal cell carcinoma (KIRC)
(Supplementary Fig. 10). This suggests themacrophage state with IL1B
pathway activation is associated with poor prognosis and lower ICB
efficacy.

MetaTiME delineates myeloid cells in different metabolic states
As specific myeloid cell states have been associated with cancer sur-
vival and treatment response, we sought to systematically characterize
MeCs related tomonocytes andmacrophages. Although the canonical
definition of M1 and M2 macrophages is derived from cytokine
polarized macrophages in vitro42, MetaTiME’s myeloid-related MeCs
represent a more complex framework for understanding tumor-
infiltrating macrophages. MetaTiME’s 12 monocyte and macrophage
related MeCs can be summarized into six central monocyte or mac-
rophage states for the TME, after merging similar states such as MeC-
42, IL1-NFkB Macrophage and MeC-45, IL1- JUN Macrophage, due to
similarity among top genes (Fig. 4c). Monocytes are classified as two
categories, CD14 + and CD16 + . For macrophages, four MeCs define
common states of intra-tumor macrophages: C1Q + , SPP1 + , lipid-rich,
and IL1B +macrophages, and two MeCs, representing interferon and
MHC-II signaling pathways, are less frequently observed among mac-
rophages (Fig. 2b, Fig. 4c). In comparison, previous studies defined
different tumor associatedmacrophages in termsofmanually selected
representative genes after clustering myeloid cells. For example,
Cheng et al.10 defined several tumor associated macrophage types
including ISG15+ , SPP1 + , INHBA + , VCAN + , NLRP3 + , and FN1+
macrophages, while Bi et al.43 defined CXCL10-high, GPNMB-high,
FOLR2-high, VSIR-high, and cycling macrophages for advanced renal
cell carcinoma (ccRCC). We find that the MetaTiME-defined macro-
phage MeCs reflect co-expression relationships with the selected
marker genes. For example, macrophage markers from Bi et al. rank
high in several macrophage-relatedMeCs (Supplementary Fig. 11), and
the expression pattern of themarker genes picked by Bi et al. (CXCL10,
GPNMB, VSIR, FOLR2, Cycling marker MKI67) correspond to several
MeCs (MeC-0, interferon response; MeC-37, PPARG + lipid-rich mac-
rophage; MeC-58, MHCII-high, and MeC-49, RNASE1 + , C1Q +
macrophage) (Supplementary Fig. 11). However, MetaTiME reveals
additional distinct components such as the SPP1 + and C1Q+MeCs,
which were detected as separate myeloid types in the Cheng et al.
multi-cohort study (Supplementary Fig. 12). While the manual recon-
ciliation of cell types from multi-cohort scRNA data shows many
marker genes to be consistent with the top genes in the MetaTiME
MeCs, the myeloid cell population is not neatly partitioned into cell
clusters and might be better represented in terms of expression sig-
nature continuums. For example, when mapping myeloid MeCs onto
the kidneymyeloid cells, the IL1B+MeC signature (MeC-42,MeC-45) is
distributed across the M09_Macro_IL1B cluster as well as the CD14
monocyte cluster (Supplementary Fig. 12).

To investigate functional differences among the different mac-
rophage states,weapplied gene set enrichment (GSEA)34 analysis using
the topMeCgenes (Methods). Interestingly, the differentmacrophage
states have different metabolic preferences (Fig. 4d, Source Data 9).
Glucosemetabolismand the glycosylation pathway are highly active in
SPP1 +macrophages, while lysosome and phagosome activity are the
most highly enriched in C1Q +macrophages. Lysosome and choles-
terol metabolism, including PPARG signaling, are enriched in the lipid-
rich state. The inflammatory IL1B and NFkB pathways are highly active
in IL1B +macrophages. Several macrophage states are related to cell
signaling. SPP1 for example, encodes Osteopontin, which has been
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Fig. 3 | MetaTiME annotates cell states with high resolution on tumor micro-
environment single-cell data. aMetaTiME cell state annotation of cell clusters in a
basal cell carcinoma scRNA dataset based on top enriched MeCs. b Manual anno-
tation labels by experts from the original study shown on the same UMAP space.
c Signature continuums of four MeCs representing the mature dendritic cell state,
the CXCL13-secreting exhausted T cell state, the CXCL13-secreting T follicular

helper cell state, and the IL1B pathway-activated macrophage state. dMarker gene
expression for each annotated cell cluster as in (a). e Bar plot showing cell state
composition of tumor microenvironment for tumor scRNA dataset cell states. The
proportion of cell states from the sameMeC category are aggregated. Source data
are provided as a Source Data file.
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found to foster an environment that promotes cancer metastasis44.
The C1Q+MeC features C1QA, C1QB, and C1QC, members of the family
of complement molecules that could have dual functions in chronic
inflammation45. The IL1B+meta-components features cytokines co-
expressed with IL1B, including CXCL8, CXCL2, and CXCL3, all of which
can interact with other cells in the TME by binding to cytokine
receptors46 (Fig. 2b).

Incorporation of epigenetic data prioritizes transcriptional
regulators of tumor immunity
We next investigated the transcription factors (TFs) that regulate the
MeCs, hypothesizing that the co-expression of genes in a subset of
MeCs is determined through TF regulatory events. Our group pre-
viously developed the Cistrome Data Browser and Lisa to predict
transcriptional regulators of gene sets based on chromatin immuno-
precipitation with sequencing (ChIP-seq) data27,47. Thus, we used
Lisa to predict the TFs that regulate the top genes of each MeC, and
compared these Lisa regulatory prediction scores with the MeC

z-weights across TFs (Supplementary Data 3).We found that, for many
MeCs, the same TFs were predicted to be both regulators of the MeC
and were highly expressed in the MeC itself, indicating an auto-
regulatory control scheme.Often, however, TFs thatwerepredictedby
Lisa to beMeC regulatorswerenot representedbyhighMeC z-weights,
and TFs with high MeC z-weight were not always found to have high
Lisa scores (Fig. 5, Supplementary Data 2: MeC regulators). TFs pre-
dicted by Lisa but not represented by high MeC z-weight could be the
result of TF activities being regulated through non-transcriptional
mechanisms48 or multiple TFs in a family having similar binding pat-
terns but only a subset being the regulators49. TFs that have high MeC
z-weights but lowLisa scores aremost likelynotwell represented in the
relevant cell types in available ChIP-seq data. In MeC-0, interferon
response, STAT1 is highly represented in the MeC z-weight and Lisa
ranks STAT1 as the top regulator, consistent with STAT1 being known
as the master regulator of the interferon response (Fig. 5a). Several
lineage-defining TFs display the autoregulatory pattern, including
TCF4 in plasmacytoid dendritic cells (pDC) (Fig. 5b) and XBP1 in B
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plasma cells (Supplementary Data 2: MeC regulators). The macro-
phage related MeCs are regulated by myeloid lineage TFs like CEBPB,
and TFs related to immune stimulus responses, including NFkB com-
plex TFs. In MeC-37, lipid-rich macrophage, although PPARG ranks
among the top Lisa-predicted regulators (Fig. 5c), PPARG expression is
not highly represented as a MeC z-weight. In this MeC, the top co-
expressed genes are indeed enriched in the PPARG signaling pathway
(Fig. 4d); this result can be accounted for by PPARG being regulated
through its ligands, which include a variety of lipophilic acids48.

We found glucocorticoid receptor (GR) signaling to be implicated
in the regulation of MeC-20, CXCL13 + Tfh, with GR being most highly
ranked TF in bothMeC and Lisa scores (Fig. 5d). Top genes in MeC-20,
CXCL13+ Tfh, include several direct target genes ofGR, including SRGN
and FKBP5 (Supplementary Fig. 13b). We investigated whether the
CXCL13 cytokine itself could be a direct target of GR in CXCL13
secreting Tfh cells. SinceGRChIP-seq data is not available for the exact
Tfh cell state, we collected GR ChIP-seq data from several other cell
types. Direct binding of GR is observed at the CXCL13 gene promoter
and nearby the gene locus at putative enhancers, which are conserved
across multiple cell lines (Supplementary Fig. 13a), including the B cell
line Nalm6, the monocyte cell line THP1, and cancer cell lines. More-
over, in another CXCL13 secreting cell state, MeC-40, CXCL13 +
exhausted CD8 T cell, GR is also highly ranked in both Lisa and MeC
scores (Fig. 5d). Thus, we hypothesize that GR is likely to be a tran-
scriptional driver of the CXCL13-secreting cell states in exhausted CD8
T cells50 as well as in CD4 T follicular helper T cells. Thus, the GR
pathway could be a candidate target in tumor immunity modulation.

Discussion
Wedeveloped theMetaTiME (Meta-components of the tumor immune
Microenvironment) framework and performed a large-scale and

pan-cancer integration of tumor single cell datasets using ICA to
optimize information independence among components51. We iden-
tified 86 interpretable meta-components (MeCs) that describe com-
monaspects of TME gene expression variation acrossmultiple tumors.

The MetaTiME MeCs serve as comprehensive transcriptional sig-
natures that depict a functional landscape of TME transcriptional
programs and cell states. Formonocytes andmacrophages, the related
MeCs showed heterogeneity and plasticity of tumor-associated mac-
rophages (TAMs). We thus propose that TAMs, especially for solid
tumors, should be classified based on the major states with different
metabolic preferences instead of the canonical M1 and M2
classification42. Similar states that do not fit well into the M1 versus M2
classification scheme were also observed in previous studies analyzing
myeloid cells in the TME, where single cells were clustered and labeled
using differential markers10,12,43. Cheng et al.10 defined several TAM
types by clusteringmyeloid cells separately for each study and naming
the TAMs with manually selected top marker, chosen based on con-
sistency across cohorts. Similarly, Bi et al.43 defined TAM types by
harmonizing patients and naming the TAMs with top genes in each
cluster for an advanced renal cell carcinoma (ccRCC) cohort. Cell type
definitions in the previous studieswerebased on representative genes,
which were chosen differently in the respective studies. We propose
that theMetaTiME derivedmonocyte andmacrophageMeCs could be
used to define macrophage states and functional co-expressed gene
modules more consistently for the TME. Reexamining the marker
genes from the previous studies: NLRP3 is highly ranked in MeC-42,
IL1B+macrophage; in fact, the NLRP3 inflammasome mediates
interleukin-1βproduction.GPNMB is weighted among the top 20 genes
in both MeC-19, Macrophage-C1Q and MeC-26, Macrophage-SPP1; it
encodes a membrane glycoprotein which is typically highly expressed
in macrophages. FOLR2 is ranked 29th in MeC-19, Macrophage-C1Q,
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indicating this macrophage state also encodes a high folate-activated
pathway. Finally, MeC-36, Macrophage-SPP1-C1Q, features an inter-
mediate state with both SPP1 and C1QA, indicating the plasticity and
mixed nature of pathways activated in TAMs that could not be defined
using exclusive markers. Thus, the myeloid MeCs may provide a con-
sistent definition of TAM states corresponding to different metabolic
processes.

MetaTiME provides a toolkit for analyzing independent TME
scRNA-seq datasets by mapping gene expression onto the MeC space.
The outputs include signature continuums and the most highly enri-
ched cell states. Recent useful single-cell dataset integration algo-
rithms such as Harmony22 and scArches52 infer a joint low-dimensional
representation amongdata. In these approaches the shared space is re-
computed every time a new dataset is incorporated. The MetaTiME
strategy builds upon previous approaches that transfer latent repre-
sentations from large datasets, but provides a stable and interpretable
representation specialized for the TME.

By leveraging ChIP-seq data, MetaTiME implicates critical tran-
scriptional regulators in tumor immunity. In many cases, we found the
joint consideration of MeC-specific co-expression patterns and TF
binding enrichments shows the functions of TFs in defining cellular
states and gene expression programs. MetaTiME captured multiple
known TFs critical to tumor immunity and could serve as immune
modulation targets; this includes TOX in MeC-40, CXCL13-secreting
exhausted CD8 T cell, a recently discovered regulator of T cell
exhaustion53 (Supplementary Data 2). TheMeCs further implicated the
glucocorticoid receptor pathway in the regulation of several T cell
states. Glucocorticoids are a class of steroid hormones essential to the
modulation of multiple biological processes, including immune rela-
ted ones18, although the function of the GR pathway in different
immune cell types is not fully understood. Since GR is broadly
expressed inmany cell types, and is regulated through ligand binding,
differential analysis of GR expression is unlikely to fully capture GR
regulation in single-cell data analysis. Though GR ChIP-seq is not
available in the contexts of the relevant T cell states, GR ChIP-seq in
other cell lines demonstrate robust binding nearby the top gene
CXCL13. CXCL13 is crucial to T follicular helper cell communication
with germinal center B cells, through interaction with its receptor
CXCR554,55.

Overall, MetaTiME depicts the functional landscape of tran-
scriptomic variation and cell states in the tumor microenvironment. It
provides a computational framework to facilitate the elucidation of the
identity and function of cells in the TME in future studies and will
facilitate the identification of potential new therapeutic targets for
immune modulation.

Methods
Tumor single-cell RNA-seq data collection and processing
For an extensive collection of single cells from tumor micro-
environment, we utilized the public tumor scRNA-seq collection,
TISCH28. The TISCH collection uniformly processed each dataset with
MAESTRO17 and isolated non-malignant environmental cells from
malignant cells. Overall, we collected 2,157,387 cells from 76 studies
ranging 27 cancer types. The MAESTRO annotation was labeled using
CIBERSORT gene panels18 followed by curation, enabling selection
of 1,719,813 tumor micro-environment cells, including 1,617,110
immune cells and 102,703 stromal cells, were retained for integrative
analysis in this study. For studies with data measured from multiple
cancer types, cells different cancer types were split into independent
datasets, resulting in 93 datasets; it includes 3 PBMC datasets from
healthy donors from 10X Genomics as baseline and 7 datasets with
ICB treatment.

For an unsupervised component analysis, each dataset was re-
analyzed. For datasets with raw count matrices available, gene
expression was normalized towards per-cell read depth 10,000

followed by log transformation. For datasets with only TPM or FPKM
values available, including Smart-seq data or studies with only nor-
malized matrix available, gene expression underwent log transforma-
tion. Cells were filtered based on minimum library size 1000, gene
number 500, and maximum mitochondrial read proportion 5%.

Decomposing individual studies and denoising low-dimensional
components
We then decomposed the expression matrix of each scRNA-seq
dataset using fastICA51 into an independent component (IC) vector
matrix and a projection weight matrix. We tested different values for
the number of components (k) and chose k to be 100 uniformly for
each dataset, given it could covermore variations than the number of
cell types in the TME, which is around twenty. We applied two
denoising approaches to handle sparsity and potentially noisy ICs.
First, we performed a z -score transformation of the gene loadings in
the component, scaling all gene loading values by the standard
deviation of each IC. The gene loadings indicate the degree of con-
tribution to the component as a metagene from each gene, and we
observed that most genes contribute neutrally to the metagene.
Thus, genes with significant contributions are selected using the two-
standard deviation threshold from either the positive or the negative
side. Second, we aligned the positive skewness of components
(using scipy.stats.skewtest56) since the sign of an independent com-
ponent is randomly assigned in fastICA optimization. We observed
that asymmetrically extreme gene loading values highlight genes
representative of the component’s function; thus, we computed each
component’s skewness statistics and flipped the sign of component
loadings if the skewness is negative. We excluded genes with a low
contribution (gene weight not passing two standard deviations) to
any reproducible components and kept 6623 genes with potentials in
driving the reproducible components. The post-decomposition steps
ensured the attitude and sign of gene weights are comparable across
cohorts, depicting degree of contribution from each gene in the
genome-wide background.

Meta-component calling and functional annotation
We then aim to discover reproducible patterns from all components
from each dataset. We evaluated similarity between pairs of com-
ponents using cosine distance and retained a set of 1043 candidate
reproducible components from 69 datasets, each with a minimum
Pearson correlation coefficient 0.3 with at least one different IC. We
then clustered ICs using Louvain clustering, a graph-based commu-
nity detection algorithm where the resolution parameter controls
segmentation granularity. Clusters with at least five ICs were retained
as reproducible IC clusters. The number of clusters is determined by
optimizing both Silhouette’s score for optimal within-cluster simi-
larity compared to inter-cluster similarity and number of repro-
ducible clusters. The final resolution parameter was chosen to be 1.25
resulting in 86 clusters for meta-component (MeC) calling. The
consensus gene z-weights in each MeC were then calculated by
averaging ICs in each cluster. Genes of outlier z-weights passing two
standard deviations were highlighted as significant, and the ones
with positive largest z-weights were considered representative of
the MeC.

MetaTiME MeCs were assigned curated annotation by matching
top z-weighted genes to functional biological information including
cell type markers, pathway databases from GSEA and Enrichr through
GSEApy, cell types expressing top MeC genes, and high-rank tran-
scription factors. In detail, GSEA enrichment analyses utilized the top
100 highest z-weighted genes and TF database was obtained from
AnimalTFDB49. The pathway database from Enrichr utilized WikiPath-
ways, BioPlanet, MSigDB_Hallmarks, GO_Biological_pathway, GO_
Molecular_function, GO_Biological_process. KEGG, and Reactome.
GSEAwas also performed using the z-weight rank of all genes57. The 86
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MeCswere first orderedbyMeC cluster size, thenorganized into seven
functional categories with six lineage-related categories and one sig-
naling category.

Simulating multi-cohort single-cell RNA data with expression
programs
To benchmark dimensional reduction methods, we built upon pre-
vious effort from Kotliar et al.58 to use the scsim package to simulate
multiple count matrices with built-in transcriptional programs. In
principle, the built-in gene expression programs (GEP) were sampled
as random scaling factors on a subset of genes mimicking over-
expression or suppression of a pathway. For testing whether a higher
number of cohorts facilitate GEP recovery, we simulated 20 single-cell
datasets and tested usage of 5 cohorts, 10 cohorts, and 20 cohorts.
Each datasetwas embeddedwith a subset of 14 pre-definedGEPs, since
the real tumor scRNA data may not cover every possible cell type or
gene program in every dataset. The 14 GEPs contain 13 cell type-
specific programs with distinct cell type-specific genes, and one sig-
naling gene expressionprogram that is randomly active inmultiple cell
types. Two low-dimensional reductionmethod arebenchmarkedusing
simulated scRNA data: independent component analysis (ICA) and
non-negative matrix factorization (NMF). Decomposition was per-
formed on each single cohort separately, andmeta-component calling
was done as similar in MetaTiME: components are filtered, clustered
into meta-components, followed by averaging gene z-weights per
cluster as predicted gene expression programs (GEP). The predicted
GEPs were compared with pre-defined True GEPs using Pearson cor-
relation. Overall, both ICA and NMF can recover GEPs, while the ICA-
based GEPs are more mutually independent and performs slightly
better. Since the GEP recovered in the 20 cohorts case matched true
GEP better than 5 cohorts and 10 cohorts, the increased number of
cohorts also improves GEP recovery. Thus, we chose ICA for compo-
nent integration and use all available datasets for GEP discovery for
tumor microenvironmental cells.

MeC calling robustness with leave-one-out testing
MetaTiME’s robustness was examined by re-calling MeCs after leaving
one dataset out and calculate the Pearson correlation between the left
out datasetMeCs and the full-set MeCs. The leave-one-out analysis was
first performed by removing the SCC cells from the Yost et al. dataset,
which was shown as an example of MetaTiME annotation. Each dataset
in the MeC pool was left out to call new MeCs using the same para-
meters, resolution = 1.25 andmin_cluster_size = 5. We used twometrics
to check the similarity of each leave-one-out experiments compared to
the full set. The first metric is the meanmaximum correlation between
leave-one-out and the full set. This is calculated by taking themaximum
correlation, row-wise and column-wise in the correlation heatmap, and
then taking the average. The second metric is the number of MeCs.

ComparingMeCs, signatures by post-embedding integration, to
signatures by cluster-wise differential expression
We compared MetaTiMEMeCs to the standard approach that extracts
signatures after integrating cells across datasets. The standard
approach to obtain cluster-wise signatures is to perform dataset har-
monization, cell clustering, and cluster-wise differential expression
analysis. When performing dataset integration, we first used CCA to
include as many datasets as possible given our maximum memory
available in our computing resource (150GB). The maximum number
of datasets integrated by CCA is 10 when using datasets ranked by the
number of TME cells. We then used scanpy to achieve the successful
integration of 21 datasets. The integrated cells are harmonized with
Harmony22 and clustered, followed by differential expression analysis
using the Wilcoxon test to extract cluster-wise signatures. The sig-
natures are in the format of gene vector of log fold change, and named
as “Cluster DE signatures”. To control the confounding effect of

signature numbers, the resolution of clustering is chosen to reach 90
clusters, a similar numberwith the number of full-setMeCswhich is 86.
Then, we compared MetaTiME MeCs to the Cluster DE signature pro-
jected onto a test dataset. We used same BCC cells as the test cells that
are never seen in the training step from either method. To reflect how
variable the projected scores are across cells, we grouped cells from
the test BCC data into 25 clusters with Leiden clustering. The heatmap
of the cluster-wise signature mapping is plotted to observe how spe-
cific each type of score is across cell groups. We further used cross-
cluster entropy to quantify the information content of scores relative
to clusters in the test dataset.

The MetaTiME annotator for analyzing new tumor scRNA-
seq data
MetaTiME provides an analytical toolkit for annotating cell states and
signature activities for tumor scRNA-seq data (https://github.com/yi-
zhang/MetaTiME). The scRNA-seq data is first processed following
standard procedures, which includes cell depth normalization, log-
transformation, batch effect removal using Harmony22, neighboring
graph construction, graph clustering, and UMAP embedding for
visualization. Specifically, the clustering step uses an over-clustering
strategy, which sets a high-resolution parameter (default 8) that gen-
erates a larger number of clusters and help reveal fine structures
among the cells. Then, the MetaTiME annotator tool takes as input a
single log-transformed expression matrix for TME cells from the
dataset. The outputs include both per-cell MetaTiME MeC signature
scores and per-cluster enriched MeC state. For the per-cell score,
MetaTiME projects each cell onto theMeC space by calculating the dot
product between the expression vector and the z-weight vector of
each MeC, using genes passing the significant z-weight criterion (z-
weight ≥2). The projection matrix is then scaled across all cells to
ensure normally distributed scores within each MeC, outputting the
cell-by-MeC scorematrix. Meanwhile, the UMAP view of the projection
score shows the signature gradient across the cells positioned by
similarity. Lastly, the cluster-wise MeC enrichment results are also
generated. The per-cluster MeC enrichment score is calculated by
averaging profile of cells along each MeC; MeCs with mean score
passing the significant cutoff (2 in the z-weight scale) are called as the
set of enriched MeCs. Each cluster may enrich multiple number of
MeCs, and the top enriched MeC with highest score is used in UMAP
visualization.

Differential MeC signature analysis
For tumor scRNA-seq data with different conditions, a differential
signature analysis can be carried out following MetaTiME annotation,
whichprovides enrichedMeCs for each cluster and names each cluster
with the top enriched MeC. Thus, for each cell cluster, the MeC sig-
nature strength can be compared across conditions, for all enriched
MeC in the current cluster. In details, a simple t-test or Wilcoxon rank-
sum test is adopted to compare MeC scores of cells in one condition
with another. The effect size of MeC scores were calculated by the
differencebetween cellmeans from the two conditions in comparison.
To plot the cluster-specific differential signature plot, the signatures
are marked using “EnrichedMeC@ClusterName”, where the “Clus-
terName” is the top first enriched MeC used as cell state as current
cluster. When “EnrichedMeC” is the same as the “ClusterName”, only
“ClusterName” is marked on the Significance-Effect size plot.

Incorporation of epigenetic data using Lisa
Our group previously developed Lisa that predicts the influence of TFs
on a set of genes. Lisa models public chromatin accessibility and TF
binding profiles to score TFs in gene regulation from an epigenetic
perspective. We developed Lisa2 that improves on running speed and
pipeline integration, which is applied on each MeC to score TFs in
regulation potential on top 100 high z-weighted genes. The impact
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scores of TFs are thus from two sources: MeC z-weights for expression
representation, and Lisa scores for binding potential, as in Supple-
mentary Data 3. The TFs are grouped into three classes, TFs highly
ranked based on both MeC gene weights and Lisa significance, TFs
representative only in MeC, and TFs based on binding information
only. In SupplementaryData 2, wemarkedTFs fromdifferent classes in
different columns. Significant TFs based on bothMeC and Lisa (MeC z-
weight ≥2), Lisa score -log (p-value) ≥2 are marked in the column
TF_MeCLisa_top_1; furthermore, the TFs ranking among top 40
(aggregated rank of MeC and Lisa) compared to all genes are further
marked in the columnTF_MeCLisa_top. TFs ranking among top 10 only
inMeC z-weight are in the columnTF_MeC_top, andTFs ranking among
top 10 only in Lisa score are in the column TF_Lisa_top.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed datasets used in this study are available in Zenodo
under accession code 7410180 The pretrained meta-components for
tumormicroenvironment in theGithub repository: https://github.com/
yi-zhang/MetaTiME. The single-cell RNA-seq data used in this study are
available in theTISCHdatabase (http://tisch1.comp-genomics.org). The
list of public datasets used in this study is available in Supplementary
Data 1 and also from GEO under accession code GSE154763 and Single
Cell Portal under accession code SCP1288. The gene list analytical data
used in this study are available in AnimalTFDB v3.0 (http://bioinfo.life.
hust.edu.cn/AnimalTFDB/#!/), TCGA (https://portal.gdc.cancer.gov),
and Azimuth (https://azimuth.hubmapconsortium.org). The ChIP-seq
data used in this study are available from GEO (https://www.ncbi.nlm.
nih.gov/geo/) under accession IDs GSM604651, GSM1637309,
GSM1607526, GSM2661793, GSM2735378, GSM2871705, GSM1637306,
GSM1637307, and from ENCODE (https://www.encodeproject.org/)
under accession ID ENCSR919OXR. Source data are provided with
this paper.

Code availability
MetaTiME is available at https://github.com/yi-zhang/MetaTiME, and
also available at Zhang Y et al., “MetaTiME Integrates Single-cell Gene
Expression to Characterize the Meta-components of the Tumor
Immune Microenvironment”, MetaTiME, https://doi.org/10.5281/
zenodo.7734062, 2023.
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